xref: /openbmc/qemu/hw/char/escc.c (revision a68694cd)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/sysbus.h"
29 #include "migration/vmstate.h"
30 #include "qemu/module.h"
31 #include "hw/char/escc.h"
32 #include "ui/console.h"
33 #include "trace.h"
34 
35 /*
36  * Chipset docs:
37  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
38  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
39  *
40  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
41  * (Slave I/O), also produced as NCR89C105. See
42  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43  *
44  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
45  * mouse and keyboard ports don't implement all functions and they are
46  * only asynchronous. There is no DMA.
47  *
48  * Z85C30 is also used on PowerMacs and m68k Macs.
49  *
50  * There are some small differences between Sparc version (sunzilog)
51  * and PowerMac (pmac):
52  *  Offset between control and data registers
53  *  There is some kind of lockup bug, but we can ignore it
54  *  CTS is inverted
55  *  DMA on pmac using DBDMA chip
56  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
57  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
58  *
59  * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
60  * but registers are grouped by type and not by channel:
61  * channel is selected by bit 0 of the address (instead of bit 1)
62  * and register is selected by bit 1 of the address (instead of bit 0).
63  */
64 
65 /*
66  * Modifications:
67  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
68  *                                  serial mouse queue.
69  *                                  Implemented serial mouse protocol.
70  *
71  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
72  */
73 
74 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
75 
76 #define SERIAL_CTRL 0
77 #define SERIAL_DATA 1
78 
79 #define W_CMD     0
80 #define CMD_PTR_MASK   0x07
81 #define CMD_CMD_MASK   0x38
82 #define CMD_HI         0x08
83 #define CMD_CLR_TXINT  0x28
84 #define CMD_CLR_IUS    0x38
85 #define W_INTR    1
86 #define INTR_INTALL    0x01
87 #define INTR_TXINT     0x02
88 #define INTR_RXMODEMSK 0x18
89 #define INTR_RXINT1ST  0x08
90 #define INTR_RXINTALL  0x10
91 #define W_IVEC    2
92 #define W_RXCTRL  3
93 #define RXCTRL_RXEN    0x01
94 #define W_TXCTRL1 4
95 #define TXCTRL1_PAREN  0x01
96 #define TXCTRL1_PAREV  0x02
97 #define TXCTRL1_1STOP  0x04
98 #define TXCTRL1_1HSTOP 0x08
99 #define TXCTRL1_2STOP  0x0c
100 #define TXCTRL1_STPMSK 0x0c
101 #define TXCTRL1_CLK1X  0x00
102 #define TXCTRL1_CLK16X 0x40
103 #define TXCTRL1_CLK32X 0x80
104 #define TXCTRL1_CLK64X 0xc0
105 #define TXCTRL1_CLKMSK 0xc0
106 #define W_TXCTRL2 5
107 #define TXCTRL2_TXEN   0x08
108 #define TXCTRL2_BITMSK 0x60
109 #define TXCTRL2_5BITS  0x00
110 #define TXCTRL2_7BITS  0x20
111 #define TXCTRL2_6BITS  0x40
112 #define TXCTRL2_8BITS  0x60
113 #define W_SYNC1   6
114 #define W_SYNC2   7
115 #define W_TXBUF   8
116 #define W_MINTR   9
117 #define MINTR_STATUSHI 0x10
118 #define MINTR_RST_MASK 0xc0
119 #define MINTR_RST_B    0x40
120 #define MINTR_RST_A    0x80
121 #define MINTR_RST_ALL  0xc0
122 #define W_MISC1  10
123 #define W_CLOCK  11
124 #define CLOCK_TRXC     0x08
125 #define W_BRGLO  12
126 #define W_BRGHI  13
127 #define W_MISC2  14
128 #define MISC2_PLLDIS   0x30
129 #define W_EXTINT 15
130 #define EXTINT_DCD     0x08
131 #define EXTINT_SYNCINT 0x10
132 #define EXTINT_CTSINT  0x20
133 #define EXTINT_TXUNDRN 0x40
134 #define EXTINT_BRKINT  0x80
135 
136 #define R_STATUS  0
137 #define STATUS_RXAV    0x01
138 #define STATUS_ZERO    0x02
139 #define STATUS_TXEMPTY 0x04
140 #define STATUS_DCD     0x08
141 #define STATUS_SYNC    0x10
142 #define STATUS_CTS     0x20
143 #define STATUS_TXUNDRN 0x40
144 #define STATUS_BRK     0x80
145 #define R_SPEC    1
146 #define SPEC_ALLSENT   0x01
147 #define SPEC_BITS8     0x06
148 #define R_IVEC    2
149 #define IVEC_TXINTB    0x00
150 #define IVEC_LONOINT   0x06
151 #define IVEC_LORXINTA  0x0c
152 #define IVEC_LORXINTB  0x04
153 #define IVEC_LOTXINTA  0x08
154 #define IVEC_HINOINT   0x60
155 #define IVEC_HIRXINTA  0x30
156 #define IVEC_HIRXINTB  0x20
157 #define IVEC_HITXINTA  0x10
158 #define R_INTR    3
159 #define INTR_EXTINTB   0x01
160 #define INTR_TXINTB    0x02
161 #define INTR_RXINTB    0x04
162 #define INTR_EXTINTA   0x08
163 #define INTR_TXINTA    0x10
164 #define INTR_RXINTA    0x20
165 #define R_IPEN    4
166 #define R_TXCTRL1 5
167 #define R_TXCTRL2 6
168 #define R_BC      7
169 #define R_RXBUF   8
170 #define R_RXCTRL  9
171 #define R_MISC   10
172 #define R_MISC1  11
173 #define R_BRGLO  12
174 #define R_BRGHI  13
175 #define R_MISC1I 14
176 #define R_EXTINT 15
177 
178 static void handle_kbd_command(ESCCChannelState *s, int val);
179 static int serial_can_receive(void *opaque);
180 static void serial_receive_byte(ESCCChannelState *s, int ch);
181 
182 static int reg_shift(ESCCState *s)
183 {
184     return s->bit_swap ? s->it_shift + 1 : s->it_shift;
185 }
186 
187 static int chn_shift(ESCCState *s)
188 {
189     return s->bit_swap ? s->it_shift : s->it_shift + 1;
190 }
191 
192 static void clear_queue(void *opaque)
193 {
194     ESCCChannelState *s = opaque;
195     ESCCSERIOQueue *q = &s->queue;
196     q->rptr = q->wptr = q->count = 0;
197 }
198 
199 static void put_queue(void *opaque, int b)
200 {
201     ESCCChannelState *s = opaque;
202     ESCCSERIOQueue *q = &s->queue;
203 
204     trace_escc_put_queue(CHN_C(s), b);
205     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
206         return;
207     }
208     q->data[q->wptr] = b;
209     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
210         q->wptr = 0;
211     }
212     q->count++;
213     serial_receive_byte(s, 0);
214 }
215 
216 static uint32_t get_queue(void *opaque)
217 {
218     ESCCChannelState *s = opaque;
219     ESCCSERIOQueue *q = &s->queue;
220     int val;
221 
222     if (q->count == 0) {
223         return 0;
224     } else {
225         val = q->data[q->rptr];
226         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
227             q->rptr = 0;
228         }
229         q->count--;
230     }
231     trace_escc_get_queue(CHN_C(s), val);
232     if (q->count > 0)
233         serial_receive_byte(s, 0);
234     return val;
235 }
236 
237 static int escc_update_irq_chn(ESCCChannelState *s)
238 {
239     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
240          // tx ints enabled, pending
241          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
242            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
243           s->rxint == 1) || // rx ints enabled, pending
244          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
245           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
246         return 1;
247     }
248     return 0;
249 }
250 
251 static void escc_update_irq(ESCCChannelState *s)
252 {
253     int irq;
254 
255     irq = escc_update_irq_chn(s);
256     irq |= escc_update_irq_chn(s->otherchn);
257 
258     trace_escc_update_irq(irq);
259     qemu_set_irq(s->irq, irq);
260 }
261 
262 static void escc_reset_chn(ESCCChannelState *s)
263 {
264     int i;
265 
266     s->reg = 0;
267     for (i = 0; i < ESCC_SERIAL_REGS; i++) {
268         s->rregs[i] = 0;
269         s->wregs[i] = 0;
270     }
271     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
272     s->wregs[W_MINTR] = MINTR_RST_ALL;
273     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
274     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
275     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
276         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
277     if (s->disabled)
278         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
279             STATUS_CTS | STATUS_TXUNDRN;
280     else
281         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
282     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
283 
284     s->rx = s->tx = 0;
285     s->rxint = s->txint = 0;
286     s->rxint_under_svc = s->txint_under_svc = 0;
287     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
288     clear_queue(s);
289 }
290 
291 static void escc_reset(DeviceState *d)
292 {
293     ESCCState *s = ESCC(d);
294 
295     escc_reset_chn(&s->chn[0]);
296     escc_reset_chn(&s->chn[1]);
297 }
298 
299 static inline void set_rxint(ESCCChannelState *s)
300 {
301     s->rxint = 1;
302     /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
303        than chn_a rx/tx/special_condition service*/
304     s->rxint_under_svc = 1;
305     if (s->chn == escc_chn_a) {
306         s->rregs[R_INTR] |= INTR_RXINTA;
307         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
308             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
309         else
310             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
311     } else {
312         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
313         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
314             s->rregs[R_IVEC] = IVEC_HIRXINTB;
315         else
316             s->rregs[R_IVEC] = IVEC_LORXINTB;
317     }
318     escc_update_irq(s);
319 }
320 
321 static inline void set_txint(ESCCChannelState *s)
322 {
323     s->txint = 1;
324     if (!s->rxint_under_svc) {
325         s->txint_under_svc = 1;
326         if (s->chn == escc_chn_a) {
327             if (s->wregs[W_INTR] & INTR_TXINT) {
328                 s->rregs[R_INTR] |= INTR_TXINTA;
329             }
330             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
331                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
332             else
333                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
334         } else {
335             s->rregs[R_IVEC] = IVEC_TXINTB;
336             if (s->wregs[W_INTR] & INTR_TXINT) {
337                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
338             }
339         }
340     escc_update_irq(s);
341     }
342 }
343 
344 static inline void clr_rxint(ESCCChannelState *s)
345 {
346     s->rxint = 0;
347     s->rxint_under_svc = 0;
348     if (s->chn == escc_chn_a) {
349         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
350             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
351         else
352             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
353         s->rregs[R_INTR] &= ~INTR_RXINTA;
354     } else {
355         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
356             s->rregs[R_IVEC] = IVEC_HINOINT;
357         else
358             s->rregs[R_IVEC] = IVEC_LONOINT;
359         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
360     }
361     if (s->txint)
362         set_txint(s);
363     escc_update_irq(s);
364 }
365 
366 static inline void clr_txint(ESCCChannelState *s)
367 {
368     s->txint = 0;
369     s->txint_under_svc = 0;
370     if (s->chn == escc_chn_a) {
371         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
372             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
373         else
374             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
375         s->rregs[R_INTR] &= ~INTR_TXINTA;
376     } else {
377         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
378         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
379             s->rregs[R_IVEC] = IVEC_HINOINT;
380         else
381             s->rregs[R_IVEC] = IVEC_LONOINT;
382         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
383     }
384     if (s->rxint)
385         set_rxint(s);
386     escc_update_irq(s);
387 }
388 
389 static void escc_update_parameters(ESCCChannelState *s)
390 {
391     int speed, parity, data_bits, stop_bits;
392     QEMUSerialSetParams ssp;
393 
394     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
395         return;
396 
397     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
398         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
399             parity = 'E';
400         else
401             parity = 'O';
402     } else {
403         parity = 'N';
404     }
405     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
406         stop_bits = 2;
407     else
408         stop_bits = 1;
409     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
410     case TXCTRL2_5BITS:
411         data_bits = 5;
412         break;
413     case TXCTRL2_7BITS:
414         data_bits = 7;
415         break;
416     case TXCTRL2_6BITS:
417         data_bits = 6;
418         break;
419     default:
420     case TXCTRL2_8BITS:
421         data_bits = 8;
422         break;
423     }
424     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
425     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
426     case TXCTRL1_CLK1X:
427         break;
428     case TXCTRL1_CLK16X:
429         speed /= 16;
430         break;
431     case TXCTRL1_CLK32X:
432         speed /= 32;
433         break;
434     default:
435     case TXCTRL1_CLK64X:
436         speed /= 64;
437         break;
438     }
439     ssp.speed = speed;
440     ssp.parity = parity;
441     ssp.data_bits = data_bits;
442     ssp.stop_bits = stop_bits;
443     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
444     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
445 }
446 
447 static void escc_mem_write(void *opaque, hwaddr addr,
448                            uint64_t val, unsigned size)
449 {
450     ESCCState *serial = opaque;
451     ESCCChannelState *s;
452     uint32_t saddr;
453     int newreg, channel;
454 
455     val &= 0xff;
456     saddr = (addr >> reg_shift(serial)) & 1;
457     channel = (addr >> chn_shift(serial)) & 1;
458     s = &serial->chn[channel];
459     switch (saddr) {
460     case SERIAL_CTRL:
461         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
462         newreg = 0;
463         switch (s->reg) {
464         case W_CMD:
465             newreg = val & CMD_PTR_MASK;
466             val &= CMD_CMD_MASK;
467             switch (val) {
468             case CMD_HI:
469                 newreg |= CMD_HI;
470                 break;
471             case CMD_CLR_TXINT:
472                 clr_txint(s);
473                 break;
474             case CMD_CLR_IUS:
475                 if (s->rxint_under_svc) {
476                     s->rxint_under_svc = 0;
477                     if (s->txint) {
478                         set_txint(s);
479                     }
480                 } else if (s->txint_under_svc) {
481                     s->txint_under_svc = 0;
482                 }
483                 escc_update_irq(s);
484                 break;
485             default:
486                 break;
487             }
488             break;
489         case W_INTR ... W_RXCTRL:
490         case W_SYNC1 ... W_TXBUF:
491         case W_MISC1 ... W_CLOCK:
492         case W_MISC2 ... W_EXTINT:
493             s->wregs[s->reg] = val;
494             break;
495         case W_TXCTRL1:
496         case W_TXCTRL2:
497             s->wregs[s->reg] = val;
498             escc_update_parameters(s);
499             break;
500         case W_BRGLO:
501         case W_BRGHI:
502             s->wregs[s->reg] = val;
503             s->rregs[s->reg] = val;
504             escc_update_parameters(s);
505             break;
506         case W_MINTR:
507             switch (val & MINTR_RST_MASK) {
508             case 0:
509             default:
510                 break;
511             case MINTR_RST_B:
512                 escc_reset_chn(&serial->chn[0]);
513                 return;
514             case MINTR_RST_A:
515                 escc_reset_chn(&serial->chn[1]);
516                 return;
517             case MINTR_RST_ALL:
518                 escc_reset(DEVICE(serial));
519                 return;
520             }
521             break;
522         default:
523             break;
524         }
525         if (s->reg == 0)
526             s->reg = newreg;
527         else
528             s->reg = 0;
529         break;
530     case SERIAL_DATA:
531         trace_escc_mem_writeb_data(CHN_C(s), val);
532         /*
533          * Lower the irq when data is written to the Tx buffer and no other
534          * interrupts are currently pending. The irq will be raised again once
535          * the Tx buffer becomes empty below.
536          */
537         s->txint = 0;
538         escc_update_irq(s);
539         s->tx = val;
540         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
541             if (qemu_chr_fe_backend_connected(&s->chr)) {
542                 /* XXX this blocks entire thread. Rewrite to use
543                  * qemu_chr_fe_write and background I/O callbacks */
544                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
545             } else if (s->type == escc_kbd && !s->disabled) {
546                 handle_kbd_command(s, val);
547             }
548         }
549         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
550         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
551         set_txint(s);
552         break;
553     default:
554         break;
555     }
556 }
557 
558 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
559                               unsigned size)
560 {
561     ESCCState *serial = opaque;
562     ESCCChannelState *s;
563     uint32_t saddr;
564     uint32_t ret;
565     int channel;
566 
567     saddr = (addr >> reg_shift(serial)) & 1;
568     channel = (addr >> chn_shift(serial)) & 1;
569     s = &serial->chn[channel];
570     switch (saddr) {
571     case SERIAL_CTRL:
572         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
573         ret = s->rregs[s->reg];
574         s->reg = 0;
575         return ret;
576     case SERIAL_DATA:
577         s->rregs[R_STATUS] &= ~STATUS_RXAV;
578         clr_rxint(s);
579         if (s->type == escc_kbd || s->type == escc_mouse) {
580             ret = get_queue(s);
581         } else {
582             ret = s->rx;
583         }
584         trace_escc_mem_readb_data(CHN_C(s), ret);
585         qemu_chr_fe_accept_input(&s->chr);
586         return ret;
587     default:
588         break;
589     }
590     return 0;
591 }
592 
593 static const MemoryRegionOps escc_mem_ops = {
594     .read = escc_mem_read,
595     .write = escc_mem_write,
596     .endianness = DEVICE_NATIVE_ENDIAN,
597     .valid = {
598         .min_access_size = 1,
599         .max_access_size = 1,
600     },
601 };
602 
603 static int serial_can_receive(void *opaque)
604 {
605     ESCCChannelState *s = opaque;
606     int ret;
607 
608     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
609         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
610         // char already available
611         ret = 0;
612     else
613         ret = 1;
614     return ret;
615 }
616 
617 static void serial_receive_byte(ESCCChannelState *s, int ch)
618 {
619     trace_escc_serial_receive_byte(CHN_C(s), ch);
620     s->rregs[R_STATUS] |= STATUS_RXAV;
621     s->rx = ch;
622     set_rxint(s);
623 }
624 
625 static void serial_receive_break(ESCCChannelState *s)
626 {
627     s->rregs[R_STATUS] |= STATUS_BRK;
628     escc_update_irq(s);
629 }
630 
631 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
632 {
633     ESCCChannelState *s = opaque;
634     serial_receive_byte(s, buf[0]);
635 }
636 
637 static void serial_event(void *opaque, QEMUChrEvent event)
638 {
639     ESCCChannelState *s = opaque;
640     if (event == CHR_EVENT_BREAK)
641         serial_receive_break(s);
642 }
643 
644 static const VMStateDescription vmstate_escc_chn = {
645     .name ="escc_chn",
646     .version_id = 2,
647     .minimum_version_id = 1,
648     .fields = (VMStateField[]) {
649         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
650         VMSTATE_UINT32(reg, ESCCChannelState),
651         VMSTATE_UINT32(rxint, ESCCChannelState),
652         VMSTATE_UINT32(txint, ESCCChannelState),
653         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
654         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
655         VMSTATE_UINT8(rx, ESCCChannelState),
656         VMSTATE_UINT8(tx, ESCCChannelState),
657         VMSTATE_BUFFER(wregs, ESCCChannelState),
658         VMSTATE_BUFFER(rregs, ESCCChannelState),
659         VMSTATE_END_OF_LIST()
660     }
661 };
662 
663 static const VMStateDescription vmstate_escc = {
664     .name ="escc",
665     .version_id = 2,
666     .minimum_version_id = 1,
667     .fields = (VMStateField[]) {
668         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
669                              ESCCChannelState),
670         VMSTATE_END_OF_LIST()
671     }
672 };
673 
674 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
675                                 InputEvent *evt)
676 {
677     ESCCChannelState *s = (ESCCChannelState *)dev;
678     int qcode, keycode;
679     InputKeyEvent *key;
680 
681     assert(evt->type == INPUT_EVENT_KIND_KEY);
682     key = evt->u.key.data;
683     qcode = qemu_input_key_value_to_qcode(key->key);
684     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
685                                key->down);
686 
687     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
688         if (key->down) {
689             s->caps_lock_mode ^= 1;
690             if (s->caps_lock_mode == 2) {
691                 return; /* Drop second press */
692             }
693         } else {
694             s->caps_lock_mode ^= 2;
695             if (s->caps_lock_mode == 3) {
696                 return; /* Drop first release */
697             }
698         }
699     }
700 
701     if (qcode == Q_KEY_CODE_NUM_LOCK) {
702         if (key->down) {
703             s->num_lock_mode ^= 1;
704             if (s->num_lock_mode == 2) {
705                 return; /* Drop second press */
706             }
707         } else {
708             s->num_lock_mode ^= 2;
709             if (s->num_lock_mode == 3) {
710                 return; /* Drop first release */
711             }
712         }
713     }
714 
715     if (qcode > qemu_input_map_qcode_to_sun_len) {
716         return;
717     }
718 
719     keycode = qemu_input_map_qcode_to_sun[qcode];
720     if (!key->down) {
721         keycode |= 0x80;
722     }
723     trace_escc_sunkbd_event_out(keycode);
724     put_queue(s, keycode);
725 }
726 
727 static QemuInputHandler sunkbd_handler = {
728     .name  = "sun keyboard",
729     .mask  = INPUT_EVENT_MASK_KEY,
730     .event = sunkbd_handle_event,
731 };
732 
733 static void handle_kbd_command(ESCCChannelState *s, int val)
734 {
735     trace_escc_kbd_command(val);
736     if (s->led_mode) { // Ignore led byte
737         s->led_mode = 0;
738         return;
739     }
740     switch (val) {
741     case 1: // Reset, return type code
742         clear_queue(s);
743         put_queue(s, 0xff);
744         put_queue(s, 4); // Type 4
745         put_queue(s, 0x7f);
746         break;
747     case 0xe: // Set leds
748         s->led_mode = 1;
749         break;
750     case 7: // Query layout
751     case 0xf:
752         clear_queue(s);
753         put_queue(s, 0xfe);
754         put_queue(s, 0x21); /*  en-us layout */
755         break;
756     default:
757         break;
758     }
759 }
760 
761 static void sunmouse_event(void *opaque,
762                                int dx, int dy, int dz, int buttons_state)
763 {
764     ESCCChannelState *s = opaque;
765     int ch;
766 
767     trace_escc_sunmouse_event(dx, dy, buttons_state);
768     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
769 
770     if (buttons_state & MOUSE_EVENT_LBUTTON)
771         ch ^= 0x4;
772     if (buttons_state & MOUSE_EVENT_MBUTTON)
773         ch ^= 0x2;
774     if (buttons_state & MOUSE_EVENT_RBUTTON)
775         ch ^= 0x1;
776 
777     put_queue(s, ch);
778 
779     ch = dx;
780 
781     if (ch > 127)
782         ch = 127;
783     else if (ch < -127)
784         ch = -127;
785 
786     put_queue(s, ch & 0xff);
787 
788     ch = -dy;
789 
790     if (ch > 127)
791         ch = 127;
792     else if (ch < -127)
793         ch = -127;
794 
795     put_queue(s, ch & 0xff);
796 
797     // MSC protocol specify two extra motion bytes
798 
799     put_queue(s, 0);
800     put_queue(s, 0);
801 }
802 
803 static void escc_init1(Object *obj)
804 {
805     ESCCState *s = ESCC(obj);
806     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
807     unsigned int i;
808 
809     for (i = 0; i < 2; i++) {
810         sysbus_init_irq(dev, &s->chn[i].irq);
811         s->chn[i].chn = 1 - i;
812     }
813     s->chn[0].otherchn = &s->chn[1];
814     s->chn[1].otherchn = &s->chn[0];
815 
816     sysbus_init_mmio(dev, &s->mmio);
817 }
818 
819 static void escc_realize(DeviceState *dev, Error **errp)
820 {
821     ESCCState *s = ESCC(dev);
822     unsigned int i;
823 
824     s->chn[0].disabled = s->disabled;
825     s->chn[1].disabled = s->disabled;
826 
827     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
828                           ESCC_SIZE << s->it_shift);
829 
830     for (i = 0; i < 2; i++) {
831         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
832             s->chn[i].clock = s->frequency / 2;
833             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
834                                      serial_receive1, serial_event, NULL,
835                                      &s->chn[i], NULL, true);
836         }
837     }
838 
839     if (s->chn[0].type == escc_mouse) {
840         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
841                                      "QEMU Sun Mouse");
842     }
843     if (s->chn[1].type == escc_kbd) {
844         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
845                                                    &sunkbd_handler);
846     }
847 }
848 
849 static Property escc_properties[] = {
850     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
851     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
852     DEFINE_PROP_BOOL("bit_swap",    ESCCState, bit_swap,    false),
853     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
854     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
855     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
856     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
857     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
858     DEFINE_PROP_END_OF_LIST(),
859 };
860 
861 static void escc_class_init(ObjectClass *klass, void *data)
862 {
863     DeviceClass *dc = DEVICE_CLASS(klass);
864 
865     dc->reset = escc_reset;
866     dc->realize = escc_realize;
867     dc->vmsd = &vmstate_escc;
868     device_class_set_props(dc, escc_properties);
869     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
870 }
871 
872 static const TypeInfo escc_info = {
873     .name          = TYPE_ESCC,
874     .parent        = TYPE_SYS_BUS_DEVICE,
875     .instance_size = sizeof(ESCCState),
876     .instance_init = escc_init1,
877     .class_init    = escc_class_init,
878 };
879 
880 static void escc_register_types(void)
881 {
882     type_register_static(&escc_info);
883 }
884 
885 type_init(escc_register_types)
886