xref: /openbmc/qemu/hw/char/escc.c (revision 9d81b2d2)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/escc.h"
29 #include "chardev/char-fe.h"
30 #include "chardev/char-serial.h"
31 #include "ui/console.h"
32 #include "ui/input.h"
33 #include "trace.h"
34 
35 /*
36  * Chipset docs:
37  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
38  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
39  *
40  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
41  * (Slave I/O), also produced as NCR89C105. See
42  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43  *
44  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
45  * mouse and keyboard ports don't implement all functions and they are
46  * only asynchronous. There is no DMA.
47  *
48  * Z85C30 is also used on PowerMacs. There are some small differences
49  * between Sparc version (sunzilog) and PowerMac (pmac):
50  *  Offset between control and data registers
51  *  There is some kind of lockup bug, but we can ignore it
52  *  CTS is inverted
53  *  DMA on pmac using DBDMA chip
54  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
55  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
56  */
57 
58 /*
59  * Modifications:
60  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
61  *                                  serial mouse queue.
62  *                                  Implemented serial mouse protocol.
63  *
64  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
65  */
66 
67 typedef enum {
68     chn_a, chn_b,
69 } ChnID;
70 
71 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
72 
73 typedef enum {
74     ser, kbd, mouse,
75 } ChnType;
76 
77 #define SERIO_QUEUE_SIZE 256
78 
79 typedef struct {
80     uint8_t data[SERIO_QUEUE_SIZE];
81     int rptr, wptr, count;
82 } SERIOQueue;
83 
84 #define SERIAL_REGS 16
85 typedef struct ChannelState {
86     qemu_irq irq;
87     uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
88     struct ChannelState *otherchn;
89     uint32_t reg;
90     uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
91     SERIOQueue queue;
92     CharBackend chr;
93     int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
94     int disabled;
95     int clock;
96     uint32_t vmstate_dummy;
97     ChnID chn; // this channel, A (base+4) or B (base+0)
98     ChnType type;
99     uint8_t rx, tx;
100     QemuInputHandlerState *hs;
101 } ChannelState;
102 
103 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
104 
105 typedef struct ESCCState {
106     SysBusDevice parent_obj;
107 
108     struct ChannelState chn[2];
109     uint32_t it_shift;
110     MemoryRegion mmio;
111     uint32_t disabled;
112     uint32_t frequency;
113 } ESCCState;
114 
115 #define SERIAL_CTRL 0
116 #define SERIAL_DATA 1
117 
118 #define W_CMD     0
119 #define CMD_PTR_MASK   0x07
120 #define CMD_CMD_MASK   0x38
121 #define CMD_HI         0x08
122 #define CMD_CLR_TXINT  0x28
123 #define CMD_CLR_IUS    0x38
124 #define W_INTR    1
125 #define INTR_INTALL    0x01
126 #define INTR_TXINT     0x02
127 #define INTR_RXMODEMSK 0x18
128 #define INTR_RXINT1ST  0x08
129 #define INTR_RXINTALL  0x10
130 #define W_IVEC    2
131 #define W_RXCTRL  3
132 #define RXCTRL_RXEN    0x01
133 #define W_TXCTRL1 4
134 #define TXCTRL1_PAREN  0x01
135 #define TXCTRL1_PAREV  0x02
136 #define TXCTRL1_1STOP  0x04
137 #define TXCTRL1_1HSTOP 0x08
138 #define TXCTRL1_2STOP  0x0c
139 #define TXCTRL1_STPMSK 0x0c
140 #define TXCTRL1_CLK1X  0x00
141 #define TXCTRL1_CLK16X 0x40
142 #define TXCTRL1_CLK32X 0x80
143 #define TXCTRL1_CLK64X 0xc0
144 #define TXCTRL1_CLKMSK 0xc0
145 #define W_TXCTRL2 5
146 #define TXCTRL2_TXEN   0x08
147 #define TXCTRL2_BITMSK 0x60
148 #define TXCTRL2_5BITS  0x00
149 #define TXCTRL2_7BITS  0x20
150 #define TXCTRL2_6BITS  0x40
151 #define TXCTRL2_8BITS  0x60
152 #define W_SYNC1   6
153 #define W_SYNC2   7
154 #define W_TXBUF   8
155 #define W_MINTR   9
156 #define MINTR_STATUSHI 0x10
157 #define MINTR_RST_MASK 0xc0
158 #define MINTR_RST_B    0x40
159 #define MINTR_RST_A    0x80
160 #define MINTR_RST_ALL  0xc0
161 #define W_MISC1  10
162 #define W_CLOCK  11
163 #define CLOCK_TRXC     0x08
164 #define W_BRGLO  12
165 #define W_BRGHI  13
166 #define W_MISC2  14
167 #define MISC2_PLLDIS   0x30
168 #define W_EXTINT 15
169 #define EXTINT_DCD     0x08
170 #define EXTINT_SYNCINT 0x10
171 #define EXTINT_CTSINT  0x20
172 #define EXTINT_TXUNDRN 0x40
173 #define EXTINT_BRKINT  0x80
174 
175 #define R_STATUS  0
176 #define STATUS_RXAV    0x01
177 #define STATUS_ZERO    0x02
178 #define STATUS_TXEMPTY 0x04
179 #define STATUS_DCD     0x08
180 #define STATUS_SYNC    0x10
181 #define STATUS_CTS     0x20
182 #define STATUS_TXUNDRN 0x40
183 #define STATUS_BRK     0x80
184 #define R_SPEC    1
185 #define SPEC_ALLSENT   0x01
186 #define SPEC_BITS8     0x06
187 #define R_IVEC    2
188 #define IVEC_TXINTB    0x00
189 #define IVEC_LONOINT   0x06
190 #define IVEC_LORXINTA  0x0c
191 #define IVEC_LORXINTB  0x04
192 #define IVEC_LOTXINTA  0x08
193 #define IVEC_HINOINT   0x60
194 #define IVEC_HIRXINTA  0x30
195 #define IVEC_HIRXINTB  0x20
196 #define IVEC_HITXINTA  0x10
197 #define R_INTR    3
198 #define INTR_EXTINTB   0x01
199 #define INTR_TXINTB    0x02
200 #define INTR_RXINTB    0x04
201 #define INTR_EXTINTA   0x08
202 #define INTR_TXINTA    0x10
203 #define INTR_RXINTA    0x20
204 #define R_IPEN    4
205 #define R_TXCTRL1 5
206 #define R_TXCTRL2 6
207 #define R_BC      7
208 #define R_RXBUF   8
209 #define R_RXCTRL  9
210 #define R_MISC   10
211 #define R_MISC1  11
212 #define R_BRGLO  12
213 #define R_BRGHI  13
214 #define R_MISC1I 14
215 #define R_EXTINT 15
216 
217 static void handle_kbd_command(ChannelState *s, int val);
218 static int serial_can_receive(void *opaque);
219 static void serial_receive_byte(ChannelState *s, int ch);
220 
221 static void clear_queue(void *opaque)
222 {
223     ChannelState *s = opaque;
224     SERIOQueue *q = &s->queue;
225     q->rptr = q->wptr = q->count = 0;
226 }
227 
228 static void put_queue(void *opaque, int b)
229 {
230     ChannelState *s = opaque;
231     SERIOQueue *q = &s->queue;
232 
233     trace_escc_put_queue(CHN_C(s), b);
234     if (q->count >= SERIO_QUEUE_SIZE)
235         return;
236     q->data[q->wptr] = b;
237     if (++q->wptr == SERIO_QUEUE_SIZE)
238         q->wptr = 0;
239     q->count++;
240     serial_receive_byte(s, 0);
241 }
242 
243 static uint32_t get_queue(void *opaque)
244 {
245     ChannelState *s = opaque;
246     SERIOQueue *q = &s->queue;
247     int val;
248 
249     if (q->count == 0) {
250         return 0;
251     } else {
252         val = q->data[q->rptr];
253         if (++q->rptr == SERIO_QUEUE_SIZE)
254             q->rptr = 0;
255         q->count--;
256     }
257     trace_escc_get_queue(CHN_C(s), val);
258     if (q->count > 0)
259         serial_receive_byte(s, 0);
260     return val;
261 }
262 
263 static int escc_update_irq_chn(ChannelState *s)
264 {
265     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
266          // tx ints enabled, pending
267          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
268            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
269           s->rxint == 1) || // rx ints enabled, pending
270          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
271           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
272         return 1;
273     }
274     return 0;
275 }
276 
277 static void escc_update_irq(ChannelState *s)
278 {
279     int irq;
280 
281     irq = escc_update_irq_chn(s);
282     irq |= escc_update_irq_chn(s->otherchn);
283 
284     trace_escc_update_irq(irq);
285     qemu_set_irq(s->irq, irq);
286 }
287 
288 static void escc_reset_chn(ChannelState *s)
289 {
290     int i;
291 
292     s->reg = 0;
293     for (i = 0; i < SERIAL_REGS; i++) {
294         s->rregs[i] = 0;
295         s->wregs[i] = 0;
296     }
297     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
298     s->wregs[W_MINTR] = MINTR_RST_ALL;
299     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
300     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
301     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
302         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
303     if (s->disabled)
304         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
305             STATUS_CTS | STATUS_TXUNDRN;
306     else
307         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
308     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
309 
310     s->rx = s->tx = 0;
311     s->rxint = s->txint = 0;
312     s->rxint_under_svc = s->txint_under_svc = 0;
313     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
314     clear_queue(s);
315 }
316 
317 static void escc_reset(DeviceState *d)
318 {
319     ESCCState *s = ESCC(d);
320 
321     escc_reset_chn(&s->chn[0]);
322     escc_reset_chn(&s->chn[1]);
323 }
324 
325 static inline void set_rxint(ChannelState *s)
326 {
327     s->rxint = 1;
328     /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
329        than chn_a rx/tx/special_condition service*/
330     s->rxint_under_svc = 1;
331     if (s->chn == chn_a) {
332         s->rregs[R_INTR] |= INTR_RXINTA;
333         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
334             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
335         else
336             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
337     } else {
338         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
339         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
340             s->rregs[R_IVEC] = IVEC_HIRXINTB;
341         else
342             s->rregs[R_IVEC] = IVEC_LORXINTB;
343     }
344     escc_update_irq(s);
345 }
346 
347 static inline void set_txint(ChannelState *s)
348 {
349     s->txint = 1;
350     if (!s->rxint_under_svc) {
351         s->txint_under_svc = 1;
352         if (s->chn == chn_a) {
353             if (s->wregs[W_INTR] & INTR_TXINT) {
354                 s->rregs[R_INTR] |= INTR_TXINTA;
355             }
356             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
357                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
358             else
359                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
360         } else {
361             s->rregs[R_IVEC] = IVEC_TXINTB;
362             if (s->wregs[W_INTR] & INTR_TXINT) {
363                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
364             }
365         }
366     escc_update_irq(s);
367     }
368 }
369 
370 static inline void clr_rxint(ChannelState *s)
371 {
372     s->rxint = 0;
373     s->rxint_under_svc = 0;
374     if (s->chn == chn_a) {
375         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
376             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
377         else
378             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
379         s->rregs[R_INTR] &= ~INTR_RXINTA;
380     } else {
381         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
382             s->rregs[R_IVEC] = IVEC_HINOINT;
383         else
384             s->rregs[R_IVEC] = IVEC_LONOINT;
385         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
386     }
387     if (s->txint)
388         set_txint(s);
389     escc_update_irq(s);
390 }
391 
392 static inline void clr_txint(ChannelState *s)
393 {
394     s->txint = 0;
395     s->txint_under_svc = 0;
396     if (s->chn == chn_a) {
397         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
398             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
399         else
400             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
401         s->rregs[R_INTR] &= ~INTR_TXINTA;
402     } else {
403         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
404         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
405             s->rregs[R_IVEC] = IVEC_HINOINT;
406         else
407             s->rregs[R_IVEC] = IVEC_LONOINT;
408         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
409     }
410     if (s->rxint)
411         set_rxint(s);
412     escc_update_irq(s);
413 }
414 
415 static void escc_update_parameters(ChannelState *s)
416 {
417     int speed, parity, data_bits, stop_bits;
418     QEMUSerialSetParams ssp;
419 
420     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != ser)
421         return;
422 
423     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
424         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
425             parity = 'E';
426         else
427             parity = 'O';
428     } else {
429         parity = 'N';
430     }
431     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
432         stop_bits = 2;
433     else
434         stop_bits = 1;
435     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
436     case TXCTRL2_5BITS:
437         data_bits = 5;
438         break;
439     case TXCTRL2_7BITS:
440         data_bits = 7;
441         break;
442     case TXCTRL2_6BITS:
443         data_bits = 6;
444         break;
445     default:
446     case TXCTRL2_8BITS:
447         data_bits = 8;
448         break;
449     }
450     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
451     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
452     case TXCTRL1_CLK1X:
453         break;
454     case TXCTRL1_CLK16X:
455         speed /= 16;
456         break;
457     case TXCTRL1_CLK32X:
458         speed /= 32;
459         break;
460     default:
461     case TXCTRL1_CLK64X:
462         speed /= 64;
463         break;
464     }
465     ssp.speed = speed;
466     ssp.parity = parity;
467     ssp.data_bits = data_bits;
468     ssp.stop_bits = stop_bits;
469     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
470     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
471 }
472 
473 static void escc_mem_write(void *opaque, hwaddr addr,
474                            uint64_t val, unsigned size)
475 {
476     ESCCState *serial = opaque;
477     ChannelState *s;
478     uint32_t saddr;
479     int newreg, channel;
480 
481     val &= 0xff;
482     saddr = (addr >> serial->it_shift) & 1;
483     channel = (addr >> (serial->it_shift + 1)) & 1;
484     s = &serial->chn[channel];
485     switch (saddr) {
486     case SERIAL_CTRL:
487         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
488         newreg = 0;
489         switch (s->reg) {
490         case W_CMD:
491             newreg = val & CMD_PTR_MASK;
492             val &= CMD_CMD_MASK;
493             switch (val) {
494             case CMD_HI:
495                 newreg |= CMD_HI;
496                 break;
497             case CMD_CLR_TXINT:
498                 clr_txint(s);
499                 break;
500             case CMD_CLR_IUS:
501                 if (s->rxint_under_svc) {
502                     s->rxint_under_svc = 0;
503                     if (s->txint) {
504                         set_txint(s);
505                     }
506                 } else if (s->txint_under_svc) {
507                     s->txint_under_svc = 0;
508                 }
509                 escc_update_irq(s);
510                 break;
511             default:
512                 break;
513             }
514             break;
515         case W_INTR ... W_RXCTRL:
516         case W_SYNC1 ... W_TXBUF:
517         case W_MISC1 ... W_CLOCK:
518         case W_MISC2 ... W_EXTINT:
519             s->wregs[s->reg] = val;
520             break;
521         case W_TXCTRL1:
522         case W_TXCTRL2:
523             s->wregs[s->reg] = val;
524             escc_update_parameters(s);
525             break;
526         case W_BRGLO:
527         case W_BRGHI:
528             s->wregs[s->reg] = val;
529             s->rregs[s->reg] = val;
530             escc_update_parameters(s);
531             break;
532         case W_MINTR:
533             switch (val & MINTR_RST_MASK) {
534             case 0:
535             default:
536                 break;
537             case MINTR_RST_B:
538                 escc_reset_chn(&serial->chn[0]);
539                 return;
540             case MINTR_RST_A:
541                 escc_reset_chn(&serial->chn[1]);
542                 return;
543             case MINTR_RST_ALL:
544                 escc_reset(DEVICE(serial));
545                 return;
546             }
547             break;
548         default:
549             break;
550         }
551         if (s->reg == 0)
552             s->reg = newreg;
553         else
554             s->reg = 0;
555         break;
556     case SERIAL_DATA:
557         trace_escc_mem_writeb_data(CHN_C(s), val);
558         s->tx = val;
559         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
560             if (qemu_chr_fe_backend_connected(&s->chr)) {
561                 /* XXX this blocks entire thread. Rewrite to use
562                  * qemu_chr_fe_write and background I/O callbacks */
563                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
564             } else if (s->type == kbd && !s->disabled) {
565                 handle_kbd_command(s, val);
566             }
567         }
568         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
569         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
570         set_txint(s);
571         break;
572     default:
573         break;
574     }
575 }
576 
577 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
578                               unsigned size)
579 {
580     ESCCState *serial = opaque;
581     ChannelState *s;
582     uint32_t saddr;
583     uint32_t ret;
584     int channel;
585 
586     saddr = (addr >> serial->it_shift) & 1;
587     channel = (addr >> (serial->it_shift + 1)) & 1;
588     s = &serial->chn[channel];
589     switch (saddr) {
590     case SERIAL_CTRL:
591         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
592         ret = s->rregs[s->reg];
593         s->reg = 0;
594         return ret;
595     case SERIAL_DATA:
596         s->rregs[R_STATUS] &= ~STATUS_RXAV;
597         clr_rxint(s);
598         if (s->type == kbd || s->type == mouse)
599             ret = get_queue(s);
600         else
601             ret = s->rx;
602         trace_escc_mem_readb_data(CHN_C(s), ret);
603         qemu_chr_fe_accept_input(&s->chr);
604         return ret;
605     default:
606         break;
607     }
608     return 0;
609 }
610 
611 static const MemoryRegionOps escc_mem_ops = {
612     .read = escc_mem_read,
613     .write = escc_mem_write,
614     .endianness = DEVICE_NATIVE_ENDIAN,
615     .valid = {
616         .min_access_size = 1,
617         .max_access_size = 1,
618     },
619 };
620 
621 static int serial_can_receive(void *opaque)
622 {
623     ChannelState *s = opaque;
624     int ret;
625 
626     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
627         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
628         // char already available
629         ret = 0;
630     else
631         ret = 1;
632     return ret;
633 }
634 
635 static void serial_receive_byte(ChannelState *s, int ch)
636 {
637     trace_escc_serial_receive_byte(CHN_C(s), ch);
638     s->rregs[R_STATUS] |= STATUS_RXAV;
639     s->rx = ch;
640     set_rxint(s);
641 }
642 
643 static void serial_receive_break(ChannelState *s)
644 {
645     s->rregs[R_STATUS] |= STATUS_BRK;
646     escc_update_irq(s);
647 }
648 
649 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
650 {
651     ChannelState *s = opaque;
652     serial_receive_byte(s, buf[0]);
653 }
654 
655 static void serial_event(void *opaque, int event)
656 {
657     ChannelState *s = opaque;
658     if (event == CHR_EVENT_BREAK)
659         serial_receive_break(s);
660 }
661 
662 static const VMStateDescription vmstate_escc_chn = {
663     .name ="escc_chn",
664     .version_id = 2,
665     .minimum_version_id = 1,
666     .fields = (VMStateField[]) {
667         VMSTATE_UINT32(vmstate_dummy, ChannelState),
668         VMSTATE_UINT32(reg, ChannelState),
669         VMSTATE_UINT32(rxint, ChannelState),
670         VMSTATE_UINT32(txint, ChannelState),
671         VMSTATE_UINT32(rxint_under_svc, ChannelState),
672         VMSTATE_UINT32(txint_under_svc, ChannelState),
673         VMSTATE_UINT8(rx, ChannelState),
674         VMSTATE_UINT8(tx, ChannelState),
675         VMSTATE_BUFFER(wregs, ChannelState),
676         VMSTATE_BUFFER(rregs, ChannelState),
677         VMSTATE_END_OF_LIST()
678     }
679 };
680 
681 static const VMStateDescription vmstate_escc = {
682     .name ="escc",
683     .version_id = 2,
684     .minimum_version_id = 1,
685     .fields = (VMStateField[]) {
686         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
687                              ChannelState),
688         VMSTATE_END_OF_LIST()
689     }
690 };
691 
692 MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
693               Chardev *chrA, Chardev *chrB,
694               int clock, int it_shift)
695 {
696     DeviceState *dev;
697     SysBusDevice *s;
698     ESCCState *d;
699 
700     dev = qdev_create(NULL, TYPE_ESCC);
701     qdev_prop_set_uint32(dev, "disabled", 0);
702     qdev_prop_set_uint32(dev, "frequency", clock);
703     qdev_prop_set_uint32(dev, "it_shift", it_shift);
704     qdev_prop_set_chr(dev, "chrB", chrB);
705     qdev_prop_set_chr(dev, "chrA", chrA);
706     qdev_prop_set_uint32(dev, "chnBtype", ser);
707     qdev_prop_set_uint32(dev, "chnAtype", ser);
708     qdev_init_nofail(dev);
709     s = SYS_BUS_DEVICE(dev);
710     sysbus_connect_irq(s, 0, irqB);
711     sysbus_connect_irq(s, 1, irqA);
712     if (base) {
713         sysbus_mmio_map(s, 0, base);
714     }
715 
716     d = ESCC(s);
717     return &d->mmio;
718 }
719 
720 static const uint8_t qcode_to_keycode[Q_KEY_CODE__MAX] = {
721     [Q_KEY_CODE_SHIFT]         = 99,
722     [Q_KEY_CODE_SHIFT_R]       = 110,
723     [Q_KEY_CODE_ALT]           = 19,
724     [Q_KEY_CODE_ALT_R]         = 13,
725     [Q_KEY_CODE_CTRL]          = 76,
726     [Q_KEY_CODE_CTRL_R]        = 76,
727     [Q_KEY_CODE_ESC]           = 29,
728     [Q_KEY_CODE_1]             = 30,
729     [Q_KEY_CODE_2]             = 31,
730     [Q_KEY_CODE_3]             = 32,
731     [Q_KEY_CODE_4]             = 33,
732     [Q_KEY_CODE_5]             = 34,
733     [Q_KEY_CODE_6]             = 35,
734     [Q_KEY_CODE_7]             = 36,
735     [Q_KEY_CODE_8]             = 37,
736     [Q_KEY_CODE_9]             = 38,
737     [Q_KEY_CODE_0]             = 39,
738     [Q_KEY_CODE_MINUS]         = 40,
739     [Q_KEY_CODE_EQUAL]         = 41,
740     [Q_KEY_CODE_BACKSPACE]     = 43,
741     [Q_KEY_CODE_TAB]           = 53,
742     [Q_KEY_CODE_Q]             = 54,
743     [Q_KEY_CODE_W]             = 55,
744     [Q_KEY_CODE_E]             = 56,
745     [Q_KEY_CODE_R]             = 57,
746     [Q_KEY_CODE_T]             = 58,
747     [Q_KEY_CODE_Y]             = 59,
748     [Q_KEY_CODE_U]             = 60,
749     [Q_KEY_CODE_I]             = 61,
750     [Q_KEY_CODE_O]             = 62,
751     [Q_KEY_CODE_P]             = 63,
752     [Q_KEY_CODE_BRACKET_LEFT]  = 64,
753     [Q_KEY_CODE_BRACKET_RIGHT] = 65,
754     [Q_KEY_CODE_RET]           = 89,
755     [Q_KEY_CODE_A]             = 77,
756     [Q_KEY_CODE_S]             = 78,
757     [Q_KEY_CODE_D]             = 79,
758     [Q_KEY_CODE_F]             = 80,
759     [Q_KEY_CODE_G]             = 81,
760     [Q_KEY_CODE_H]             = 82,
761     [Q_KEY_CODE_J]             = 83,
762     [Q_KEY_CODE_K]             = 84,
763     [Q_KEY_CODE_L]             = 85,
764     [Q_KEY_CODE_SEMICOLON]     = 86,
765     [Q_KEY_CODE_APOSTROPHE]    = 87,
766     [Q_KEY_CODE_GRAVE_ACCENT]  = 42,
767     [Q_KEY_CODE_BACKSLASH]     = 88,
768     [Q_KEY_CODE_Z]             = 100,
769     [Q_KEY_CODE_X]             = 101,
770     [Q_KEY_CODE_C]             = 102,
771     [Q_KEY_CODE_V]             = 103,
772     [Q_KEY_CODE_B]             = 104,
773     [Q_KEY_CODE_N]             = 105,
774     [Q_KEY_CODE_M]             = 106,
775     [Q_KEY_CODE_COMMA]         = 107,
776     [Q_KEY_CODE_DOT]           = 108,
777     [Q_KEY_CODE_SLASH]         = 109,
778     [Q_KEY_CODE_ASTERISK]      = 47,
779     [Q_KEY_CODE_SPC]           = 121,
780     [Q_KEY_CODE_CAPS_LOCK]     = 119,
781     [Q_KEY_CODE_F1]            = 5,
782     [Q_KEY_CODE_F2]            = 6,
783     [Q_KEY_CODE_F3]            = 8,
784     [Q_KEY_CODE_F4]            = 10,
785     [Q_KEY_CODE_F5]            = 12,
786     [Q_KEY_CODE_F6]            = 14,
787     [Q_KEY_CODE_F7]            = 16,
788     [Q_KEY_CODE_F8]            = 17,
789     [Q_KEY_CODE_F9]            = 18,
790     [Q_KEY_CODE_F10]           = 7,
791     [Q_KEY_CODE_NUM_LOCK]      = 98,
792     [Q_KEY_CODE_SCROLL_LOCK]   = 23,
793     [Q_KEY_CODE_KP_DIVIDE]     = 46,
794     [Q_KEY_CODE_KP_MULTIPLY]   = 47,
795     [Q_KEY_CODE_KP_SUBTRACT]   = 71,
796     [Q_KEY_CODE_KP_ADD]        = 125,
797     [Q_KEY_CODE_KP_ENTER]      = 90,
798     [Q_KEY_CODE_KP_DECIMAL]    = 50,
799     [Q_KEY_CODE_KP_0]          = 94,
800     [Q_KEY_CODE_KP_1]          = 112,
801     [Q_KEY_CODE_KP_2]          = 113,
802     [Q_KEY_CODE_KP_3]          = 114,
803     [Q_KEY_CODE_KP_4]          = 91,
804     [Q_KEY_CODE_KP_5]          = 92,
805     [Q_KEY_CODE_KP_6]          = 93,
806     [Q_KEY_CODE_KP_7]          = 68,
807     [Q_KEY_CODE_KP_8]          = 69,
808     [Q_KEY_CODE_KP_9]          = 70,
809     [Q_KEY_CODE_LESS]          = 124,
810     [Q_KEY_CODE_F11]           = 9,
811     [Q_KEY_CODE_F12]           = 11,
812     [Q_KEY_CODE_HOME]          = 52,
813     [Q_KEY_CODE_PGUP]          = 96,
814     [Q_KEY_CODE_PGDN]          = 123,
815     [Q_KEY_CODE_END]           = 74,
816     [Q_KEY_CODE_LEFT]          = 24,
817     [Q_KEY_CODE_UP]            = 20,
818     [Q_KEY_CODE_DOWN]          = 27,
819     [Q_KEY_CODE_RIGHT]         = 28,
820     [Q_KEY_CODE_INSERT]        = 44,
821     [Q_KEY_CODE_DELETE]        = 66,
822     [Q_KEY_CODE_STOP]          = 1,
823     [Q_KEY_CODE_AGAIN]         = 3,
824     [Q_KEY_CODE_PROPS]         = 25,
825     [Q_KEY_CODE_UNDO]          = 26,
826     [Q_KEY_CODE_FRONT]         = 49,
827     [Q_KEY_CODE_COPY]          = 51,
828     [Q_KEY_CODE_OPEN]          = 72,
829     [Q_KEY_CODE_PASTE]         = 73,
830     [Q_KEY_CODE_FIND]          = 95,
831     [Q_KEY_CODE_CUT]           = 97,
832     [Q_KEY_CODE_LF]            = 111,
833     [Q_KEY_CODE_HELP]          = 118,
834     [Q_KEY_CODE_META_L]        = 120,
835     [Q_KEY_CODE_META_R]        = 122,
836     [Q_KEY_CODE_COMPOSE]       = 67,
837     [Q_KEY_CODE_PRINT]         = 22,
838     [Q_KEY_CODE_SYSRQ]         = 21,
839 };
840 
841 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
842                                 InputEvent *evt)
843 {
844     ChannelState *s = (ChannelState *)dev;
845     int qcode, keycode;
846     InputKeyEvent *key;
847 
848     assert(evt->type == INPUT_EVENT_KIND_KEY);
849     key = evt->u.key.data;
850     qcode = qemu_input_key_value_to_qcode(key->key);
851     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
852                                key->down);
853 
854     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
855         if (key->down) {
856             s->caps_lock_mode ^= 1;
857             if (s->caps_lock_mode == 2) {
858                 return; /* Drop second press */
859             }
860         } else {
861             s->caps_lock_mode ^= 2;
862             if (s->caps_lock_mode == 3) {
863                 return; /* Drop first release */
864             }
865         }
866     }
867 
868     if (qcode == Q_KEY_CODE_NUM_LOCK) {
869         if (key->down) {
870             s->num_lock_mode ^= 1;
871             if (s->num_lock_mode == 2) {
872                 return; /* Drop second press */
873             }
874         } else {
875             s->num_lock_mode ^= 2;
876             if (s->num_lock_mode == 3) {
877                 return; /* Drop first release */
878             }
879         }
880     }
881 
882     keycode = qcode_to_keycode[qcode];
883     if (!key->down) {
884         keycode |= 0x80;
885     }
886     trace_escc_sunkbd_event_out(keycode);
887     put_queue(s, keycode);
888 }
889 
890 static QemuInputHandler sunkbd_handler = {
891     .name  = "sun keyboard",
892     .mask  = INPUT_EVENT_MASK_KEY,
893     .event = sunkbd_handle_event,
894 };
895 
896 static void handle_kbd_command(ChannelState *s, int val)
897 {
898     trace_escc_kbd_command(val);
899     if (s->led_mode) { // Ignore led byte
900         s->led_mode = 0;
901         return;
902     }
903     switch (val) {
904     case 1: // Reset, return type code
905         clear_queue(s);
906         put_queue(s, 0xff);
907         put_queue(s, 4); // Type 4
908         put_queue(s, 0x7f);
909         break;
910     case 0xe: // Set leds
911         s->led_mode = 1;
912         break;
913     case 7: // Query layout
914     case 0xf:
915         clear_queue(s);
916         put_queue(s, 0xfe);
917         put_queue(s, 0x21); /*  en-us layout */
918         break;
919     default:
920         break;
921     }
922 }
923 
924 static void sunmouse_event(void *opaque,
925                                int dx, int dy, int dz, int buttons_state)
926 {
927     ChannelState *s = opaque;
928     int ch;
929 
930     trace_escc_sunmouse_event(dx, dy, buttons_state);
931     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
932 
933     if (buttons_state & MOUSE_EVENT_LBUTTON)
934         ch ^= 0x4;
935     if (buttons_state & MOUSE_EVENT_MBUTTON)
936         ch ^= 0x2;
937     if (buttons_state & MOUSE_EVENT_RBUTTON)
938         ch ^= 0x1;
939 
940     put_queue(s, ch);
941 
942     ch = dx;
943 
944     if (ch > 127)
945         ch = 127;
946     else if (ch < -127)
947         ch = -127;
948 
949     put_queue(s, ch & 0xff);
950 
951     ch = -dy;
952 
953     if (ch > 127)
954         ch = 127;
955     else if (ch < -127)
956         ch = -127;
957 
958     put_queue(s, ch & 0xff);
959 
960     // MSC protocol specify two extra motion bytes
961 
962     put_queue(s, 0);
963     put_queue(s, 0);
964 }
965 
966 void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
967                                int disabled, int clock, int it_shift)
968 {
969     DeviceState *dev;
970     SysBusDevice *s;
971 
972     dev = qdev_create(NULL, TYPE_ESCC);
973     qdev_prop_set_uint32(dev, "disabled", disabled);
974     qdev_prop_set_uint32(dev, "frequency", clock);
975     qdev_prop_set_uint32(dev, "it_shift", it_shift);
976     qdev_prop_set_chr(dev, "chrB", NULL);
977     qdev_prop_set_chr(dev, "chrA", NULL);
978     qdev_prop_set_uint32(dev, "chnBtype", mouse);
979     qdev_prop_set_uint32(dev, "chnAtype", kbd);
980     qdev_init_nofail(dev);
981     s = SYS_BUS_DEVICE(dev);
982     sysbus_connect_irq(s, 0, irq);
983     sysbus_connect_irq(s, 1, irq);
984     sysbus_mmio_map(s, 0, base);
985 }
986 
987 static void escc_init1(Object *obj)
988 {
989     ESCCState *s = ESCC(obj);
990     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
991     unsigned int i;
992 
993     for (i = 0; i < 2; i++) {
994         sysbus_init_irq(dev, &s->chn[i].irq);
995         s->chn[i].chn = 1 - i;
996     }
997     s->chn[0].otherchn = &s->chn[1];
998     s->chn[1].otherchn = &s->chn[0];
999 
1000     sysbus_init_mmio(dev, &s->mmio);
1001 }
1002 
1003 static void escc_realize(DeviceState *dev, Error **errp)
1004 {
1005     ESCCState *s = ESCC(dev);
1006     unsigned int i;
1007 
1008     s->chn[0].disabled = s->disabled;
1009     s->chn[1].disabled = s->disabled;
1010 
1011     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
1012                           ESCC_SIZE << s->it_shift);
1013 
1014     for (i = 0; i < 2; i++) {
1015         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
1016             s->chn[i].clock = s->frequency / 2;
1017             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
1018                                      serial_receive1, serial_event, NULL,
1019                                      &s->chn[i], NULL, true);
1020         }
1021     }
1022 
1023     if (s->chn[0].type == mouse) {
1024         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
1025                                      "QEMU Sun Mouse");
1026     }
1027     if (s->chn[1].type == kbd) {
1028         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
1029                                                    &sunkbd_handler);
1030     }
1031 }
1032 
1033 static Property escc_properties[] = {
1034     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
1035     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
1036     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
1037     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
1038     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
1039     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
1040     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
1041     DEFINE_PROP_END_OF_LIST(),
1042 };
1043 
1044 static void escc_class_init(ObjectClass *klass, void *data)
1045 {
1046     DeviceClass *dc = DEVICE_CLASS(klass);
1047 
1048     dc->reset = escc_reset;
1049     dc->realize = escc_realize;
1050     dc->vmsd = &vmstate_escc;
1051     dc->props = escc_properties;
1052     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
1053 }
1054 
1055 static const TypeInfo escc_info = {
1056     .name          = TYPE_ESCC,
1057     .parent        = TYPE_SYS_BUS_DEVICE,
1058     .instance_size = sizeof(ESCCState),
1059     .instance_init = escc_init1,
1060     .class_init    = escc_class_init,
1061 };
1062 
1063 static void escc_register_types(void)
1064 {
1065     type_register_static(&escc_info);
1066 }
1067 
1068 type_init(escc_register_types)
1069