xref: /openbmc/qemu/hw/char/escc.c (revision d6454270)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/irq.h"
28 #include "hw/sysbus.h"
29 #include "migration/vmstate.h"
30 #include "qemu/module.h"
31 #include "hw/char/escc.h"
32 #include "ui/console.h"
33 #include "trace.h"
34 
35 /*
36  * Chipset docs:
37  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
38  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
39  *
40  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
41  * (Slave I/O), also produced as NCR89C105. See
42  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43  *
44  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
45  * mouse and keyboard ports don't implement all functions and they are
46  * only asynchronous. There is no DMA.
47  *
48  * Z85C30 is also used on PowerMacs. There are some small differences
49  * between Sparc version (sunzilog) and PowerMac (pmac):
50  *  Offset between control and data registers
51  *  There is some kind of lockup bug, but we can ignore it
52  *  CTS is inverted
53  *  DMA on pmac using DBDMA chip
54  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
55  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
56  */
57 
58 /*
59  * Modifications:
60  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
61  *                                  serial mouse queue.
62  *                                  Implemented serial mouse protocol.
63  *
64  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
65  */
66 
67 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
68 
69 #define SERIAL_CTRL 0
70 #define SERIAL_DATA 1
71 
72 #define W_CMD     0
73 #define CMD_PTR_MASK   0x07
74 #define CMD_CMD_MASK   0x38
75 #define CMD_HI         0x08
76 #define CMD_CLR_TXINT  0x28
77 #define CMD_CLR_IUS    0x38
78 #define W_INTR    1
79 #define INTR_INTALL    0x01
80 #define INTR_TXINT     0x02
81 #define INTR_RXMODEMSK 0x18
82 #define INTR_RXINT1ST  0x08
83 #define INTR_RXINTALL  0x10
84 #define W_IVEC    2
85 #define W_RXCTRL  3
86 #define RXCTRL_RXEN    0x01
87 #define W_TXCTRL1 4
88 #define TXCTRL1_PAREN  0x01
89 #define TXCTRL1_PAREV  0x02
90 #define TXCTRL1_1STOP  0x04
91 #define TXCTRL1_1HSTOP 0x08
92 #define TXCTRL1_2STOP  0x0c
93 #define TXCTRL1_STPMSK 0x0c
94 #define TXCTRL1_CLK1X  0x00
95 #define TXCTRL1_CLK16X 0x40
96 #define TXCTRL1_CLK32X 0x80
97 #define TXCTRL1_CLK64X 0xc0
98 #define TXCTRL1_CLKMSK 0xc0
99 #define W_TXCTRL2 5
100 #define TXCTRL2_TXEN   0x08
101 #define TXCTRL2_BITMSK 0x60
102 #define TXCTRL2_5BITS  0x00
103 #define TXCTRL2_7BITS  0x20
104 #define TXCTRL2_6BITS  0x40
105 #define TXCTRL2_8BITS  0x60
106 #define W_SYNC1   6
107 #define W_SYNC2   7
108 #define W_TXBUF   8
109 #define W_MINTR   9
110 #define MINTR_STATUSHI 0x10
111 #define MINTR_RST_MASK 0xc0
112 #define MINTR_RST_B    0x40
113 #define MINTR_RST_A    0x80
114 #define MINTR_RST_ALL  0xc0
115 #define W_MISC1  10
116 #define W_CLOCK  11
117 #define CLOCK_TRXC     0x08
118 #define W_BRGLO  12
119 #define W_BRGHI  13
120 #define W_MISC2  14
121 #define MISC2_PLLDIS   0x30
122 #define W_EXTINT 15
123 #define EXTINT_DCD     0x08
124 #define EXTINT_SYNCINT 0x10
125 #define EXTINT_CTSINT  0x20
126 #define EXTINT_TXUNDRN 0x40
127 #define EXTINT_BRKINT  0x80
128 
129 #define R_STATUS  0
130 #define STATUS_RXAV    0x01
131 #define STATUS_ZERO    0x02
132 #define STATUS_TXEMPTY 0x04
133 #define STATUS_DCD     0x08
134 #define STATUS_SYNC    0x10
135 #define STATUS_CTS     0x20
136 #define STATUS_TXUNDRN 0x40
137 #define STATUS_BRK     0x80
138 #define R_SPEC    1
139 #define SPEC_ALLSENT   0x01
140 #define SPEC_BITS8     0x06
141 #define R_IVEC    2
142 #define IVEC_TXINTB    0x00
143 #define IVEC_LONOINT   0x06
144 #define IVEC_LORXINTA  0x0c
145 #define IVEC_LORXINTB  0x04
146 #define IVEC_LOTXINTA  0x08
147 #define IVEC_HINOINT   0x60
148 #define IVEC_HIRXINTA  0x30
149 #define IVEC_HIRXINTB  0x20
150 #define IVEC_HITXINTA  0x10
151 #define R_INTR    3
152 #define INTR_EXTINTB   0x01
153 #define INTR_TXINTB    0x02
154 #define INTR_RXINTB    0x04
155 #define INTR_EXTINTA   0x08
156 #define INTR_TXINTA    0x10
157 #define INTR_RXINTA    0x20
158 #define R_IPEN    4
159 #define R_TXCTRL1 5
160 #define R_TXCTRL2 6
161 #define R_BC      7
162 #define R_RXBUF   8
163 #define R_RXCTRL  9
164 #define R_MISC   10
165 #define R_MISC1  11
166 #define R_BRGLO  12
167 #define R_BRGHI  13
168 #define R_MISC1I 14
169 #define R_EXTINT 15
170 
171 static void handle_kbd_command(ESCCChannelState *s, int val);
172 static int serial_can_receive(void *opaque);
173 static void serial_receive_byte(ESCCChannelState *s, int ch);
174 
175 static void clear_queue(void *opaque)
176 {
177     ESCCChannelState *s = opaque;
178     ESCCSERIOQueue *q = &s->queue;
179     q->rptr = q->wptr = q->count = 0;
180 }
181 
182 static void put_queue(void *opaque, int b)
183 {
184     ESCCChannelState *s = opaque;
185     ESCCSERIOQueue *q = &s->queue;
186 
187     trace_escc_put_queue(CHN_C(s), b);
188     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
189         return;
190     }
191     q->data[q->wptr] = b;
192     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
193         q->wptr = 0;
194     }
195     q->count++;
196     serial_receive_byte(s, 0);
197 }
198 
199 static uint32_t get_queue(void *opaque)
200 {
201     ESCCChannelState *s = opaque;
202     ESCCSERIOQueue *q = &s->queue;
203     int val;
204 
205     if (q->count == 0) {
206         return 0;
207     } else {
208         val = q->data[q->rptr];
209         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
210             q->rptr = 0;
211         }
212         q->count--;
213     }
214     trace_escc_get_queue(CHN_C(s), val);
215     if (q->count > 0)
216         serial_receive_byte(s, 0);
217     return val;
218 }
219 
220 static int escc_update_irq_chn(ESCCChannelState *s)
221 {
222     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
223          // tx ints enabled, pending
224          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
225            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
226           s->rxint == 1) || // rx ints enabled, pending
227          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
228           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
229         return 1;
230     }
231     return 0;
232 }
233 
234 static void escc_update_irq(ESCCChannelState *s)
235 {
236     int irq;
237 
238     irq = escc_update_irq_chn(s);
239     irq |= escc_update_irq_chn(s->otherchn);
240 
241     trace_escc_update_irq(irq);
242     qemu_set_irq(s->irq, irq);
243 }
244 
245 static void escc_reset_chn(ESCCChannelState *s)
246 {
247     int i;
248 
249     s->reg = 0;
250     for (i = 0; i < ESCC_SERIAL_REGS; i++) {
251         s->rregs[i] = 0;
252         s->wregs[i] = 0;
253     }
254     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
255     s->wregs[W_MINTR] = MINTR_RST_ALL;
256     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
257     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
258     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
259         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
260     if (s->disabled)
261         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
262             STATUS_CTS | STATUS_TXUNDRN;
263     else
264         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
265     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
266 
267     s->rx = s->tx = 0;
268     s->rxint = s->txint = 0;
269     s->rxint_under_svc = s->txint_under_svc = 0;
270     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
271     clear_queue(s);
272 }
273 
274 static void escc_reset(DeviceState *d)
275 {
276     ESCCState *s = ESCC(d);
277 
278     escc_reset_chn(&s->chn[0]);
279     escc_reset_chn(&s->chn[1]);
280 }
281 
282 static inline void set_rxint(ESCCChannelState *s)
283 {
284     s->rxint = 1;
285     /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
286        than chn_a rx/tx/special_condition service*/
287     s->rxint_under_svc = 1;
288     if (s->chn == escc_chn_a) {
289         s->rregs[R_INTR] |= INTR_RXINTA;
290         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
291             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
292         else
293             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
294     } else {
295         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
296         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
297             s->rregs[R_IVEC] = IVEC_HIRXINTB;
298         else
299             s->rregs[R_IVEC] = IVEC_LORXINTB;
300     }
301     escc_update_irq(s);
302 }
303 
304 static inline void set_txint(ESCCChannelState *s)
305 {
306     s->txint = 1;
307     if (!s->rxint_under_svc) {
308         s->txint_under_svc = 1;
309         if (s->chn == escc_chn_a) {
310             if (s->wregs[W_INTR] & INTR_TXINT) {
311                 s->rregs[R_INTR] |= INTR_TXINTA;
312             }
313             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
314                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
315             else
316                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
317         } else {
318             s->rregs[R_IVEC] = IVEC_TXINTB;
319             if (s->wregs[W_INTR] & INTR_TXINT) {
320                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
321             }
322         }
323     escc_update_irq(s);
324     }
325 }
326 
327 static inline void clr_rxint(ESCCChannelState *s)
328 {
329     s->rxint = 0;
330     s->rxint_under_svc = 0;
331     if (s->chn == escc_chn_a) {
332         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
333             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
334         else
335             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
336         s->rregs[R_INTR] &= ~INTR_RXINTA;
337     } else {
338         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
339             s->rregs[R_IVEC] = IVEC_HINOINT;
340         else
341             s->rregs[R_IVEC] = IVEC_LONOINT;
342         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
343     }
344     if (s->txint)
345         set_txint(s);
346     escc_update_irq(s);
347 }
348 
349 static inline void clr_txint(ESCCChannelState *s)
350 {
351     s->txint = 0;
352     s->txint_under_svc = 0;
353     if (s->chn == escc_chn_a) {
354         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
355             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
356         else
357             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
358         s->rregs[R_INTR] &= ~INTR_TXINTA;
359     } else {
360         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
361         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
362             s->rregs[R_IVEC] = IVEC_HINOINT;
363         else
364             s->rregs[R_IVEC] = IVEC_LONOINT;
365         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
366     }
367     if (s->rxint)
368         set_rxint(s);
369     escc_update_irq(s);
370 }
371 
372 static void escc_update_parameters(ESCCChannelState *s)
373 {
374     int speed, parity, data_bits, stop_bits;
375     QEMUSerialSetParams ssp;
376 
377     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
378         return;
379 
380     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
381         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
382             parity = 'E';
383         else
384             parity = 'O';
385     } else {
386         parity = 'N';
387     }
388     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
389         stop_bits = 2;
390     else
391         stop_bits = 1;
392     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
393     case TXCTRL2_5BITS:
394         data_bits = 5;
395         break;
396     case TXCTRL2_7BITS:
397         data_bits = 7;
398         break;
399     case TXCTRL2_6BITS:
400         data_bits = 6;
401         break;
402     default:
403     case TXCTRL2_8BITS:
404         data_bits = 8;
405         break;
406     }
407     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
408     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
409     case TXCTRL1_CLK1X:
410         break;
411     case TXCTRL1_CLK16X:
412         speed /= 16;
413         break;
414     case TXCTRL1_CLK32X:
415         speed /= 32;
416         break;
417     default:
418     case TXCTRL1_CLK64X:
419         speed /= 64;
420         break;
421     }
422     ssp.speed = speed;
423     ssp.parity = parity;
424     ssp.data_bits = data_bits;
425     ssp.stop_bits = stop_bits;
426     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
427     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
428 }
429 
430 static void escc_mem_write(void *opaque, hwaddr addr,
431                            uint64_t val, unsigned size)
432 {
433     ESCCState *serial = opaque;
434     ESCCChannelState *s;
435     uint32_t saddr;
436     int newreg, channel;
437 
438     val &= 0xff;
439     saddr = (addr >> serial->it_shift) & 1;
440     channel = (addr >> (serial->it_shift + 1)) & 1;
441     s = &serial->chn[channel];
442     switch (saddr) {
443     case SERIAL_CTRL:
444         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
445         newreg = 0;
446         switch (s->reg) {
447         case W_CMD:
448             newreg = val & CMD_PTR_MASK;
449             val &= CMD_CMD_MASK;
450             switch (val) {
451             case CMD_HI:
452                 newreg |= CMD_HI;
453                 break;
454             case CMD_CLR_TXINT:
455                 clr_txint(s);
456                 break;
457             case CMD_CLR_IUS:
458                 if (s->rxint_under_svc) {
459                     s->rxint_under_svc = 0;
460                     if (s->txint) {
461                         set_txint(s);
462                     }
463                 } else if (s->txint_under_svc) {
464                     s->txint_under_svc = 0;
465                 }
466                 escc_update_irq(s);
467                 break;
468             default:
469                 break;
470             }
471             break;
472         case W_INTR ... W_RXCTRL:
473         case W_SYNC1 ... W_TXBUF:
474         case W_MISC1 ... W_CLOCK:
475         case W_MISC2 ... W_EXTINT:
476             s->wregs[s->reg] = val;
477             break;
478         case W_TXCTRL1:
479         case W_TXCTRL2:
480             s->wregs[s->reg] = val;
481             escc_update_parameters(s);
482             break;
483         case W_BRGLO:
484         case W_BRGHI:
485             s->wregs[s->reg] = val;
486             s->rregs[s->reg] = val;
487             escc_update_parameters(s);
488             break;
489         case W_MINTR:
490             switch (val & MINTR_RST_MASK) {
491             case 0:
492             default:
493                 break;
494             case MINTR_RST_B:
495                 escc_reset_chn(&serial->chn[0]);
496                 return;
497             case MINTR_RST_A:
498                 escc_reset_chn(&serial->chn[1]);
499                 return;
500             case MINTR_RST_ALL:
501                 escc_reset(DEVICE(serial));
502                 return;
503             }
504             break;
505         default:
506             break;
507         }
508         if (s->reg == 0)
509             s->reg = newreg;
510         else
511             s->reg = 0;
512         break;
513     case SERIAL_DATA:
514         trace_escc_mem_writeb_data(CHN_C(s), val);
515         /*
516          * Lower the irq when data is written to the Tx buffer and no other
517          * interrupts are currently pending. The irq will be raised again once
518          * the Tx buffer becomes empty below.
519          */
520         s->txint = 0;
521         escc_update_irq(s);
522         s->tx = val;
523         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
524             if (qemu_chr_fe_backend_connected(&s->chr)) {
525                 /* XXX this blocks entire thread. Rewrite to use
526                  * qemu_chr_fe_write and background I/O callbacks */
527                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
528             } else if (s->type == escc_kbd && !s->disabled) {
529                 handle_kbd_command(s, val);
530             }
531         }
532         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
533         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
534         set_txint(s);
535         break;
536     default:
537         break;
538     }
539 }
540 
541 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
542                               unsigned size)
543 {
544     ESCCState *serial = opaque;
545     ESCCChannelState *s;
546     uint32_t saddr;
547     uint32_t ret;
548     int channel;
549 
550     saddr = (addr >> serial->it_shift) & 1;
551     channel = (addr >> (serial->it_shift + 1)) & 1;
552     s = &serial->chn[channel];
553     switch (saddr) {
554     case SERIAL_CTRL:
555         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
556         ret = s->rregs[s->reg];
557         s->reg = 0;
558         return ret;
559     case SERIAL_DATA:
560         s->rregs[R_STATUS] &= ~STATUS_RXAV;
561         clr_rxint(s);
562         if (s->type == escc_kbd || s->type == escc_mouse) {
563             ret = get_queue(s);
564         } else {
565             ret = s->rx;
566         }
567         trace_escc_mem_readb_data(CHN_C(s), ret);
568         qemu_chr_fe_accept_input(&s->chr);
569         return ret;
570     default:
571         break;
572     }
573     return 0;
574 }
575 
576 static const MemoryRegionOps escc_mem_ops = {
577     .read = escc_mem_read,
578     .write = escc_mem_write,
579     .endianness = DEVICE_NATIVE_ENDIAN,
580     .valid = {
581         .min_access_size = 1,
582         .max_access_size = 1,
583     },
584 };
585 
586 static int serial_can_receive(void *opaque)
587 {
588     ESCCChannelState *s = opaque;
589     int ret;
590 
591     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
592         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
593         // char already available
594         ret = 0;
595     else
596         ret = 1;
597     return ret;
598 }
599 
600 static void serial_receive_byte(ESCCChannelState *s, int ch)
601 {
602     trace_escc_serial_receive_byte(CHN_C(s), ch);
603     s->rregs[R_STATUS] |= STATUS_RXAV;
604     s->rx = ch;
605     set_rxint(s);
606 }
607 
608 static void serial_receive_break(ESCCChannelState *s)
609 {
610     s->rregs[R_STATUS] |= STATUS_BRK;
611     escc_update_irq(s);
612 }
613 
614 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
615 {
616     ESCCChannelState *s = opaque;
617     serial_receive_byte(s, buf[0]);
618 }
619 
620 static void serial_event(void *opaque, int event)
621 {
622     ESCCChannelState *s = opaque;
623     if (event == CHR_EVENT_BREAK)
624         serial_receive_break(s);
625 }
626 
627 static const VMStateDescription vmstate_escc_chn = {
628     .name ="escc_chn",
629     .version_id = 2,
630     .minimum_version_id = 1,
631     .fields = (VMStateField[]) {
632         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
633         VMSTATE_UINT32(reg, ESCCChannelState),
634         VMSTATE_UINT32(rxint, ESCCChannelState),
635         VMSTATE_UINT32(txint, ESCCChannelState),
636         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
637         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
638         VMSTATE_UINT8(rx, ESCCChannelState),
639         VMSTATE_UINT8(tx, ESCCChannelState),
640         VMSTATE_BUFFER(wregs, ESCCChannelState),
641         VMSTATE_BUFFER(rregs, ESCCChannelState),
642         VMSTATE_END_OF_LIST()
643     }
644 };
645 
646 static const VMStateDescription vmstate_escc = {
647     .name ="escc",
648     .version_id = 2,
649     .minimum_version_id = 1,
650     .fields = (VMStateField[]) {
651         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
652                              ESCCChannelState),
653         VMSTATE_END_OF_LIST()
654     }
655 };
656 
657 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
658                                 InputEvent *evt)
659 {
660     ESCCChannelState *s = (ESCCChannelState *)dev;
661     int qcode, keycode;
662     InputKeyEvent *key;
663 
664     assert(evt->type == INPUT_EVENT_KIND_KEY);
665     key = evt->u.key.data;
666     qcode = qemu_input_key_value_to_qcode(key->key);
667     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
668                                key->down);
669 
670     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
671         if (key->down) {
672             s->caps_lock_mode ^= 1;
673             if (s->caps_lock_mode == 2) {
674                 return; /* Drop second press */
675             }
676         } else {
677             s->caps_lock_mode ^= 2;
678             if (s->caps_lock_mode == 3) {
679                 return; /* Drop first release */
680             }
681         }
682     }
683 
684     if (qcode == Q_KEY_CODE_NUM_LOCK) {
685         if (key->down) {
686             s->num_lock_mode ^= 1;
687             if (s->num_lock_mode == 2) {
688                 return; /* Drop second press */
689             }
690         } else {
691             s->num_lock_mode ^= 2;
692             if (s->num_lock_mode == 3) {
693                 return; /* Drop first release */
694             }
695         }
696     }
697 
698     if (qcode > qemu_input_map_qcode_to_sun_len) {
699         return;
700     }
701 
702     keycode = qemu_input_map_qcode_to_sun[qcode];
703     if (!key->down) {
704         keycode |= 0x80;
705     }
706     trace_escc_sunkbd_event_out(keycode);
707     put_queue(s, keycode);
708 }
709 
710 static QemuInputHandler sunkbd_handler = {
711     .name  = "sun keyboard",
712     .mask  = INPUT_EVENT_MASK_KEY,
713     .event = sunkbd_handle_event,
714 };
715 
716 static void handle_kbd_command(ESCCChannelState *s, int val)
717 {
718     trace_escc_kbd_command(val);
719     if (s->led_mode) { // Ignore led byte
720         s->led_mode = 0;
721         return;
722     }
723     switch (val) {
724     case 1: // Reset, return type code
725         clear_queue(s);
726         put_queue(s, 0xff);
727         put_queue(s, 4); // Type 4
728         put_queue(s, 0x7f);
729         break;
730     case 0xe: // Set leds
731         s->led_mode = 1;
732         break;
733     case 7: // Query layout
734     case 0xf:
735         clear_queue(s);
736         put_queue(s, 0xfe);
737         put_queue(s, 0x21); /*  en-us layout */
738         break;
739     default:
740         break;
741     }
742 }
743 
744 static void sunmouse_event(void *opaque,
745                                int dx, int dy, int dz, int buttons_state)
746 {
747     ESCCChannelState *s = opaque;
748     int ch;
749 
750     trace_escc_sunmouse_event(dx, dy, buttons_state);
751     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
752 
753     if (buttons_state & MOUSE_EVENT_LBUTTON)
754         ch ^= 0x4;
755     if (buttons_state & MOUSE_EVENT_MBUTTON)
756         ch ^= 0x2;
757     if (buttons_state & MOUSE_EVENT_RBUTTON)
758         ch ^= 0x1;
759 
760     put_queue(s, ch);
761 
762     ch = dx;
763 
764     if (ch > 127)
765         ch = 127;
766     else if (ch < -127)
767         ch = -127;
768 
769     put_queue(s, ch & 0xff);
770 
771     ch = -dy;
772 
773     if (ch > 127)
774         ch = 127;
775     else if (ch < -127)
776         ch = -127;
777 
778     put_queue(s, ch & 0xff);
779 
780     // MSC protocol specify two extra motion bytes
781 
782     put_queue(s, 0);
783     put_queue(s, 0);
784 }
785 
786 static void escc_init1(Object *obj)
787 {
788     ESCCState *s = ESCC(obj);
789     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
790     unsigned int i;
791 
792     for (i = 0; i < 2; i++) {
793         sysbus_init_irq(dev, &s->chn[i].irq);
794         s->chn[i].chn = 1 - i;
795     }
796     s->chn[0].otherchn = &s->chn[1];
797     s->chn[1].otherchn = &s->chn[0];
798 
799     sysbus_init_mmio(dev, &s->mmio);
800 }
801 
802 static void escc_realize(DeviceState *dev, Error **errp)
803 {
804     ESCCState *s = ESCC(dev);
805     unsigned int i;
806 
807     s->chn[0].disabled = s->disabled;
808     s->chn[1].disabled = s->disabled;
809 
810     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
811                           ESCC_SIZE << s->it_shift);
812 
813     for (i = 0; i < 2; i++) {
814         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
815             s->chn[i].clock = s->frequency / 2;
816             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
817                                      serial_receive1, serial_event, NULL,
818                                      &s->chn[i], NULL, true);
819         }
820     }
821 
822     if (s->chn[0].type == escc_mouse) {
823         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
824                                      "QEMU Sun Mouse");
825     }
826     if (s->chn[1].type == escc_kbd) {
827         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
828                                                    &sunkbd_handler);
829     }
830 }
831 
832 static Property escc_properties[] = {
833     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
834     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
835     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
836     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
837     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
838     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
839     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
840     DEFINE_PROP_END_OF_LIST(),
841 };
842 
843 static void escc_class_init(ObjectClass *klass, void *data)
844 {
845     DeviceClass *dc = DEVICE_CLASS(klass);
846 
847     dc->reset = escc_reset;
848     dc->realize = escc_realize;
849     dc->vmsd = &vmstate_escc;
850     dc->props = escc_properties;
851     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
852 }
853 
854 static const TypeInfo escc_info = {
855     .name          = TYPE_ESCC,
856     .parent        = TYPE_SYS_BUS_DEVICE,
857     .instance_size = sizeof(ESCCState),
858     .instance_init = escc_init1,
859     .class_init    = escc_class_init,
860 };
861 
862 static void escc_register_types(void)
863 {
864     type_register_static(&escc_info);
865 }
866 
867 type_init(escc_register_types)
868