xref: /openbmc/qemu/hw/char/ibex_uart.c (revision 2f95279a)
1 /*
2  * QEMU lowRISC Ibex UART device
3  *
4  * Copyright (c) 2020 Western Digital
5  *
6  * For details check the documentation here:
7  *    https://docs.opentitan.org/hw/ip/uart/doc/
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/char/ibex_uart.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-clock.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "hw/registerfields.h"
35 #include "migration/vmstate.h"
36 #include "qemu/log.h"
37 #include "qemu/module.h"
38 
39 REG32(INTR_STATE, 0x00)
40     FIELD(INTR_STATE, TX_WATERMARK, 0, 1)
41     FIELD(INTR_STATE, RX_WATERMARK, 1, 1)
42     FIELD(INTR_STATE, TX_EMPTY, 2, 1)
43     FIELD(INTR_STATE, RX_OVERFLOW, 3, 1)
44 REG32(INTR_ENABLE, 0x04)
45 REG32(INTR_TEST, 0x08)
46 REG32(ALERT_TEST, 0x0C)
47 REG32(CTRL, 0x10)
48     FIELD(CTRL, TX_ENABLE, 0, 1)
49     FIELD(CTRL, RX_ENABLE, 1, 1)
50     FIELD(CTRL, NF, 2, 1)
51     FIELD(CTRL, SLPBK, 4, 1)
52     FIELD(CTRL, LLPBK, 5, 1)
53     FIELD(CTRL, PARITY_EN, 6, 1)
54     FIELD(CTRL, PARITY_ODD, 7, 1)
55     FIELD(CTRL, RXBLVL, 8, 2)
56     FIELD(CTRL, NCO, 16, 16)
57 REG32(STATUS, 0x14)
58     FIELD(STATUS, TXFULL, 0, 1)
59     FIELD(STATUS, RXFULL, 1, 1)
60     FIELD(STATUS, TXEMPTY, 2, 1)
61     FIELD(STATUS, RXIDLE, 4, 1)
62     FIELD(STATUS, RXEMPTY, 5, 1)
63 REG32(RDATA, 0x18)
64 REG32(WDATA, 0x1C)
65 REG32(FIFO_CTRL, 0x20)
66     FIELD(FIFO_CTRL, RXRST, 0, 1)
67     FIELD(FIFO_CTRL, TXRST, 1, 1)
68     FIELD(FIFO_CTRL, RXILVL, 2, 3)
69     FIELD(FIFO_CTRL, TXILVL, 5, 2)
70 REG32(FIFO_STATUS, 0x24)
71     FIELD(FIFO_STATUS, TXLVL, 0, 5)
72     FIELD(FIFO_STATUS, RXLVL, 16, 5)
73 REG32(OVRD, 0x28)
74 REG32(VAL, 0x2C)
75 REG32(TIMEOUT_CTRL, 0x30)
76 
77 static void ibex_uart_update_irqs(IbexUartState *s)
78 {
79     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
80         qemu_set_irq(s->tx_watermark, 1);
81     } else {
82         qemu_set_irq(s->tx_watermark, 0);
83     }
84 
85     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
86         qemu_set_irq(s->rx_watermark, 1);
87     } else {
88         qemu_set_irq(s->rx_watermark, 0);
89     }
90 
91     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
92         qemu_set_irq(s->tx_empty, 1);
93     } else {
94         qemu_set_irq(s->tx_empty, 0);
95     }
96 
97     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
98         qemu_set_irq(s->rx_overflow, 1);
99     } else {
100         qemu_set_irq(s->rx_overflow, 0);
101     }
102 }
103 
104 static int ibex_uart_can_receive(void *opaque)
105 {
106     IbexUartState *s = opaque;
107 
108     if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK)
109            && !(s->uart_status & R_STATUS_RXFULL_MASK)) {
110         return 1;
111     }
112 
113     return 0;
114 }
115 
116 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
117 {
118     IbexUartState *s = opaque;
119     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
120                             >> R_FIFO_CTRL_RXILVL_SHIFT;
121 
122     s->uart_rdata = *buf;
123 
124     s->uart_status &= ~R_STATUS_RXIDLE_MASK;
125     s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
126     /* The RXFULL is set after receiving a single byte
127      * as the FIFO buffers are not yet implemented.
128      */
129     s->uart_status |= R_STATUS_RXFULL_MASK;
130     s->rx_level += 1;
131 
132     if (size > rx_fifo_level) {
133         s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
134     }
135 
136     ibex_uart_update_irqs(s);
137 }
138 
139 static gboolean ibex_uart_xmit(void *do_not_use, GIOCondition cond,
140                                void *opaque)
141 {
142     IbexUartState *s = opaque;
143     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
144                             >> R_FIFO_CTRL_TXILVL_SHIFT;
145     int ret;
146 
147     /* instant drain the fifo when there's no back-end */
148     if (!qemu_chr_fe_backend_connected(&s->chr)) {
149         s->tx_level = 0;
150         return G_SOURCE_REMOVE;
151     }
152 
153     if (!s->tx_level) {
154         s->uart_status &= ~R_STATUS_TXFULL_MASK;
155         s->uart_status |= R_STATUS_TXEMPTY_MASK;
156         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
157         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
158         ibex_uart_update_irqs(s);
159         return G_SOURCE_REMOVE;
160     }
161 
162     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
163 
164     if (ret >= 0) {
165         s->tx_level -= ret;
166         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
167     }
168 
169     if (s->tx_level) {
170         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
171                                         ibex_uart_xmit, s);
172         if (!r) {
173             s->tx_level = 0;
174             return G_SOURCE_REMOVE;
175         }
176     }
177 
178     /* Clear the TX Full bit */
179     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
180         s->uart_status &= ~R_STATUS_TXFULL_MASK;
181     }
182 
183     /* Disable the TX_WATERMARK IRQ */
184     if (s->tx_level < tx_fifo_level) {
185         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
186     }
187 
188     /* Set TX empty */
189     if (s->tx_level == 0) {
190         s->uart_status |= R_STATUS_TXEMPTY_MASK;
191         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
192     }
193 
194     ibex_uart_update_irqs(s);
195     return G_SOURCE_REMOVE;
196 }
197 
198 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
199                                int size)
200 {
201     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
202     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
203                             >> R_FIFO_CTRL_TXILVL_SHIFT;
204 
205     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
206         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
207         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
208     }
209 
210     memcpy(s->tx_fifo + s->tx_level, buf, size);
211     s->tx_level += size;
212 
213     if (s->tx_level > 0) {
214         s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
215     }
216 
217     if (s->tx_level >= tx_fifo_level) {
218         s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
219         ibex_uart_update_irqs(s);
220     }
221 
222     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
223         s->uart_status |= R_STATUS_TXFULL_MASK;
224     }
225 
226     timer_mod(s->fifo_trigger_handle, current_time +
227               (s->char_tx_time * 4));
228 }
229 
230 static void ibex_uart_reset(DeviceState *dev)
231 {
232     IbexUartState *s = IBEX_UART(dev);
233 
234     s->uart_intr_state = 0x00000000;
235     s->uart_intr_state = 0x00000000;
236     s->uart_intr_enable = 0x00000000;
237     s->uart_ctrl = 0x00000000;
238     s->uart_status = 0x0000003c;
239     s->uart_rdata = 0x00000000;
240     s->uart_fifo_ctrl = 0x00000000;
241     s->uart_fifo_status = 0x00000000;
242     s->uart_ovrd = 0x00000000;
243     s->uart_val = 0x00000000;
244     s->uart_timeout_ctrl = 0x00000000;
245 
246     s->tx_level = 0;
247     s->rx_level = 0;
248 
249     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
250 
251     ibex_uart_update_irqs(s);
252 }
253 
254 static uint64_t ibex_uart_get_baud(IbexUartState *s)
255 {
256     uint64_t baud;
257 
258     baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
259     baud *= clock_get_hz(s->f_clk);
260     baud >>= 20;
261 
262     return baud;
263 }
264 
265 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
266                                        unsigned int size)
267 {
268     IbexUartState *s = opaque;
269     uint64_t retvalue = 0;
270 
271     switch (addr >> 2) {
272     case R_INTR_STATE:
273         retvalue = s->uart_intr_state;
274         break;
275     case R_INTR_ENABLE:
276         retvalue = s->uart_intr_enable;
277         break;
278     case R_INTR_TEST:
279         qemu_log_mask(LOG_GUEST_ERROR,
280                       "%s: wdata is write only\n", __func__);
281         break;
282 
283     case R_CTRL:
284         retvalue = s->uart_ctrl;
285         break;
286     case R_STATUS:
287         retvalue = s->uart_status;
288         break;
289 
290     case R_RDATA:
291         retvalue = s->uart_rdata;
292         if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) {
293             qemu_chr_fe_accept_input(&s->chr);
294 
295             s->rx_level -= 1;
296             s->uart_status &= ~R_STATUS_RXFULL_MASK;
297             if (s->rx_level == 0) {
298                 s->uart_status |= R_STATUS_RXIDLE_MASK;
299                 s->uart_status |= R_STATUS_RXEMPTY_MASK;
300             }
301         }
302         break;
303     case R_WDATA:
304         qemu_log_mask(LOG_GUEST_ERROR,
305                       "%s: wdata is write only\n", __func__);
306         break;
307 
308     case R_FIFO_CTRL:
309         retvalue = s->uart_fifo_ctrl;
310         break;
311     case R_FIFO_STATUS:
312         retvalue = s->uart_fifo_status;
313 
314         retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT;
315         retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT;
316 
317         qemu_log_mask(LOG_UNIMP,
318                       "%s: RX fifos are not supported\n", __func__);
319         break;
320 
321     case R_OVRD:
322         retvalue = s->uart_ovrd;
323         qemu_log_mask(LOG_UNIMP,
324                       "%s: ovrd is not supported\n", __func__);
325         break;
326     case R_VAL:
327         retvalue = s->uart_val;
328         qemu_log_mask(LOG_UNIMP,
329                       "%s: val is not supported\n", __func__);
330         break;
331     case R_TIMEOUT_CTRL:
332         retvalue = s->uart_timeout_ctrl;
333         qemu_log_mask(LOG_UNIMP,
334                       "%s: timeout_ctrl is not supported\n", __func__);
335         break;
336     default:
337         qemu_log_mask(LOG_GUEST_ERROR,
338                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
339         return 0;
340     }
341 
342     return retvalue;
343 }
344 
345 static void ibex_uart_write(void *opaque, hwaddr addr,
346                                   uint64_t val64, unsigned int size)
347 {
348     IbexUartState *s = opaque;
349     uint32_t value = val64;
350 
351     switch (addr >> 2) {
352     case R_INTR_STATE:
353         /* Write 1 clear */
354         s->uart_intr_state &= ~value;
355         ibex_uart_update_irqs(s);
356         break;
357     case R_INTR_ENABLE:
358         s->uart_intr_enable = value;
359         ibex_uart_update_irqs(s);
360         break;
361     case R_INTR_TEST:
362         s->uart_intr_state |= value;
363         ibex_uart_update_irqs(s);
364         break;
365 
366     case R_CTRL:
367         s->uart_ctrl = value;
368 
369         if (value & R_CTRL_NF_MASK) {
370             qemu_log_mask(LOG_UNIMP,
371                           "%s: UART_CTRL_NF is not supported\n", __func__);
372         }
373         if (value & R_CTRL_SLPBK_MASK) {
374             qemu_log_mask(LOG_UNIMP,
375                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
376         }
377         if (value & R_CTRL_LLPBK_MASK) {
378             qemu_log_mask(LOG_UNIMP,
379                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
380         }
381         if (value & R_CTRL_PARITY_EN_MASK) {
382             qemu_log_mask(LOG_UNIMP,
383                           "%s: UART_CTRL_PARITY_EN is not supported\n",
384                           __func__);
385         }
386         if (value & R_CTRL_PARITY_ODD_MASK) {
387             qemu_log_mask(LOG_UNIMP,
388                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
389                           __func__);
390         }
391         if (value & R_CTRL_RXBLVL_MASK) {
392             qemu_log_mask(LOG_UNIMP,
393                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
394         }
395         if (value & R_CTRL_NCO_MASK) {
396             uint64_t baud = ibex_uart_get_baud(s);
397 
398             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
399         }
400         break;
401     case R_STATUS:
402         qemu_log_mask(LOG_GUEST_ERROR,
403                       "%s: status is read only\n", __func__);
404         break;
405 
406     case R_RDATA:
407         qemu_log_mask(LOG_GUEST_ERROR,
408                       "%s: rdata is read only\n", __func__);
409         break;
410     case R_WDATA:
411         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
412         break;
413 
414     case R_FIFO_CTRL:
415         s->uart_fifo_ctrl = value;
416 
417         if (value & R_FIFO_CTRL_RXRST_MASK) {
418             s->rx_level = 0;
419             qemu_log_mask(LOG_UNIMP,
420                           "%s: RX fifos are not supported\n", __func__);
421         }
422         if (value & R_FIFO_CTRL_TXRST_MASK) {
423             s->tx_level = 0;
424         }
425         break;
426     case R_FIFO_STATUS:
427         qemu_log_mask(LOG_GUEST_ERROR,
428                       "%s: fifo_status is read only\n", __func__);
429         break;
430 
431     case R_OVRD:
432         s->uart_ovrd = value;
433         qemu_log_mask(LOG_UNIMP,
434                       "%s: ovrd is not supported\n", __func__);
435         break;
436     case R_VAL:
437         qemu_log_mask(LOG_GUEST_ERROR,
438                       "%s: val is read only\n", __func__);
439         break;
440     case R_TIMEOUT_CTRL:
441         s->uart_timeout_ctrl = value;
442         qemu_log_mask(LOG_UNIMP,
443                       "%s: timeout_ctrl is not supported\n", __func__);
444         break;
445     default:
446         qemu_log_mask(LOG_GUEST_ERROR,
447                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
448     }
449 }
450 
451 static void ibex_uart_clk_update(void *opaque, ClockEvent event)
452 {
453     IbexUartState *s = opaque;
454 
455     /* recompute uart's speed on clock change */
456     uint64_t baud = ibex_uart_get_baud(s);
457 
458     s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
459 }
460 
461 static void fifo_trigger_update(void *opaque)
462 {
463     IbexUartState *s = opaque;
464 
465     if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
466         ibex_uart_xmit(NULL, G_IO_OUT, s);
467     }
468 }
469 
470 static const MemoryRegionOps ibex_uart_ops = {
471     .read = ibex_uart_read,
472     .write = ibex_uart_write,
473     .endianness = DEVICE_NATIVE_ENDIAN,
474     .impl.min_access_size = 4,
475     .impl.max_access_size = 4,
476 };
477 
478 static int ibex_uart_post_load(void *opaque, int version_id)
479 {
480     IbexUartState *s = opaque;
481 
482     ibex_uart_update_irqs(s);
483     return 0;
484 }
485 
486 static const VMStateDescription vmstate_ibex_uart = {
487     .name = TYPE_IBEX_UART,
488     .version_id = 1,
489     .minimum_version_id = 1,
490     .post_load = ibex_uart_post_load,
491     .fields = (const VMStateField[]) {
492         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
493                             IBEX_UART_TX_FIFO_SIZE),
494         VMSTATE_UINT32(tx_level, IbexUartState),
495         VMSTATE_UINT64(char_tx_time, IbexUartState),
496         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
497         VMSTATE_UINT32(uart_intr_state, IbexUartState),
498         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
499         VMSTATE_UINT32(uart_ctrl, IbexUartState),
500         VMSTATE_UINT32(uart_status, IbexUartState),
501         VMSTATE_UINT32(uart_rdata, IbexUartState),
502         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
503         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
504         VMSTATE_UINT32(uart_ovrd, IbexUartState),
505         VMSTATE_UINT32(uart_val, IbexUartState),
506         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
507         VMSTATE_END_OF_LIST()
508     }
509 };
510 
511 static Property ibex_uart_properties[] = {
512     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
513     DEFINE_PROP_END_OF_LIST(),
514 };
515 
516 static void ibex_uart_init(Object *obj)
517 {
518     IbexUartState *s = IBEX_UART(obj);
519 
520     s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
521                                   ibex_uart_clk_update, s, ClockUpdate);
522     clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
523 
524     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
525     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
526     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
527     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
528 
529     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
530                           TYPE_IBEX_UART, 0x400);
531     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
532 }
533 
534 static void ibex_uart_realize(DeviceState *dev, Error **errp)
535 {
536     IbexUartState *s = IBEX_UART(dev);
537 
538     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
539                                           fifo_trigger_update, s);
540 
541     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
542                              ibex_uart_receive, NULL, NULL,
543                              s, NULL, true);
544 }
545 
546 static void ibex_uart_class_init(ObjectClass *klass, void *data)
547 {
548     DeviceClass *dc = DEVICE_CLASS(klass);
549 
550     dc->reset = ibex_uart_reset;
551     dc->realize = ibex_uart_realize;
552     dc->vmsd = &vmstate_ibex_uart;
553     device_class_set_props(dc, ibex_uart_properties);
554     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
555 }
556 
557 static const TypeInfo ibex_uart_info = {
558     .name          = TYPE_IBEX_UART,
559     .parent        = TYPE_SYS_BUS_DEVICE,
560     .instance_size = sizeof(IbexUartState),
561     .instance_init = ibex_uart_init,
562     .class_init    = ibex_uart_class_init,
563 };
564 
565 static void ibex_uart_register_types(void)
566 {
567     type_register_static(&ibex_uart_info);
568 }
569 
570 type_init(ibex_uart_register_types)
571