xref: /openbmc/qemu/hw/char/grlib_apbuart.c (revision d6454270)
1 /*
2  * QEMU GRLIB APB UART Emulator
3  *
4  * Copyright (c) 2010-2019 AdaCore
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/sparc/grlib.h"
28 #include "hw/sysbus.h"
29 #include "qemu/module.h"
30 #include "chardev/char-fe.h"
31 
32 #include "trace.h"
33 
34 #define UART_REG_SIZE 20     /* Size of memory mapped registers */
35 
36 /* UART status register fields */
37 #define UART_DATA_READY           (1 <<  0)
38 #define UART_TRANSMIT_SHIFT_EMPTY (1 <<  1)
39 #define UART_TRANSMIT_FIFO_EMPTY  (1 <<  2)
40 #define UART_BREAK_RECEIVED       (1 <<  3)
41 #define UART_OVERRUN              (1 <<  4)
42 #define UART_PARITY_ERROR         (1 <<  5)
43 #define UART_FRAMING_ERROR        (1 <<  6)
44 #define UART_TRANSMIT_FIFO_HALF   (1 <<  7)
45 #define UART_RECEIVE_FIFO_HALF    (1 <<  8)
46 #define UART_TRANSMIT_FIFO_FULL   (1 <<  9)
47 #define UART_RECEIVE_FIFO_FULL    (1 << 10)
48 
49 /* UART control register fields */
50 #define UART_RECEIVE_ENABLE          (1 <<  0)
51 #define UART_TRANSMIT_ENABLE         (1 <<  1)
52 #define UART_RECEIVE_INTERRUPT       (1 <<  2)
53 #define UART_TRANSMIT_INTERRUPT      (1 <<  3)
54 #define UART_PARITY_SELECT           (1 <<  4)
55 #define UART_PARITY_ENABLE           (1 <<  5)
56 #define UART_FLOW_CONTROL            (1 <<  6)
57 #define UART_LOOPBACK                (1 <<  7)
58 #define UART_EXTERNAL_CLOCK          (1 <<  8)
59 #define UART_RECEIVE_FIFO_INTERRUPT  (1 <<  9)
60 #define UART_TRANSMIT_FIFO_INTERRUPT (1 << 10)
61 #define UART_FIFO_DEBUG_MODE         (1 << 11)
62 #define UART_OUTPUT_ENABLE           (1 << 12)
63 #define UART_FIFO_AVAILABLE          (1 << 31)
64 
65 /* Memory mapped register offsets */
66 #define DATA_OFFSET       0x00
67 #define STATUS_OFFSET     0x04
68 #define CONTROL_OFFSET    0x08
69 #define SCALER_OFFSET     0x0C  /* not supported */
70 #define FIFO_DEBUG_OFFSET 0x10  /* not supported */
71 
72 #define FIFO_LENGTH 1024
73 
74 #define GRLIB_APB_UART(obj) \
75     OBJECT_CHECK(UART, (obj), TYPE_GRLIB_APB_UART)
76 
77 typedef struct UART {
78     SysBusDevice parent_obj;
79 
80     MemoryRegion iomem;
81     qemu_irq irq;
82 
83     CharBackend chr;
84 
85     /* registers */
86     uint32_t status;
87     uint32_t control;
88 
89     /* FIFO */
90     char buffer[FIFO_LENGTH];
91     int  len;
92     int  current;
93 } UART;
94 
95 static int uart_data_to_read(UART *uart)
96 {
97     return uart->current < uart->len;
98 }
99 
100 static char uart_pop(UART *uart)
101 {
102     char ret;
103 
104     if (uart->len == 0) {
105         uart->status &= ~UART_DATA_READY;
106         return 0;
107     }
108 
109     ret = uart->buffer[uart->current++];
110 
111     if (uart->current >= uart->len) {
112         /* Flush */
113         uart->len     = 0;
114         uart->current = 0;
115     }
116 
117     if (!uart_data_to_read(uart)) {
118         uart->status &= ~UART_DATA_READY;
119     }
120 
121     return ret;
122 }
123 
124 static void uart_add_to_fifo(UART          *uart,
125                              const uint8_t *buffer,
126                              int            length)
127 {
128     if (uart->len + length > FIFO_LENGTH) {
129         abort();
130     }
131     memcpy(uart->buffer + uart->len, buffer, length);
132     uart->len += length;
133 }
134 
135 static int grlib_apbuart_can_receive(void *opaque)
136 {
137     UART *uart = opaque;
138 
139     return FIFO_LENGTH - uart->len;
140 }
141 
142 static void grlib_apbuart_receive(void *opaque, const uint8_t *buf, int size)
143 {
144     UART *uart = opaque;
145 
146     if (uart->control & UART_RECEIVE_ENABLE) {
147         uart_add_to_fifo(uart, buf, size);
148 
149         uart->status |= UART_DATA_READY;
150 
151         if (uart->control & UART_RECEIVE_INTERRUPT) {
152             qemu_irq_pulse(uart->irq);
153         }
154     }
155 }
156 
157 static void grlib_apbuart_event(void *opaque, int event)
158 {
159     trace_grlib_apbuart_event(event);
160 }
161 
162 
163 static uint64_t grlib_apbuart_read(void *opaque, hwaddr addr,
164                                    unsigned size)
165 {
166     UART     *uart = opaque;
167 
168     addr &= 0xff;
169 
170     /* Unit registers */
171     switch (addr) {
172     case DATA_OFFSET:
173     case DATA_OFFSET + 3:       /* when only one byte read */
174         return uart_pop(uart);
175 
176     case STATUS_OFFSET:
177         /* Read Only */
178         return uart->status;
179 
180     case CONTROL_OFFSET:
181         return uart->control;
182 
183     case SCALER_OFFSET:
184         /* Not supported */
185         return 0;
186 
187     default:
188         trace_grlib_apbuart_readl_unknown(addr);
189         return 0;
190     }
191 }
192 
193 static void grlib_apbuart_write(void *opaque, hwaddr addr,
194                                 uint64_t value, unsigned size)
195 {
196     UART          *uart = opaque;
197     unsigned char  c    = 0;
198 
199     addr &= 0xff;
200 
201     /* Unit registers */
202     switch (addr) {
203     case DATA_OFFSET:
204     case DATA_OFFSET + 3:       /* When only one byte write */
205         /* Transmit when character device available and transmitter enabled */
206         if (qemu_chr_fe_backend_connected(&uart->chr) &&
207             (uart->control & UART_TRANSMIT_ENABLE)) {
208             c = value & 0xFF;
209             /* XXX this blocks entire thread. Rewrite to use
210              * qemu_chr_fe_write and background I/O callbacks */
211             qemu_chr_fe_write_all(&uart->chr, &c, 1);
212             /* Generate interrupt */
213             if (uart->control & UART_TRANSMIT_INTERRUPT) {
214                 qemu_irq_pulse(uart->irq);
215             }
216         }
217         return;
218 
219     case STATUS_OFFSET:
220         /* Read Only */
221         return;
222 
223     case CONTROL_OFFSET:
224         uart->control = value;
225         return;
226 
227     case SCALER_OFFSET:
228         /* Not supported */
229         return;
230 
231     default:
232         break;
233     }
234 
235     trace_grlib_apbuart_writel_unknown(addr, value);
236 }
237 
238 static const MemoryRegionOps grlib_apbuart_ops = {
239     .write      = grlib_apbuart_write,
240     .read       = grlib_apbuart_read,
241     .endianness = DEVICE_NATIVE_ENDIAN,
242 };
243 
244 static void grlib_apbuart_realize(DeviceState *dev, Error **errp)
245 {
246     UART *uart = GRLIB_APB_UART(dev);
247     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
248 
249     qemu_chr_fe_set_handlers(&uart->chr,
250                              grlib_apbuart_can_receive,
251                              grlib_apbuart_receive,
252                              grlib_apbuart_event,
253                              NULL, uart, NULL, true);
254 
255     sysbus_init_irq(sbd, &uart->irq);
256 
257     memory_region_init_io(&uart->iomem, OBJECT(uart), &grlib_apbuart_ops, uart,
258                           "uart", UART_REG_SIZE);
259 
260     sysbus_init_mmio(sbd, &uart->iomem);
261 }
262 
263 static void grlib_apbuart_reset(DeviceState *d)
264 {
265     UART *uart = GRLIB_APB_UART(d);
266 
267     /* Transmitter FIFO and shift registers are always empty in QEMU */
268     uart->status =  UART_TRANSMIT_FIFO_EMPTY | UART_TRANSMIT_SHIFT_EMPTY;
269     /* Everything is off */
270     uart->control = 0;
271     /* Flush receive FIFO */
272     uart->len = 0;
273     uart->current = 0;
274 }
275 
276 static Property grlib_apbuart_properties[] = {
277     DEFINE_PROP_CHR("chrdev", UART, chr),
278     DEFINE_PROP_END_OF_LIST(),
279 };
280 
281 static void grlib_apbuart_class_init(ObjectClass *klass, void *data)
282 {
283     DeviceClass *dc = DEVICE_CLASS(klass);
284 
285     dc->realize = grlib_apbuart_realize;
286     dc->reset = grlib_apbuart_reset;
287     dc->props = grlib_apbuart_properties;
288 }
289 
290 static const TypeInfo grlib_apbuart_info = {
291     .name          = TYPE_GRLIB_APB_UART,
292     .parent        = TYPE_SYS_BUS_DEVICE,
293     .instance_size = sizeof(UART),
294     .class_init    = grlib_apbuart_class_init,
295 };
296 
297 static void grlib_apbuart_register_types(void)
298 {
299     type_register_static(&grlib_apbuart_info);
300 }
301 
302 type_init(grlib_apbuart_register_types)
303