xref: /openbmc/qemu/hw/char/escc.c (revision e1723999)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/module.h"
32 #include "hw/char/escc.h"
33 #include "ui/console.h"
34 #include "trace.h"
35 
36 /*
37  * Chipset docs:
38  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
39  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
40  *
41  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
42  * (Slave I/O), also produced as NCR89C105. See
43  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44  *
45  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
46  * mouse and keyboard ports don't implement all functions and they are
47  * only asynchronous. There is no DMA.
48  *
49  * Z85C30 is also used on PowerMacs and m68k Macs.
50  *
51  * There are some small differences between Sparc version (sunzilog)
52  * and PowerMac (pmac):
53  *  Offset between control and data registers
54  *  There is some kind of lockup bug, but we can ignore it
55  *  CTS is inverted
56  *  DMA on pmac using DBDMA chip
57  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
58  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
59  *
60  * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
61  * but registers are grouped by type and not by channel:
62  * channel is selected by bit 0 of the address (instead of bit 1)
63  * and register is selected by bit 1 of the address (instead of bit 0).
64  */
65 
66 /*
67  * Modifications:
68  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
69  *                                  serial mouse queue.
70  *                                  Implemented serial mouse protocol.
71  *
72  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
73  */
74 
75 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
76 
77 #define SERIAL_CTRL 0
78 #define SERIAL_DATA 1
79 
80 #define W_CMD     0
81 #define CMD_PTR_MASK   0x07
82 #define CMD_CMD_MASK   0x38
83 #define CMD_HI         0x08
84 #define CMD_CLR_TXINT  0x28
85 #define CMD_CLR_IUS    0x38
86 #define W_INTR    1
87 #define INTR_INTALL    0x01
88 #define INTR_TXINT     0x02
89 #define INTR_PAR_SPEC  0x04
90 #define INTR_RXMODEMSK 0x18
91 #define INTR_RXINT1ST  0x08
92 #define INTR_RXINTALL  0x10
93 #define INTR_WTRQ_TXRX 0x20
94 #define W_IVEC    2
95 #define W_RXCTRL  3
96 #define RXCTRL_RXEN    0x01
97 #define RXCTRL_HUNT    0x10
98 #define W_TXCTRL1 4
99 #define TXCTRL1_PAREN  0x01
100 #define TXCTRL1_PAREV  0x02
101 #define TXCTRL1_1STOP  0x04
102 #define TXCTRL1_1HSTOP 0x08
103 #define TXCTRL1_2STOP  0x0c
104 #define TXCTRL1_STPMSK 0x0c
105 #define TXCTRL1_CLK1X  0x00
106 #define TXCTRL1_CLK16X 0x40
107 #define TXCTRL1_CLK32X 0x80
108 #define TXCTRL1_CLK64X 0xc0
109 #define TXCTRL1_CLKMSK 0xc0
110 #define W_TXCTRL2 5
111 #define TXCTRL2_TXCRC  0x01
112 #define TXCTRL2_TXEN   0x08
113 #define TXCTRL2_BITMSK 0x60
114 #define TXCTRL2_5BITS  0x00
115 #define TXCTRL2_7BITS  0x20
116 #define TXCTRL2_6BITS  0x40
117 #define TXCTRL2_8BITS  0x60
118 #define W_SYNC1   6
119 #define W_SYNC2   7
120 #define W_TXBUF   8
121 #define W_MINTR   9
122 #define MINTR_VIS      0x01
123 #define MINTR_NV       0x02
124 #define MINTR_STATUSHI 0x10
125 #define MINTR_SOFTIACK 0x20
126 #define MINTR_RST_MASK 0xc0
127 #define MINTR_RST_B    0x40
128 #define MINTR_RST_A    0x80
129 #define MINTR_RST_ALL  0xc0
130 #define W_MISC1  10
131 #define MISC1_ENC_MASK 0x60
132 #define W_CLOCK  11
133 #define CLOCK_TRXC     0x08
134 #define W_BRGLO  12
135 #define W_BRGHI  13
136 #define W_MISC2  14
137 #define MISC2_BRG_EN   0x01
138 #define MISC2_BRG_SRC  0x02
139 #define MISC2_LCL_LOOP 0x10
140 #define MISC2_PLLCMD0  0x20
141 #define MISC2_PLLCMD1  0x40
142 #define MISC2_PLLCMD2  0x80
143 #define W_EXTINT 15
144 #define EXTINT_DCD     0x08
145 #define EXTINT_SYNCINT 0x10
146 #define EXTINT_CTSINT  0x20
147 #define EXTINT_TXUNDRN 0x40
148 #define EXTINT_BRKINT  0x80
149 
150 #define R_STATUS  0
151 #define STATUS_RXAV    0x01
152 #define STATUS_ZERO    0x02
153 #define STATUS_TXEMPTY 0x04
154 #define STATUS_DCD     0x08
155 #define STATUS_SYNC    0x10
156 #define STATUS_CTS     0x20
157 #define STATUS_TXUNDRN 0x40
158 #define STATUS_BRK     0x80
159 #define R_SPEC    1
160 #define SPEC_ALLSENT   0x01
161 #define SPEC_BITS8     0x06
162 #define R_IVEC    2
163 #define IVEC_TXINTB    0x00
164 #define IVEC_LONOINT   0x06
165 #define IVEC_LORXINTA  0x0c
166 #define IVEC_LORXINTB  0x04
167 #define IVEC_LOTXINTA  0x08
168 #define IVEC_HINOINT   0x60
169 #define IVEC_HIRXINTA  0x30
170 #define IVEC_HIRXINTB  0x20
171 #define IVEC_HITXINTA  0x10
172 #define R_INTR    3
173 #define INTR_EXTINTB   0x01
174 #define INTR_TXINTB    0x02
175 #define INTR_RXINTB    0x04
176 #define INTR_EXTINTA   0x08
177 #define INTR_TXINTA    0x10
178 #define INTR_RXINTA    0x20
179 #define R_IPEN    4
180 #define R_TXCTRL1 5
181 #define R_TXCTRL2 6
182 #define R_BC      7
183 #define R_RXBUF   8
184 #define R_RXCTRL  9
185 #define R_MISC   10
186 #define MISC_2CLKMISS  0x40
187 #define R_MISC1  11
188 #define R_BRGLO  12
189 #define R_BRGHI  13
190 #define R_MISC1I 14
191 #define R_EXTINT 15
192 
193 static void handle_kbd_command(ESCCChannelState *s, int val);
194 static int serial_can_receive(void *opaque);
195 static void serial_receive_byte(ESCCChannelState *s, int ch);
196 
197 static int reg_shift(ESCCState *s)
198 {
199     return s->bit_swap ? s->it_shift + 1 : s->it_shift;
200 }
201 
202 static int chn_shift(ESCCState *s)
203 {
204     return s->bit_swap ? s->it_shift : s->it_shift + 1;
205 }
206 
207 static void clear_queue(void *opaque)
208 {
209     ESCCChannelState *s = opaque;
210     ESCCSERIOQueue *q = &s->queue;
211     q->rptr = q->wptr = q->count = 0;
212 }
213 
214 static void put_queue(void *opaque, int b)
215 {
216     ESCCChannelState *s = opaque;
217     ESCCSERIOQueue *q = &s->queue;
218 
219     trace_escc_put_queue(CHN_C(s), b);
220     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
221         return;
222     }
223     q->data[q->wptr] = b;
224     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
225         q->wptr = 0;
226     }
227     q->count++;
228     serial_receive_byte(s, 0);
229 }
230 
231 static uint32_t get_queue(void *opaque)
232 {
233     ESCCChannelState *s = opaque;
234     ESCCSERIOQueue *q = &s->queue;
235     int val;
236 
237     if (q->count == 0) {
238         return 0;
239     } else {
240         val = q->data[q->rptr];
241         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
242             q->rptr = 0;
243         }
244         q->count--;
245     }
246     trace_escc_get_queue(CHN_C(s), val);
247     if (q->count > 0) {
248         serial_receive_byte(s, 0);
249     }
250     return val;
251 }
252 
253 static int escc_update_irq_chn(ESCCChannelState *s)
254 {
255     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
256         /* tx ints enabled, pending */
257         ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
258         ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
259             s->rxint == 1) ||
260         /* rx ints enabled, pending */
261         ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
262             (s->rregs[R_STATUS] & STATUS_BRK)))) {
263         /* break int e&p */
264         return 1;
265     }
266     return 0;
267 }
268 
269 static void escc_update_irq(ESCCChannelState *s)
270 {
271     int irq;
272 
273     irq = escc_update_irq_chn(s);
274     irq |= escc_update_irq_chn(s->otherchn);
275 
276     trace_escc_update_irq(irq);
277     qemu_set_irq(s->irq, irq);
278 }
279 
280 static void escc_reset_chn(ESCCChannelState *s)
281 {
282     s->reg = 0;
283     s->rx = s->tx = 0;
284     s->rxint = s->txint = 0;
285     s->rxint_under_svc = s->txint_under_svc = 0;
286     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
287     clear_queue(s);
288 }
289 
290 static void escc_soft_reset_chn(ESCCChannelState *s)
291 {
292     escc_reset_chn(s);
293 
294     s->wregs[W_CMD] = 0;
295     s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
296     s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
297     /* 1 stop bit */
298     s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
299     s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
300     s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
301     s->wregs[W_MISC1] &= MISC1_ENC_MASK;
302     /* PLL disabled */
303     s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
304                          MISC2_PLLCMD1 | MISC2_PLLCMD2;
305     s->wregs[W_MISC2] |= MISC2_PLLCMD0;
306     /* Enable most interrupts */
307     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
308                          EXTINT_TXUNDRN | EXTINT_BRKINT;
309 
310     s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
311     s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
312     if (s->disabled) {
313         s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
314     }
315     s->rregs[R_SPEC] &= SPEC_ALLSENT;
316     s->rregs[R_SPEC] |= SPEC_BITS8;
317     s->rregs[R_INTR] = 0;
318     s->rregs[R_MISC] &= MISC_2CLKMISS;
319 }
320 
321 static void escc_hard_reset_chn(ESCCChannelState *s)
322 {
323     escc_soft_reset_chn(s);
324 
325     /*
326      * Hard reset is almost identical to soft reset above, except that the
327      * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
328      * (W_MISC2) have extra bits forced to 0/1
329      */
330     s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
331     s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
332     s->wregs[W_MISC1] = 0;
333     s->wregs[W_CLOCK] = CLOCK_TRXC;
334     s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
335     s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
336 }
337 
338 static void escc_reset(DeviceState *d)
339 {
340     ESCCState *s = ESCC(d);
341     int i, j;
342 
343     for (i = 0; i < 2; i++) {
344         ESCCChannelState *cs = &s->chn[i];
345 
346         /*
347          * According to the ESCC datasheet "Miscellaneous Questions" section
348          * on page 384, the values of the ESCC registers are not guaranteed on
349          * power-on until an explicit hardware or software reset has been
350          * issued. For now we zero the registers so that a device reset always
351          * returns the emulated device to a fixed state.
352          */
353         for (j = 0; j < ESCC_SERIAL_REGS; j++) {
354             cs->rregs[j] = 0;
355             cs->wregs[j] = 0;
356         }
357         escc_reset_chn(cs);
358     }
359 }
360 
361 static inline void set_rxint(ESCCChannelState *s)
362 {
363     s->rxint = 1;
364     /*
365      * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
366      * than chn_a rx/tx/special_condition service
367      */
368     s->rxint_under_svc = 1;
369     if (s->chn == escc_chn_a) {
370         s->rregs[R_INTR] |= INTR_RXINTA;
371         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
372             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
373         } else {
374             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
375         }
376     } else {
377         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
378         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
379             s->rregs[R_IVEC] = IVEC_HIRXINTB;
380         } else {
381             s->rregs[R_IVEC] = IVEC_LORXINTB;
382         }
383     }
384     escc_update_irq(s);
385 }
386 
387 static inline void set_txint(ESCCChannelState *s)
388 {
389     s->txint = 1;
390     if (!s->rxint_under_svc) {
391         s->txint_under_svc = 1;
392         if (s->chn == escc_chn_a) {
393             if (s->wregs[W_INTR] & INTR_TXINT) {
394                 s->rregs[R_INTR] |= INTR_TXINTA;
395             }
396             if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
397                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
398             } else {
399                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
400             }
401         } else {
402             s->rregs[R_IVEC] = IVEC_TXINTB;
403             if (s->wregs[W_INTR] & INTR_TXINT) {
404                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
405             }
406         }
407         escc_update_irq(s);
408     }
409 }
410 
411 static inline void clr_rxint(ESCCChannelState *s)
412 {
413     s->rxint = 0;
414     s->rxint_under_svc = 0;
415     if (s->chn == escc_chn_a) {
416         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
417             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
418         } else {
419             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
420         }
421         s->rregs[R_INTR] &= ~INTR_RXINTA;
422     } else {
423         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
424             s->rregs[R_IVEC] = IVEC_HINOINT;
425         } else {
426             s->rregs[R_IVEC] = IVEC_LONOINT;
427         }
428         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
429     }
430     if (s->txint) {
431         set_txint(s);
432     }
433     escc_update_irq(s);
434 }
435 
436 static inline void clr_txint(ESCCChannelState *s)
437 {
438     s->txint = 0;
439     s->txint_under_svc = 0;
440     if (s->chn == escc_chn_a) {
441         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
442             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
443         } else {
444             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
445         }
446         s->rregs[R_INTR] &= ~INTR_TXINTA;
447     } else {
448         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
449         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
450             s->rregs[R_IVEC] = IVEC_HINOINT;
451         } else {
452             s->rregs[R_IVEC] = IVEC_LONOINT;
453         }
454         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
455     }
456     if (s->rxint) {
457         set_rxint(s);
458     }
459     escc_update_irq(s);
460 }
461 
462 static void escc_update_parameters(ESCCChannelState *s)
463 {
464     int speed, parity, data_bits, stop_bits;
465     QEMUSerialSetParams ssp;
466 
467     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
468         return;
469     }
470 
471     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
472         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
473             parity = 'E';
474         } else {
475             parity = 'O';
476         }
477     } else {
478         parity = 'N';
479     }
480     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
481         stop_bits = 2;
482     } else {
483         stop_bits = 1;
484     }
485     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
486     case TXCTRL2_5BITS:
487         data_bits = 5;
488         break;
489     case TXCTRL2_7BITS:
490         data_bits = 7;
491         break;
492     case TXCTRL2_6BITS:
493         data_bits = 6;
494         break;
495     default:
496     case TXCTRL2_8BITS:
497         data_bits = 8;
498         break;
499     }
500     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
501     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
502     case TXCTRL1_CLK1X:
503         break;
504     case TXCTRL1_CLK16X:
505         speed /= 16;
506         break;
507     case TXCTRL1_CLK32X:
508         speed /= 32;
509         break;
510     default:
511     case TXCTRL1_CLK64X:
512         speed /= 64;
513         break;
514     }
515     ssp.speed = speed;
516     ssp.parity = parity;
517     ssp.data_bits = data_bits;
518     ssp.stop_bits = stop_bits;
519     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
520     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
521 }
522 
523 static void escc_mem_write(void *opaque, hwaddr addr,
524                            uint64_t val, unsigned size)
525 {
526     ESCCState *serial = opaque;
527     ESCCChannelState *s;
528     uint32_t saddr;
529     int newreg, channel;
530 
531     val &= 0xff;
532     saddr = (addr >> reg_shift(serial)) & 1;
533     channel = (addr >> chn_shift(serial)) & 1;
534     s = &serial->chn[channel];
535     switch (saddr) {
536     case SERIAL_CTRL:
537         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
538         newreg = 0;
539         switch (s->reg) {
540         case W_CMD:
541             newreg = val & CMD_PTR_MASK;
542             val &= CMD_CMD_MASK;
543             switch (val) {
544             case CMD_HI:
545                 newreg |= CMD_HI;
546                 break;
547             case CMD_CLR_TXINT:
548                 clr_txint(s);
549                 break;
550             case CMD_CLR_IUS:
551                 if (s->rxint_under_svc) {
552                     s->rxint_under_svc = 0;
553                     if (s->txint) {
554                         set_txint(s);
555                     }
556                 } else if (s->txint_under_svc) {
557                     s->txint_under_svc = 0;
558                 }
559                 escc_update_irq(s);
560                 break;
561             default:
562                 break;
563             }
564             break;
565         case W_RXCTRL:
566             s->wregs[s->reg] = val;
567             if (val & RXCTRL_HUNT) {
568                 s->rregs[R_STATUS] |= STATUS_SYNC;
569             }
570             break;
571         case W_INTR ... W_IVEC:
572         case W_SYNC1 ... W_TXBUF:
573         case W_MISC1 ... W_CLOCK:
574         case W_MISC2 ... W_EXTINT:
575             s->wregs[s->reg] = val;
576             break;
577         case W_TXCTRL1:
578         case W_TXCTRL2:
579             s->wregs[s->reg] = val;
580             escc_update_parameters(s);
581             break;
582         case W_BRGLO:
583         case W_BRGHI:
584             s->wregs[s->reg] = val;
585             s->rregs[s->reg] = val;
586             escc_update_parameters(s);
587             break;
588         case W_MINTR:
589             switch (val & MINTR_RST_MASK) {
590             case 0:
591             default:
592                 break;
593             case MINTR_RST_B:
594                 trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
595                 escc_soft_reset_chn(&serial->chn[0]);
596                 return;
597             case MINTR_RST_A:
598                 trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
599                 escc_soft_reset_chn(&serial->chn[1]);
600                 return;
601             case MINTR_RST_ALL:
602                 trace_escc_hard_reset();
603                 escc_hard_reset_chn(&serial->chn[0]);
604                 escc_hard_reset_chn(&serial->chn[1]);
605                 return;
606             }
607             break;
608         default:
609             break;
610         }
611         if (s->reg == 0) {
612             s->reg = newreg;
613         } else {
614             s->reg = 0;
615         }
616         break;
617     case SERIAL_DATA:
618         trace_escc_mem_writeb_data(CHN_C(s), val);
619         /*
620          * Lower the irq when data is written to the Tx buffer and no other
621          * interrupts are currently pending. The irq will be raised again once
622          * the Tx buffer becomes empty below.
623          */
624         s->txint = 0;
625         escc_update_irq(s);
626         s->tx = val;
627         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
628             if (qemu_chr_fe_backend_connected(&s->chr)) {
629                 /*
630                  * XXX this blocks entire thread. Rewrite to use
631                  * qemu_chr_fe_write and background I/O callbacks
632                  */
633                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
634             } else if (s->type == escc_kbd && !s->disabled) {
635                 handle_kbd_command(s, val);
636             }
637         }
638         s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
639         s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
640         set_txint(s);
641         break;
642     default:
643         break;
644     }
645 }
646 
647 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
648                               unsigned size)
649 {
650     ESCCState *serial = opaque;
651     ESCCChannelState *s;
652     uint32_t saddr;
653     uint32_t ret;
654     int channel;
655 
656     saddr = (addr >> reg_shift(serial)) & 1;
657     channel = (addr >> chn_shift(serial)) & 1;
658     s = &serial->chn[channel];
659     switch (saddr) {
660     case SERIAL_CTRL:
661         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
662         ret = s->rregs[s->reg];
663         s->reg = 0;
664         return ret;
665     case SERIAL_DATA:
666         s->rregs[R_STATUS] &= ~STATUS_RXAV;
667         clr_rxint(s);
668         if (s->type == escc_kbd || s->type == escc_mouse) {
669             ret = get_queue(s);
670         } else {
671             ret = s->rx;
672         }
673         trace_escc_mem_readb_data(CHN_C(s), ret);
674         qemu_chr_fe_accept_input(&s->chr);
675         return ret;
676     default:
677         break;
678     }
679     return 0;
680 }
681 
682 static const MemoryRegionOps escc_mem_ops = {
683     .read = escc_mem_read,
684     .write = escc_mem_write,
685     .endianness = DEVICE_NATIVE_ENDIAN,
686     .valid = {
687         .min_access_size = 1,
688         .max_access_size = 1,
689     },
690 };
691 
692 static int serial_can_receive(void *opaque)
693 {
694     ESCCChannelState *s = opaque;
695     int ret;
696 
697     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
698         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
699         /* char already available */
700         ret = 0;
701     } else {
702         ret = 1;
703     }
704     return ret;
705 }
706 
707 static void serial_receive_byte(ESCCChannelState *s, int ch)
708 {
709     trace_escc_serial_receive_byte(CHN_C(s), ch);
710     s->rregs[R_STATUS] |= STATUS_RXAV;
711     s->rx = ch;
712     set_rxint(s);
713 }
714 
715 static void serial_receive_break(ESCCChannelState *s)
716 {
717     s->rregs[R_STATUS] |= STATUS_BRK;
718     escc_update_irq(s);
719 }
720 
721 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
722 {
723     ESCCChannelState *s = opaque;
724     serial_receive_byte(s, buf[0]);
725 }
726 
727 static void serial_event(void *opaque, QEMUChrEvent event)
728 {
729     ESCCChannelState *s = opaque;
730     if (event == CHR_EVENT_BREAK) {
731         serial_receive_break(s);
732     }
733 }
734 
735 static const VMStateDescription vmstate_escc_chn = {
736     .name = "escc_chn",
737     .version_id = 2,
738     .minimum_version_id = 1,
739     .fields = (VMStateField[]) {
740         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
741         VMSTATE_UINT32(reg, ESCCChannelState),
742         VMSTATE_UINT32(rxint, ESCCChannelState),
743         VMSTATE_UINT32(txint, ESCCChannelState),
744         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
745         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
746         VMSTATE_UINT8(rx, ESCCChannelState),
747         VMSTATE_UINT8(tx, ESCCChannelState),
748         VMSTATE_BUFFER(wregs, ESCCChannelState),
749         VMSTATE_BUFFER(rregs, ESCCChannelState),
750         VMSTATE_END_OF_LIST()
751     }
752 };
753 
754 static const VMStateDescription vmstate_escc = {
755     .name = "escc",
756     .version_id = 2,
757     .minimum_version_id = 1,
758     .fields = (VMStateField[]) {
759         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
760                              ESCCChannelState),
761         VMSTATE_END_OF_LIST()
762     }
763 };
764 
765 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
766                                 InputEvent *evt)
767 {
768     ESCCChannelState *s = (ESCCChannelState *)dev;
769     int qcode, keycode;
770     InputKeyEvent *key;
771 
772     assert(evt->type == INPUT_EVENT_KIND_KEY);
773     key = evt->u.key.data;
774     qcode = qemu_input_key_value_to_qcode(key->key);
775     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
776                                key->down);
777 
778     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
779         if (key->down) {
780             s->caps_lock_mode ^= 1;
781             if (s->caps_lock_mode == 2) {
782                 return; /* Drop second press */
783             }
784         } else {
785             s->caps_lock_mode ^= 2;
786             if (s->caps_lock_mode == 3) {
787                 return; /* Drop first release */
788             }
789         }
790     }
791 
792     if (qcode == Q_KEY_CODE_NUM_LOCK) {
793         if (key->down) {
794             s->num_lock_mode ^= 1;
795             if (s->num_lock_mode == 2) {
796                 return; /* Drop second press */
797             }
798         } else {
799             s->num_lock_mode ^= 2;
800             if (s->num_lock_mode == 3) {
801                 return; /* Drop first release */
802             }
803         }
804     }
805 
806     if (qcode > qemu_input_map_qcode_to_sun_len) {
807         return;
808     }
809 
810     keycode = qemu_input_map_qcode_to_sun[qcode];
811     if (!key->down) {
812         keycode |= 0x80;
813     }
814     trace_escc_sunkbd_event_out(keycode);
815     put_queue(s, keycode);
816 }
817 
818 static QemuInputHandler sunkbd_handler = {
819     .name  = "sun keyboard",
820     .mask  = INPUT_EVENT_MASK_KEY,
821     .event = sunkbd_handle_event,
822 };
823 
824 static void handle_kbd_command(ESCCChannelState *s, int val)
825 {
826     trace_escc_kbd_command(val);
827     if (s->led_mode) { /* Ignore led byte */
828         s->led_mode = 0;
829         return;
830     }
831     switch (val) {
832     case 1: /* Reset, return type code */
833         clear_queue(s);
834         put_queue(s, 0xff);
835         put_queue(s, 4); /* Type 4 */
836         put_queue(s, 0x7f);
837         break;
838     case 0xe: /* Set leds */
839         s->led_mode = 1;
840         break;
841     case 7: /* Query layout */
842     case 0xf:
843         clear_queue(s);
844         put_queue(s, 0xfe);
845         put_queue(s, 0x21); /*  en-us layout */
846         break;
847     default:
848         break;
849     }
850 }
851 
852 static void sunmouse_event(void *opaque,
853                                int dx, int dy, int dz, int buttons_state)
854 {
855     ESCCChannelState *s = opaque;
856     int ch;
857 
858     trace_escc_sunmouse_event(dx, dy, buttons_state);
859     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
860 
861     if (buttons_state & MOUSE_EVENT_LBUTTON) {
862         ch ^= 0x4;
863     }
864     if (buttons_state & MOUSE_EVENT_MBUTTON) {
865         ch ^= 0x2;
866     }
867     if (buttons_state & MOUSE_EVENT_RBUTTON) {
868         ch ^= 0x1;
869     }
870 
871     put_queue(s, ch);
872 
873     ch = dx;
874 
875     if (ch > 127) {
876         ch = 127;
877     } else if (ch < -127) {
878         ch = -127;
879     }
880 
881     put_queue(s, ch & 0xff);
882 
883     ch = -dy;
884 
885     if (ch > 127) {
886         ch = 127;
887     } else if (ch < -127) {
888         ch = -127;
889     }
890 
891     put_queue(s, ch & 0xff);
892 
893     /* MSC protocol specifies two extra motion bytes */
894 
895     put_queue(s, 0);
896     put_queue(s, 0);
897 }
898 
899 static void escc_init1(Object *obj)
900 {
901     ESCCState *s = ESCC(obj);
902     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
903     unsigned int i;
904 
905     for (i = 0; i < 2; i++) {
906         sysbus_init_irq(dev, &s->chn[i].irq);
907         s->chn[i].chn = 1 - i;
908     }
909     s->chn[0].otherchn = &s->chn[1];
910     s->chn[1].otherchn = &s->chn[0];
911 
912     sysbus_init_mmio(dev, &s->mmio);
913 }
914 
915 static void escc_realize(DeviceState *dev, Error **errp)
916 {
917     ESCCState *s = ESCC(dev);
918     unsigned int i;
919 
920     s->chn[0].disabled = s->disabled;
921     s->chn[1].disabled = s->disabled;
922 
923     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
924                           ESCC_SIZE << s->it_shift);
925 
926     for (i = 0; i < 2; i++) {
927         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
928             s->chn[i].clock = s->frequency / 2;
929             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
930                                      serial_receive1, serial_event, NULL,
931                                      &s->chn[i], NULL, true);
932         }
933     }
934 
935     if (s->chn[0].type == escc_mouse) {
936         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
937                                      "QEMU Sun Mouse");
938     }
939     if (s->chn[1].type == escc_kbd) {
940         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
941                                                    &sunkbd_handler);
942     }
943 }
944 
945 static Property escc_properties[] = {
946     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
947     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
948     DEFINE_PROP_BOOL("bit_swap",    ESCCState, bit_swap,    false),
949     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
950     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
951     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
952     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
953     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
954     DEFINE_PROP_END_OF_LIST(),
955 };
956 
957 static void escc_class_init(ObjectClass *klass, void *data)
958 {
959     DeviceClass *dc = DEVICE_CLASS(klass);
960 
961     dc->reset = escc_reset;
962     dc->realize = escc_realize;
963     dc->vmsd = &vmstate_escc;
964     device_class_set_props(dc, escc_properties);
965     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
966 }
967 
968 static const TypeInfo escc_info = {
969     .name          = TYPE_ESCC,
970     .parent        = TYPE_SYS_BUS_DEVICE,
971     .instance_size = sizeof(ESCCState),
972     .instance_init = escc_init1,
973     .class_init    = escc_class_init,
974 };
975 
976 static void escc_register_types(void)
977 {
978     type_register_static(&escc_info);
979 }
980 
981 type_init(escc_register_types)
982