xref: /openbmc/qemu/hw/char/escc.c (revision e688df6b)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/escc.h"
29 #include "chardev/char-fe.h"
30 #include "chardev/char-serial.h"
31 #include "ui/console.h"
32 #include "ui/input.h"
33 #include "trace.h"
34 
35 /*
36  * Chipset docs:
37  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
38  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
39  *
40  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
41  * (Slave I/O), also produced as NCR89C105. See
42  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43  *
44  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
45  * mouse and keyboard ports don't implement all functions and they are
46  * only asynchronous. There is no DMA.
47  *
48  * Z85C30 is also used on PowerMacs. There are some small differences
49  * between Sparc version (sunzilog) and PowerMac (pmac):
50  *  Offset between control and data registers
51  *  There is some kind of lockup bug, but we can ignore it
52  *  CTS is inverted
53  *  DMA on pmac using DBDMA chip
54  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
55  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
56  */
57 
58 /*
59  * Modifications:
60  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
61  *                                  serial mouse queue.
62  *                                  Implemented serial mouse protocol.
63  *
64  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
65  */
66 
67 typedef enum {
68     chn_a, chn_b,
69 } ChnID;
70 
71 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
72 
73 typedef enum {
74     ser, kbd, mouse,
75 } ChnType;
76 
77 #define SERIO_QUEUE_SIZE 256
78 
79 typedef struct {
80     uint8_t data[SERIO_QUEUE_SIZE];
81     int rptr, wptr, count;
82 } SERIOQueue;
83 
84 #define SERIAL_REGS 16
85 typedef struct ChannelState {
86     qemu_irq irq;
87     uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
88     struct ChannelState *otherchn;
89     uint32_t reg;
90     uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
91     SERIOQueue queue;
92     CharBackend chr;
93     int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
94     int disabled;
95     int clock;
96     uint32_t vmstate_dummy;
97     ChnID chn; // this channel, A (base+4) or B (base+0)
98     ChnType type;
99     uint8_t rx, tx;
100     QemuInputHandlerState *hs;
101 } ChannelState;
102 
103 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
104 
105 typedef struct ESCCState {
106     SysBusDevice parent_obj;
107 
108     struct ChannelState chn[2];
109     uint32_t it_shift;
110     MemoryRegion mmio;
111     uint32_t disabled;
112     uint32_t frequency;
113 } ESCCState;
114 
115 #define SERIAL_CTRL 0
116 #define SERIAL_DATA 1
117 
118 #define W_CMD     0
119 #define CMD_PTR_MASK   0x07
120 #define CMD_CMD_MASK   0x38
121 #define CMD_HI         0x08
122 #define CMD_CLR_TXINT  0x28
123 #define CMD_CLR_IUS    0x38
124 #define W_INTR    1
125 #define INTR_INTALL    0x01
126 #define INTR_TXINT     0x02
127 #define INTR_RXMODEMSK 0x18
128 #define INTR_RXINT1ST  0x08
129 #define INTR_RXINTALL  0x10
130 #define W_IVEC    2
131 #define W_RXCTRL  3
132 #define RXCTRL_RXEN    0x01
133 #define W_TXCTRL1 4
134 #define TXCTRL1_PAREN  0x01
135 #define TXCTRL1_PAREV  0x02
136 #define TXCTRL1_1STOP  0x04
137 #define TXCTRL1_1HSTOP 0x08
138 #define TXCTRL1_2STOP  0x0c
139 #define TXCTRL1_STPMSK 0x0c
140 #define TXCTRL1_CLK1X  0x00
141 #define TXCTRL1_CLK16X 0x40
142 #define TXCTRL1_CLK32X 0x80
143 #define TXCTRL1_CLK64X 0xc0
144 #define TXCTRL1_CLKMSK 0xc0
145 #define W_TXCTRL2 5
146 #define TXCTRL2_TXEN   0x08
147 #define TXCTRL2_BITMSK 0x60
148 #define TXCTRL2_5BITS  0x00
149 #define TXCTRL2_7BITS  0x20
150 #define TXCTRL2_6BITS  0x40
151 #define TXCTRL2_8BITS  0x60
152 #define W_SYNC1   6
153 #define W_SYNC2   7
154 #define W_TXBUF   8
155 #define W_MINTR   9
156 #define MINTR_STATUSHI 0x10
157 #define MINTR_RST_MASK 0xc0
158 #define MINTR_RST_B    0x40
159 #define MINTR_RST_A    0x80
160 #define MINTR_RST_ALL  0xc0
161 #define W_MISC1  10
162 #define W_CLOCK  11
163 #define CLOCK_TRXC     0x08
164 #define W_BRGLO  12
165 #define W_BRGHI  13
166 #define W_MISC2  14
167 #define MISC2_PLLDIS   0x30
168 #define W_EXTINT 15
169 #define EXTINT_DCD     0x08
170 #define EXTINT_SYNCINT 0x10
171 #define EXTINT_CTSINT  0x20
172 #define EXTINT_TXUNDRN 0x40
173 #define EXTINT_BRKINT  0x80
174 
175 #define R_STATUS  0
176 #define STATUS_RXAV    0x01
177 #define STATUS_ZERO    0x02
178 #define STATUS_TXEMPTY 0x04
179 #define STATUS_DCD     0x08
180 #define STATUS_SYNC    0x10
181 #define STATUS_CTS     0x20
182 #define STATUS_TXUNDRN 0x40
183 #define STATUS_BRK     0x80
184 #define R_SPEC    1
185 #define SPEC_ALLSENT   0x01
186 #define SPEC_BITS8     0x06
187 #define R_IVEC    2
188 #define IVEC_TXINTB    0x00
189 #define IVEC_LONOINT   0x06
190 #define IVEC_LORXINTA  0x0c
191 #define IVEC_LORXINTB  0x04
192 #define IVEC_LOTXINTA  0x08
193 #define IVEC_HINOINT   0x60
194 #define IVEC_HIRXINTA  0x30
195 #define IVEC_HIRXINTB  0x20
196 #define IVEC_HITXINTA  0x10
197 #define R_INTR    3
198 #define INTR_EXTINTB   0x01
199 #define INTR_TXINTB    0x02
200 #define INTR_RXINTB    0x04
201 #define INTR_EXTINTA   0x08
202 #define INTR_TXINTA    0x10
203 #define INTR_RXINTA    0x20
204 #define R_IPEN    4
205 #define R_TXCTRL1 5
206 #define R_TXCTRL2 6
207 #define R_BC      7
208 #define R_RXBUF   8
209 #define R_RXCTRL  9
210 #define R_MISC   10
211 #define R_MISC1  11
212 #define R_BRGLO  12
213 #define R_BRGHI  13
214 #define R_MISC1I 14
215 #define R_EXTINT 15
216 
217 static void handle_kbd_command(ChannelState *s, int val);
218 static int serial_can_receive(void *opaque);
219 static void serial_receive_byte(ChannelState *s, int ch);
220 
221 static void clear_queue(void *opaque)
222 {
223     ChannelState *s = opaque;
224     SERIOQueue *q = &s->queue;
225     q->rptr = q->wptr = q->count = 0;
226 }
227 
228 static void put_queue(void *opaque, int b)
229 {
230     ChannelState *s = opaque;
231     SERIOQueue *q = &s->queue;
232 
233     trace_escc_put_queue(CHN_C(s), b);
234     if (q->count >= SERIO_QUEUE_SIZE)
235         return;
236     q->data[q->wptr] = b;
237     if (++q->wptr == SERIO_QUEUE_SIZE)
238         q->wptr = 0;
239     q->count++;
240     serial_receive_byte(s, 0);
241 }
242 
243 static uint32_t get_queue(void *opaque)
244 {
245     ChannelState *s = opaque;
246     SERIOQueue *q = &s->queue;
247     int val;
248 
249     if (q->count == 0) {
250         return 0;
251     } else {
252         val = q->data[q->rptr];
253         if (++q->rptr == SERIO_QUEUE_SIZE)
254             q->rptr = 0;
255         q->count--;
256     }
257     trace_escc_get_queue(CHN_C(s), val);
258     if (q->count > 0)
259         serial_receive_byte(s, 0);
260     return val;
261 }
262 
263 static int escc_update_irq_chn(ChannelState *s)
264 {
265     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
266          // tx ints enabled, pending
267          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
268            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
269           s->rxint == 1) || // rx ints enabled, pending
270          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
271           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
272         return 1;
273     }
274     return 0;
275 }
276 
277 static void escc_update_irq(ChannelState *s)
278 {
279     int irq;
280 
281     irq = escc_update_irq_chn(s);
282     irq |= escc_update_irq_chn(s->otherchn);
283 
284     trace_escc_update_irq(irq);
285     qemu_set_irq(s->irq, irq);
286 }
287 
288 static void escc_reset_chn(ChannelState *s)
289 {
290     int i;
291 
292     s->reg = 0;
293     for (i = 0; i < SERIAL_REGS; i++) {
294         s->rregs[i] = 0;
295         s->wregs[i] = 0;
296     }
297     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
298     s->wregs[W_MINTR] = MINTR_RST_ALL;
299     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
300     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
301     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
302         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
303     if (s->disabled)
304         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
305             STATUS_CTS | STATUS_TXUNDRN;
306     else
307         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
308     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
309 
310     s->rx = s->tx = 0;
311     s->rxint = s->txint = 0;
312     s->rxint_under_svc = s->txint_under_svc = 0;
313     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
314     clear_queue(s);
315 }
316 
317 static void escc_reset(DeviceState *d)
318 {
319     ESCCState *s = ESCC(d);
320 
321     escc_reset_chn(&s->chn[0]);
322     escc_reset_chn(&s->chn[1]);
323 }
324 
325 static inline void set_rxint(ChannelState *s)
326 {
327     s->rxint = 1;
328     /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
329        than chn_a rx/tx/special_condition service*/
330     s->rxint_under_svc = 1;
331     if (s->chn == chn_a) {
332         s->rregs[R_INTR] |= INTR_RXINTA;
333         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
334             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
335         else
336             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
337     } else {
338         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
339         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
340             s->rregs[R_IVEC] = IVEC_HIRXINTB;
341         else
342             s->rregs[R_IVEC] = IVEC_LORXINTB;
343     }
344     escc_update_irq(s);
345 }
346 
347 static inline void set_txint(ChannelState *s)
348 {
349     s->txint = 1;
350     if (!s->rxint_under_svc) {
351         s->txint_under_svc = 1;
352         if (s->chn == chn_a) {
353             if (s->wregs[W_INTR] & INTR_TXINT) {
354                 s->rregs[R_INTR] |= INTR_TXINTA;
355             }
356             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
357                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
358             else
359                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
360         } else {
361             s->rregs[R_IVEC] = IVEC_TXINTB;
362             if (s->wregs[W_INTR] & INTR_TXINT) {
363                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
364             }
365         }
366     escc_update_irq(s);
367     }
368 }
369 
370 static inline void clr_rxint(ChannelState *s)
371 {
372     s->rxint = 0;
373     s->rxint_under_svc = 0;
374     if (s->chn == chn_a) {
375         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
376             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
377         else
378             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
379         s->rregs[R_INTR] &= ~INTR_RXINTA;
380     } else {
381         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
382             s->rregs[R_IVEC] = IVEC_HINOINT;
383         else
384             s->rregs[R_IVEC] = IVEC_LONOINT;
385         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
386     }
387     if (s->txint)
388         set_txint(s);
389     escc_update_irq(s);
390 }
391 
392 static inline void clr_txint(ChannelState *s)
393 {
394     s->txint = 0;
395     s->txint_under_svc = 0;
396     if (s->chn == chn_a) {
397         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
398             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
399         else
400             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
401         s->rregs[R_INTR] &= ~INTR_TXINTA;
402     } else {
403         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
404         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
405             s->rregs[R_IVEC] = IVEC_HINOINT;
406         else
407             s->rregs[R_IVEC] = IVEC_LONOINT;
408         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
409     }
410     if (s->rxint)
411         set_rxint(s);
412     escc_update_irq(s);
413 }
414 
415 static void escc_update_parameters(ChannelState *s)
416 {
417     int speed, parity, data_bits, stop_bits;
418     QEMUSerialSetParams ssp;
419 
420     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != ser)
421         return;
422 
423     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
424         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
425             parity = 'E';
426         else
427             parity = 'O';
428     } else {
429         parity = 'N';
430     }
431     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
432         stop_bits = 2;
433     else
434         stop_bits = 1;
435     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
436     case TXCTRL2_5BITS:
437         data_bits = 5;
438         break;
439     case TXCTRL2_7BITS:
440         data_bits = 7;
441         break;
442     case TXCTRL2_6BITS:
443         data_bits = 6;
444         break;
445     default:
446     case TXCTRL2_8BITS:
447         data_bits = 8;
448         break;
449     }
450     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
451     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
452     case TXCTRL1_CLK1X:
453         break;
454     case TXCTRL1_CLK16X:
455         speed /= 16;
456         break;
457     case TXCTRL1_CLK32X:
458         speed /= 32;
459         break;
460     default:
461     case TXCTRL1_CLK64X:
462         speed /= 64;
463         break;
464     }
465     ssp.speed = speed;
466     ssp.parity = parity;
467     ssp.data_bits = data_bits;
468     ssp.stop_bits = stop_bits;
469     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
470     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
471 }
472 
473 static void escc_mem_write(void *opaque, hwaddr addr,
474                            uint64_t val, unsigned size)
475 {
476     ESCCState *serial = opaque;
477     ChannelState *s;
478     uint32_t saddr;
479     int newreg, channel;
480 
481     val &= 0xff;
482     saddr = (addr >> serial->it_shift) & 1;
483     channel = (addr >> (serial->it_shift + 1)) & 1;
484     s = &serial->chn[channel];
485     switch (saddr) {
486     case SERIAL_CTRL:
487         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
488         newreg = 0;
489         switch (s->reg) {
490         case W_CMD:
491             newreg = val & CMD_PTR_MASK;
492             val &= CMD_CMD_MASK;
493             switch (val) {
494             case CMD_HI:
495                 newreg |= CMD_HI;
496                 break;
497             case CMD_CLR_TXINT:
498                 clr_txint(s);
499                 break;
500             case CMD_CLR_IUS:
501                 if (s->rxint_under_svc) {
502                     s->rxint_under_svc = 0;
503                     if (s->txint) {
504                         set_txint(s);
505                     }
506                 } else if (s->txint_under_svc) {
507                     s->txint_under_svc = 0;
508                 }
509                 escc_update_irq(s);
510                 break;
511             default:
512                 break;
513             }
514             break;
515         case W_INTR ... W_RXCTRL:
516         case W_SYNC1 ... W_TXBUF:
517         case W_MISC1 ... W_CLOCK:
518         case W_MISC2 ... W_EXTINT:
519             s->wregs[s->reg] = val;
520             break;
521         case W_TXCTRL1:
522         case W_TXCTRL2:
523             s->wregs[s->reg] = val;
524             escc_update_parameters(s);
525             break;
526         case W_BRGLO:
527         case W_BRGHI:
528             s->wregs[s->reg] = val;
529             s->rregs[s->reg] = val;
530             escc_update_parameters(s);
531             break;
532         case W_MINTR:
533             switch (val & MINTR_RST_MASK) {
534             case 0:
535             default:
536                 break;
537             case MINTR_RST_B:
538                 escc_reset_chn(&serial->chn[0]);
539                 return;
540             case MINTR_RST_A:
541                 escc_reset_chn(&serial->chn[1]);
542                 return;
543             case MINTR_RST_ALL:
544                 escc_reset(DEVICE(serial));
545                 return;
546             }
547             break;
548         default:
549             break;
550         }
551         if (s->reg == 0)
552             s->reg = newreg;
553         else
554             s->reg = 0;
555         break;
556     case SERIAL_DATA:
557         trace_escc_mem_writeb_data(CHN_C(s), val);
558         s->tx = val;
559         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
560             if (qemu_chr_fe_backend_connected(&s->chr)) {
561                 /* XXX this blocks entire thread. Rewrite to use
562                  * qemu_chr_fe_write and background I/O callbacks */
563                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
564             } else if (s->type == kbd && !s->disabled) {
565                 handle_kbd_command(s, val);
566             }
567         }
568         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
569         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
570         set_txint(s);
571         break;
572     default:
573         break;
574     }
575 }
576 
577 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
578                               unsigned size)
579 {
580     ESCCState *serial = opaque;
581     ChannelState *s;
582     uint32_t saddr;
583     uint32_t ret;
584     int channel;
585 
586     saddr = (addr >> serial->it_shift) & 1;
587     channel = (addr >> (serial->it_shift + 1)) & 1;
588     s = &serial->chn[channel];
589     switch (saddr) {
590     case SERIAL_CTRL:
591         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
592         ret = s->rregs[s->reg];
593         s->reg = 0;
594         return ret;
595     case SERIAL_DATA:
596         s->rregs[R_STATUS] &= ~STATUS_RXAV;
597         clr_rxint(s);
598         if (s->type == kbd || s->type == mouse)
599             ret = get_queue(s);
600         else
601             ret = s->rx;
602         trace_escc_mem_readb_data(CHN_C(s), ret);
603         qemu_chr_fe_accept_input(&s->chr);
604         return ret;
605     default:
606         break;
607     }
608     return 0;
609 }
610 
611 static const MemoryRegionOps escc_mem_ops = {
612     .read = escc_mem_read,
613     .write = escc_mem_write,
614     .endianness = DEVICE_NATIVE_ENDIAN,
615     .valid = {
616         .min_access_size = 1,
617         .max_access_size = 1,
618     },
619 };
620 
621 static int serial_can_receive(void *opaque)
622 {
623     ChannelState *s = opaque;
624     int ret;
625 
626     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
627         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
628         // char already available
629         ret = 0;
630     else
631         ret = 1;
632     return ret;
633 }
634 
635 static void serial_receive_byte(ChannelState *s, int ch)
636 {
637     trace_escc_serial_receive_byte(CHN_C(s), ch);
638     s->rregs[R_STATUS] |= STATUS_RXAV;
639     s->rx = ch;
640     set_rxint(s);
641 }
642 
643 static void serial_receive_break(ChannelState *s)
644 {
645     s->rregs[R_STATUS] |= STATUS_BRK;
646     escc_update_irq(s);
647 }
648 
649 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
650 {
651     ChannelState *s = opaque;
652     serial_receive_byte(s, buf[0]);
653 }
654 
655 static void serial_event(void *opaque, int event)
656 {
657     ChannelState *s = opaque;
658     if (event == CHR_EVENT_BREAK)
659         serial_receive_break(s);
660 }
661 
662 static const VMStateDescription vmstate_escc_chn = {
663     .name ="escc_chn",
664     .version_id = 2,
665     .minimum_version_id = 1,
666     .fields = (VMStateField[]) {
667         VMSTATE_UINT32(vmstate_dummy, ChannelState),
668         VMSTATE_UINT32(reg, ChannelState),
669         VMSTATE_UINT32(rxint, ChannelState),
670         VMSTATE_UINT32(txint, ChannelState),
671         VMSTATE_UINT32(rxint_under_svc, ChannelState),
672         VMSTATE_UINT32(txint_under_svc, ChannelState),
673         VMSTATE_UINT8(rx, ChannelState),
674         VMSTATE_UINT8(tx, ChannelState),
675         VMSTATE_BUFFER(wregs, ChannelState),
676         VMSTATE_BUFFER(rregs, ChannelState),
677         VMSTATE_END_OF_LIST()
678     }
679 };
680 
681 static const VMStateDescription vmstate_escc = {
682     .name ="escc",
683     .version_id = 2,
684     .minimum_version_id = 1,
685     .fields = (VMStateField[]) {
686         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
687                              ChannelState),
688         VMSTATE_END_OF_LIST()
689     }
690 };
691 
692 MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
693               Chardev *chrA, Chardev *chrB,
694               int clock, int it_shift)
695 {
696     DeviceState *dev;
697     SysBusDevice *s;
698     ESCCState *d;
699 
700     dev = qdev_create(NULL, TYPE_ESCC);
701     qdev_prop_set_uint32(dev, "disabled", 0);
702     qdev_prop_set_uint32(dev, "frequency", clock);
703     qdev_prop_set_uint32(dev, "it_shift", it_shift);
704     qdev_prop_set_chr(dev, "chrB", chrB);
705     qdev_prop_set_chr(dev, "chrA", chrA);
706     qdev_prop_set_uint32(dev, "chnBtype", ser);
707     qdev_prop_set_uint32(dev, "chnAtype", ser);
708     qdev_init_nofail(dev);
709     s = SYS_BUS_DEVICE(dev);
710     sysbus_connect_irq(s, 0, irqB);
711     sysbus_connect_irq(s, 1, irqA);
712     if (base) {
713         sysbus_mmio_map(s, 0, base);
714     }
715 
716     d = ESCC(s);
717     return &d->mmio;
718 }
719 
720 
721 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
722                                 InputEvent *evt)
723 {
724     ChannelState *s = (ChannelState *)dev;
725     int qcode, keycode;
726     InputKeyEvent *key;
727 
728     assert(evt->type == INPUT_EVENT_KIND_KEY);
729     key = evt->u.key.data;
730     qcode = qemu_input_key_value_to_qcode(key->key);
731     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
732                                key->down);
733 
734     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
735         if (key->down) {
736             s->caps_lock_mode ^= 1;
737             if (s->caps_lock_mode == 2) {
738                 return; /* Drop second press */
739             }
740         } else {
741             s->caps_lock_mode ^= 2;
742             if (s->caps_lock_mode == 3) {
743                 return; /* Drop first release */
744             }
745         }
746     }
747 
748     if (qcode == Q_KEY_CODE_NUM_LOCK) {
749         if (key->down) {
750             s->num_lock_mode ^= 1;
751             if (s->num_lock_mode == 2) {
752                 return; /* Drop second press */
753             }
754         } else {
755             s->num_lock_mode ^= 2;
756             if (s->num_lock_mode == 3) {
757                 return; /* Drop first release */
758             }
759         }
760     }
761 
762     if (qcode > qemu_input_map_qcode_to_sun_len) {
763         return;
764     }
765 
766     keycode = qemu_input_map_qcode_to_sun[qcode];
767     if (!key->down) {
768         keycode |= 0x80;
769     }
770     trace_escc_sunkbd_event_out(keycode);
771     put_queue(s, keycode);
772 }
773 
774 static QemuInputHandler sunkbd_handler = {
775     .name  = "sun keyboard",
776     .mask  = INPUT_EVENT_MASK_KEY,
777     .event = sunkbd_handle_event,
778 };
779 
780 static void handle_kbd_command(ChannelState *s, int val)
781 {
782     trace_escc_kbd_command(val);
783     if (s->led_mode) { // Ignore led byte
784         s->led_mode = 0;
785         return;
786     }
787     switch (val) {
788     case 1: // Reset, return type code
789         clear_queue(s);
790         put_queue(s, 0xff);
791         put_queue(s, 4); // Type 4
792         put_queue(s, 0x7f);
793         break;
794     case 0xe: // Set leds
795         s->led_mode = 1;
796         break;
797     case 7: // Query layout
798     case 0xf:
799         clear_queue(s);
800         put_queue(s, 0xfe);
801         put_queue(s, 0x21); /*  en-us layout */
802         break;
803     default:
804         break;
805     }
806 }
807 
808 static void sunmouse_event(void *opaque,
809                                int dx, int dy, int dz, int buttons_state)
810 {
811     ChannelState *s = opaque;
812     int ch;
813 
814     trace_escc_sunmouse_event(dx, dy, buttons_state);
815     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
816 
817     if (buttons_state & MOUSE_EVENT_LBUTTON)
818         ch ^= 0x4;
819     if (buttons_state & MOUSE_EVENT_MBUTTON)
820         ch ^= 0x2;
821     if (buttons_state & MOUSE_EVENT_RBUTTON)
822         ch ^= 0x1;
823 
824     put_queue(s, ch);
825 
826     ch = dx;
827 
828     if (ch > 127)
829         ch = 127;
830     else if (ch < -127)
831         ch = -127;
832 
833     put_queue(s, ch & 0xff);
834 
835     ch = -dy;
836 
837     if (ch > 127)
838         ch = 127;
839     else if (ch < -127)
840         ch = -127;
841 
842     put_queue(s, ch & 0xff);
843 
844     // MSC protocol specify two extra motion bytes
845 
846     put_queue(s, 0);
847     put_queue(s, 0);
848 }
849 
850 void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
851                                int disabled, int clock, int it_shift)
852 {
853     DeviceState *dev;
854     SysBusDevice *s;
855 
856     dev = qdev_create(NULL, TYPE_ESCC);
857     qdev_prop_set_uint32(dev, "disabled", disabled);
858     qdev_prop_set_uint32(dev, "frequency", clock);
859     qdev_prop_set_uint32(dev, "it_shift", it_shift);
860     qdev_prop_set_chr(dev, "chrB", NULL);
861     qdev_prop_set_chr(dev, "chrA", NULL);
862     qdev_prop_set_uint32(dev, "chnBtype", mouse);
863     qdev_prop_set_uint32(dev, "chnAtype", kbd);
864     qdev_init_nofail(dev);
865     s = SYS_BUS_DEVICE(dev);
866     sysbus_connect_irq(s, 0, irq);
867     sysbus_connect_irq(s, 1, irq);
868     sysbus_mmio_map(s, 0, base);
869 }
870 
871 static void escc_init1(Object *obj)
872 {
873     ESCCState *s = ESCC(obj);
874     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
875     unsigned int i;
876 
877     for (i = 0; i < 2; i++) {
878         sysbus_init_irq(dev, &s->chn[i].irq);
879         s->chn[i].chn = 1 - i;
880     }
881     s->chn[0].otherchn = &s->chn[1];
882     s->chn[1].otherchn = &s->chn[0];
883 
884     sysbus_init_mmio(dev, &s->mmio);
885 }
886 
887 static void escc_realize(DeviceState *dev, Error **errp)
888 {
889     ESCCState *s = ESCC(dev);
890     unsigned int i;
891 
892     s->chn[0].disabled = s->disabled;
893     s->chn[1].disabled = s->disabled;
894 
895     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
896                           ESCC_SIZE << s->it_shift);
897 
898     for (i = 0; i < 2; i++) {
899         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
900             s->chn[i].clock = s->frequency / 2;
901             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
902                                      serial_receive1, serial_event, NULL,
903                                      &s->chn[i], NULL, true);
904         }
905     }
906 
907     if (s->chn[0].type == mouse) {
908         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
909                                      "QEMU Sun Mouse");
910     }
911     if (s->chn[1].type == kbd) {
912         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
913                                                    &sunkbd_handler);
914     }
915 }
916 
917 static Property escc_properties[] = {
918     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
919     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
920     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
921     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
922     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
923     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
924     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
925     DEFINE_PROP_END_OF_LIST(),
926 };
927 
928 static void escc_class_init(ObjectClass *klass, void *data)
929 {
930     DeviceClass *dc = DEVICE_CLASS(klass);
931 
932     dc->reset = escc_reset;
933     dc->realize = escc_realize;
934     dc->vmsd = &vmstate_escc;
935     dc->props = escc_properties;
936     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
937 }
938 
939 static const TypeInfo escc_info = {
940     .name          = TYPE_ESCC,
941     .parent        = TYPE_SYS_BUS_DEVICE,
942     .instance_size = sizeof(ESCCState),
943     .instance_init = escc_init1,
944     .class_init    = escc_class_init,
945 };
946 
947 static void escc_register_types(void)
948 {
949     type_register_static(&escc_info);
950 }
951 
952 type_init(escc_register_types)
953