xref: /openbmc/qemu/hw/char/escc.c (revision 6a0acfff)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/irq.h"
28 #include "hw/sysbus.h"
29 #include "qemu/module.h"
30 #include "hw/char/escc.h"
31 #include "ui/console.h"
32 #include "trace.h"
33 
34 /*
35  * Chipset docs:
36  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
37  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
38  *
39  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
40  * (Slave I/O), also produced as NCR89C105. See
41  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42  *
43  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
44  * mouse and keyboard ports don't implement all functions and they are
45  * only asynchronous. There is no DMA.
46  *
47  * Z85C30 is also used on PowerMacs. There are some small differences
48  * between Sparc version (sunzilog) and PowerMac (pmac):
49  *  Offset between control and data registers
50  *  There is some kind of lockup bug, but we can ignore it
51  *  CTS is inverted
52  *  DMA on pmac using DBDMA chip
53  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
54  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
55  */
56 
57 /*
58  * Modifications:
59  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
60  *                                  serial mouse queue.
61  *                                  Implemented serial mouse protocol.
62  *
63  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
64  */
65 
66 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
67 
68 #define SERIAL_CTRL 0
69 #define SERIAL_DATA 1
70 
71 #define W_CMD     0
72 #define CMD_PTR_MASK   0x07
73 #define CMD_CMD_MASK   0x38
74 #define CMD_HI         0x08
75 #define CMD_CLR_TXINT  0x28
76 #define CMD_CLR_IUS    0x38
77 #define W_INTR    1
78 #define INTR_INTALL    0x01
79 #define INTR_TXINT     0x02
80 #define INTR_RXMODEMSK 0x18
81 #define INTR_RXINT1ST  0x08
82 #define INTR_RXINTALL  0x10
83 #define W_IVEC    2
84 #define W_RXCTRL  3
85 #define RXCTRL_RXEN    0x01
86 #define W_TXCTRL1 4
87 #define TXCTRL1_PAREN  0x01
88 #define TXCTRL1_PAREV  0x02
89 #define TXCTRL1_1STOP  0x04
90 #define TXCTRL1_1HSTOP 0x08
91 #define TXCTRL1_2STOP  0x0c
92 #define TXCTRL1_STPMSK 0x0c
93 #define TXCTRL1_CLK1X  0x00
94 #define TXCTRL1_CLK16X 0x40
95 #define TXCTRL1_CLK32X 0x80
96 #define TXCTRL1_CLK64X 0xc0
97 #define TXCTRL1_CLKMSK 0xc0
98 #define W_TXCTRL2 5
99 #define TXCTRL2_TXEN   0x08
100 #define TXCTRL2_BITMSK 0x60
101 #define TXCTRL2_5BITS  0x00
102 #define TXCTRL2_7BITS  0x20
103 #define TXCTRL2_6BITS  0x40
104 #define TXCTRL2_8BITS  0x60
105 #define W_SYNC1   6
106 #define W_SYNC2   7
107 #define W_TXBUF   8
108 #define W_MINTR   9
109 #define MINTR_STATUSHI 0x10
110 #define MINTR_RST_MASK 0xc0
111 #define MINTR_RST_B    0x40
112 #define MINTR_RST_A    0x80
113 #define MINTR_RST_ALL  0xc0
114 #define W_MISC1  10
115 #define W_CLOCK  11
116 #define CLOCK_TRXC     0x08
117 #define W_BRGLO  12
118 #define W_BRGHI  13
119 #define W_MISC2  14
120 #define MISC2_PLLDIS   0x30
121 #define W_EXTINT 15
122 #define EXTINT_DCD     0x08
123 #define EXTINT_SYNCINT 0x10
124 #define EXTINT_CTSINT  0x20
125 #define EXTINT_TXUNDRN 0x40
126 #define EXTINT_BRKINT  0x80
127 
128 #define R_STATUS  0
129 #define STATUS_RXAV    0x01
130 #define STATUS_ZERO    0x02
131 #define STATUS_TXEMPTY 0x04
132 #define STATUS_DCD     0x08
133 #define STATUS_SYNC    0x10
134 #define STATUS_CTS     0x20
135 #define STATUS_TXUNDRN 0x40
136 #define STATUS_BRK     0x80
137 #define R_SPEC    1
138 #define SPEC_ALLSENT   0x01
139 #define SPEC_BITS8     0x06
140 #define R_IVEC    2
141 #define IVEC_TXINTB    0x00
142 #define IVEC_LONOINT   0x06
143 #define IVEC_LORXINTA  0x0c
144 #define IVEC_LORXINTB  0x04
145 #define IVEC_LOTXINTA  0x08
146 #define IVEC_HINOINT   0x60
147 #define IVEC_HIRXINTA  0x30
148 #define IVEC_HIRXINTB  0x20
149 #define IVEC_HITXINTA  0x10
150 #define R_INTR    3
151 #define INTR_EXTINTB   0x01
152 #define INTR_TXINTB    0x02
153 #define INTR_RXINTB    0x04
154 #define INTR_EXTINTA   0x08
155 #define INTR_TXINTA    0x10
156 #define INTR_RXINTA    0x20
157 #define R_IPEN    4
158 #define R_TXCTRL1 5
159 #define R_TXCTRL2 6
160 #define R_BC      7
161 #define R_RXBUF   8
162 #define R_RXCTRL  9
163 #define R_MISC   10
164 #define R_MISC1  11
165 #define R_BRGLO  12
166 #define R_BRGHI  13
167 #define R_MISC1I 14
168 #define R_EXTINT 15
169 
170 static void handle_kbd_command(ESCCChannelState *s, int val);
171 static int serial_can_receive(void *opaque);
172 static void serial_receive_byte(ESCCChannelState *s, int ch);
173 
174 static void clear_queue(void *opaque)
175 {
176     ESCCChannelState *s = opaque;
177     ESCCSERIOQueue *q = &s->queue;
178     q->rptr = q->wptr = q->count = 0;
179 }
180 
181 static void put_queue(void *opaque, int b)
182 {
183     ESCCChannelState *s = opaque;
184     ESCCSERIOQueue *q = &s->queue;
185 
186     trace_escc_put_queue(CHN_C(s), b);
187     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
188         return;
189     }
190     q->data[q->wptr] = b;
191     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
192         q->wptr = 0;
193     }
194     q->count++;
195     serial_receive_byte(s, 0);
196 }
197 
198 static uint32_t get_queue(void *opaque)
199 {
200     ESCCChannelState *s = opaque;
201     ESCCSERIOQueue *q = &s->queue;
202     int val;
203 
204     if (q->count == 0) {
205         return 0;
206     } else {
207         val = q->data[q->rptr];
208         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
209             q->rptr = 0;
210         }
211         q->count--;
212     }
213     trace_escc_get_queue(CHN_C(s), val);
214     if (q->count > 0)
215         serial_receive_byte(s, 0);
216     return val;
217 }
218 
219 static int escc_update_irq_chn(ESCCChannelState *s)
220 {
221     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
222          // tx ints enabled, pending
223          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
224            ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
225           s->rxint == 1) || // rx ints enabled, pending
226          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
227           (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
228         return 1;
229     }
230     return 0;
231 }
232 
233 static void escc_update_irq(ESCCChannelState *s)
234 {
235     int irq;
236 
237     irq = escc_update_irq_chn(s);
238     irq |= escc_update_irq_chn(s->otherchn);
239 
240     trace_escc_update_irq(irq);
241     qemu_set_irq(s->irq, irq);
242 }
243 
244 static void escc_reset_chn(ESCCChannelState *s)
245 {
246     int i;
247 
248     s->reg = 0;
249     for (i = 0; i < ESCC_SERIAL_REGS; i++) {
250         s->rregs[i] = 0;
251         s->wregs[i] = 0;
252     }
253     s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
254     s->wregs[W_MINTR] = MINTR_RST_ALL;
255     s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
256     s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
257     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
258         EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
259     if (s->disabled)
260         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
261             STATUS_CTS | STATUS_TXUNDRN;
262     else
263         s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
264     s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
265 
266     s->rx = s->tx = 0;
267     s->rxint = s->txint = 0;
268     s->rxint_under_svc = s->txint_under_svc = 0;
269     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
270     clear_queue(s);
271 }
272 
273 static void escc_reset(DeviceState *d)
274 {
275     ESCCState *s = ESCC(d);
276 
277     escc_reset_chn(&s->chn[0]);
278     escc_reset_chn(&s->chn[1]);
279 }
280 
281 static inline void set_rxint(ESCCChannelState *s)
282 {
283     s->rxint = 1;
284     /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
285        than chn_a rx/tx/special_condition service*/
286     s->rxint_under_svc = 1;
287     if (s->chn == escc_chn_a) {
288         s->rregs[R_INTR] |= INTR_RXINTA;
289         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
290             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
291         else
292             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
293     } else {
294         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
295         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
296             s->rregs[R_IVEC] = IVEC_HIRXINTB;
297         else
298             s->rregs[R_IVEC] = IVEC_LORXINTB;
299     }
300     escc_update_irq(s);
301 }
302 
303 static inline void set_txint(ESCCChannelState *s)
304 {
305     s->txint = 1;
306     if (!s->rxint_under_svc) {
307         s->txint_under_svc = 1;
308         if (s->chn == escc_chn_a) {
309             if (s->wregs[W_INTR] & INTR_TXINT) {
310                 s->rregs[R_INTR] |= INTR_TXINTA;
311             }
312             if (s->wregs[W_MINTR] & MINTR_STATUSHI)
313                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
314             else
315                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
316         } else {
317             s->rregs[R_IVEC] = IVEC_TXINTB;
318             if (s->wregs[W_INTR] & INTR_TXINT) {
319                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
320             }
321         }
322     escc_update_irq(s);
323     }
324 }
325 
326 static inline void clr_rxint(ESCCChannelState *s)
327 {
328     s->rxint = 0;
329     s->rxint_under_svc = 0;
330     if (s->chn == escc_chn_a) {
331         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
332             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
333         else
334             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
335         s->rregs[R_INTR] &= ~INTR_RXINTA;
336     } else {
337         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
338             s->rregs[R_IVEC] = IVEC_HINOINT;
339         else
340             s->rregs[R_IVEC] = IVEC_LONOINT;
341         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
342     }
343     if (s->txint)
344         set_txint(s);
345     escc_update_irq(s);
346 }
347 
348 static inline void clr_txint(ESCCChannelState *s)
349 {
350     s->txint = 0;
351     s->txint_under_svc = 0;
352     if (s->chn == escc_chn_a) {
353         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
354             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
355         else
356             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
357         s->rregs[R_INTR] &= ~INTR_TXINTA;
358     } else {
359         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
360         if (s->wregs[W_MINTR] & MINTR_STATUSHI)
361             s->rregs[R_IVEC] = IVEC_HINOINT;
362         else
363             s->rregs[R_IVEC] = IVEC_LONOINT;
364         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
365     }
366     if (s->rxint)
367         set_rxint(s);
368     escc_update_irq(s);
369 }
370 
371 static void escc_update_parameters(ESCCChannelState *s)
372 {
373     int speed, parity, data_bits, stop_bits;
374     QEMUSerialSetParams ssp;
375 
376     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
377         return;
378 
379     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
380         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
381             parity = 'E';
382         else
383             parity = 'O';
384     } else {
385         parity = 'N';
386     }
387     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
388         stop_bits = 2;
389     else
390         stop_bits = 1;
391     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
392     case TXCTRL2_5BITS:
393         data_bits = 5;
394         break;
395     case TXCTRL2_7BITS:
396         data_bits = 7;
397         break;
398     case TXCTRL2_6BITS:
399         data_bits = 6;
400         break;
401     default:
402     case TXCTRL2_8BITS:
403         data_bits = 8;
404         break;
405     }
406     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
407     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
408     case TXCTRL1_CLK1X:
409         break;
410     case TXCTRL1_CLK16X:
411         speed /= 16;
412         break;
413     case TXCTRL1_CLK32X:
414         speed /= 32;
415         break;
416     default:
417     case TXCTRL1_CLK64X:
418         speed /= 64;
419         break;
420     }
421     ssp.speed = speed;
422     ssp.parity = parity;
423     ssp.data_bits = data_bits;
424     ssp.stop_bits = stop_bits;
425     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
426     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
427 }
428 
429 static void escc_mem_write(void *opaque, hwaddr addr,
430                            uint64_t val, unsigned size)
431 {
432     ESCCState *serial = opaque;
433     ESCCChannelState *s;
434     uint32_t saddr;
435     int newreg, channel;
436 
437     val &= 0xff;
438     saddr = (addr >> serial->it_shift) & 1;
439     channel = (addr >> (serial->it_shift + 1)) & 1;
440     s = &serial->chn[channel];
441     switch (saddr) {
442     case SERIAL_CTRL:
443         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
444         newreg = 0;
445         switch (s->reg) {
446         case W_CMD:
447             newreg = val & CMD_PTR_MASK;
448             val &= CMD_CMD_MASK;
449             switch (val) {
450             case CMD_HI:
451                 newreg |= CMD_HI;
452                 break;
453             case CMD_CLR_TXINT:
454                 clr_txint(s);
455                 break;
456             case CMD_CLR_IUS:
457                 if (s->rxint_under_svc) {
458                     s->rxint_under_svc = 0;
459                     if (s->txint) {
460                         set_txint(s);
461                     }
462                 } else if (s->txint_under_svc) {
463                     s->txint_under_svc = 0;
464                 }
465                 escc_update_irq(s);
466                 break;
467             default:
468                 break;
469             }
470             break;
471         case W_INTR ... W_RXCTRL:
472         case W_SYNC1 ... W_TXBUF:
473         case W_MISC1 ... W_CLOCK:
474         case W_MISC2 ... W_EXTINT:
475             s->wregs[s->reg] = val;
476             break;
477         case W_TXCTRL1:
478         case W_TXCTRL2:
479             s->wregs[s->reg] = val;
480             escc_update_parameters(s);
481             break;
482         case W_BRGLO:
483         case W_BRGHI:
484             s->wregs[s->reg] = val;
485             s->rregs[s->reg] = val;
486             escc_update_parameters(s);
487             break;
488         case W_MINTR:
489             switch (val & MINTR_RST_MASK) {
490             case 0:
491             default:
492                 break;
493             case MINTR_RST_B:
494                 escc_reset_chn(&serial->chn[0]);
495                 return;
496             case MINTR_RST_A:
497                 escc_reset_chn(&serial->chn[1]);
498                 return;
499             case MINTR_RST_ALL:
500                 escc_reset(DEVICE(serial));
501                 return;
502             }
503             break;
504         default:
505             break;
506         }
507         if (s->reg == 0)
508             s->reg = newreg;
509         else
510             s->reg = 0;
511         break;
512     case SERIAL_DATA:
513         trace_escc_mem_writeb_data(CHN_C(s), val);
514         /*
515          * Lower the irq when data is written to the Tx buffer and no other
516          * interrupts are currently pending. The irq will be raised again once
517          * the Tx buffer becomes empty below.
518          */
519         s->txint = 0;
520         escc_update_irq(s);
521         s->tx = val;
522         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
523             if (qemu_chr_fe_backend_connected(&s->chr)) {
524                 /* XXX this blocks entire thread. Rewrite to use
525                  * qemu_chr_fe_write and background I/O callbacks */
526                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
527             } else if (s->type == escc_kbd && !s->disabled) {
528                 handle_kbd_command(s, val);
529             }
530         }
531         s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
532         s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
533         set_txint(s);
534         break;
535     default:
536         break;
537     }
538 }
539 
540 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
541                               unsigned size)
542 {
543     ESCCState *serial = opaque;
544     ESCCChannelState *s;
545     uint32_t saddr;
546     uint32_t ret;
547     int channel;
548 
549     saddr = (addr >> serial->it_shift) & 1;
550     channel = (addr >> (serial->it_shift + 1)) & 1;
551     s = &serial->chn[channel];
552     switch (saddr) {
553     case SERIAL_CTRL:
554         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
555         ret = s->rregs[s->reg];
556         s->reg = 0;
557         return ret;
558     case SERIAL_DATA:
559         s->rregs[R_STATUS] &= ~STATUS_RXAV;
560         clr_rxint(s);
561         if (s->type == escc_kbd || s->type == escc_mouse) {
562             ret = get_queue(s);
563         } else {
564             ret = s->rx;
565         }
566         trace_escc_mem_readb_data(CHN_C(s), ret);
567         qemu_chr_fe_accept_input(&s->chr);
568         return ret;
569     default:
570         break;
571     }
572     return 0;
573 }
574 
575 static const MemoryRegionOps escc_mem_ops = {
576     .read = escc_mem_read,
577     .write = escc_mem_write,
578     .endianness = DEVICE_NATIVE_ENDIAN,
579     .valid = {
580         .min_access_size = 1,
581         .max_access_size = 1,
582     },
583 };
584 
585 static int serial_can_receive(void *opaque)
586 {
587     ESCCChannelState *s = opaque;
588     int ret;
589 
590     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
591         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
592         // char already available
593         ret = 0;
594     else
595         ret = 1;
596     return ret;
597 }
598 
599 static void serial_receive_byte(ESCCChannelState *s, int ch)
600 {
601     trace_escc_serial_receive_byte(CHN_C(s), ch);
602     s->rregs[R_STATUS] |= STATUS_RXAV;
603     s->rx = ch;
604     set_rxint(s);
605 }
606 
607 static void serial_receive_break(ESCCChannelState *s)
608 {
609     s->rregs[R_STATUS] |= STATUS_BRK;
610     escc_update_irq(s);
611 }
612 
613 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
614 {
615     ESCCChannelState *s = opaque;
616     serial_receive_byte(s, buf[0]);
617 }
618 
619 static void serial_event(void *opaque, int event)
620 {
621     ESCCChannelState *s = opaque;
622     if (event == CHR_EVENT_BREAK)
623         serial_receive_break(s);
624 }
625 
626 static const VMStateDescription vmstate_escc_chn = {
627     .name ="escc_chn",
628     .version_id = 2,
629     .minimum_version_id = 1,
630     .fields = (VMStateField[]) {
631         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
632         VMSTATE_UINT32(reg, ESCCChannelState),
633         VMSTATE_UINT32(rxint, ESCCChannelState),
634         VMSTATE_UINT32(txint, ESCCChannelState),
635         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
636         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
637         VMSTATE_UINT8(rx, ESCCChannelState),
638         VMSTATE_UINT8(tx, ESCCChannelState),
639         VMSTATE_BUFFER(wregs, ESCCChannelState),
640         VMSTATE_BUFFER(rregs, ESCCChannelState),
641         VMSTATE_END_OF_LIST()
642     }
643 };
644 
645 static const VMStateDescription vmstate_escc = {
646     .name ="escc",
647     .version_id = 2,
648     .minimum_version_id = 1,
649     .fields = (VMStateField[]) {
650         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
651                              ESCCChannelState),
652         VMSTATE_END_OF_LIST()
653     }
654 };
655 
656 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
657                                 InputEvent *evt)
658 {
659     ESCCChannelState *s = (ESCCChannelState *)dev;
660     int qcode, keycode;
661     InputKeyEvent *key;
662 
663     assert(evt->type == INPUT_EVENT_KIND_KEY);
664     key = evt->u.key.data;
665     qcode = qemu_input_key_value_to_qcode(key->key);
666     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
667                                key->down);
668 
669     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
670         if (key->down) {
671             s->caps_lock_mode ^= 1;
672             if (s->caps_lock_mode == 2) {
673                 return; /* Drop second press */
674             }
675         } else {
676             s->caps_lock_mode ^= 2;
677             if (s->caps_lock_mode == 3) {
678                 return; /* Drop first release */
679             }
680         }
681     }
682 
683     if (qcode == Q_KEY_CODE_NUM_LOCK) {
684         if (key->down) {
685             s->num_lock_mode ^= 1;
686             if (s->num_lock_mode == 2) {
687                 return; /* Drop second press */
688             }
689         } else {
690             s->num_lock_mode ^= 2;
691             if (s->num_lock_mode == 3) {
692                 return; /* Drop first release */
693             }
694         }
695     }
696 
697     if (qcode > qemu_input_map_qcode_to_sun_len) {
698         return;
699     }
700 
701     keycode = qemu_input_map_qcode_to_sun[qcode];
702     if (!key->down) {
703         keycode |= 0x80;
704     }
705     trace_escc_sunkbd_event_out(keycode);
706     put_queue(s, keycode);
707 }
708 
709 static QemuInputHandler sunkbd_handler = {
710     .name  = "sun keyboard",
711     .mask  = INPUT_EVENT_MASK_KEY,
712     .event = sunkbd_handle_event,
713 };
714 
715 static void handle_kbd_command(ESCCChannelState *s, int val)
716 {
717     trace_escc_kbd_command(val);
718     if (s->led_mode) { // Ignore led byte
719         s->led_mode = 0;
720         return;
721     }
722     switch (val) {
723     case 1: // Reset, return type code
724         clear_queue(s);
725         put_queue(s, 0xff);
726         put_queue(s, 4); // Type 4
727         put_queue(s, 0x7f);
728         break;
729     case 0xe: // Set leds
730         s->led_mode = 1;
731         break;
732     case 7: // Query layout
733     case 0xf:
734         clear_queue(s);
735         put_queue(s, 0xfe);
736         put_queue(s, 0x21); /*  en-us layout */
737         break;
738     default:
739         break;
740     }
741 }
742 
743 static void sunmouse_event(void *opaque,
744                                int dx, int dy, int dz, int buttons_state)
745 {
746     ESCCChannelState *s = opaque;
747     int ch;
748 
749     trace_escc_sunmouse_event(dx, dy, buttons_state);
750     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
751 
752     if (buttons_state & MOUSE_EVENT_LBUTTON)
753         ch ^= 0x4;
754     if (buttons_state & MOUSE_EVENT_MBUTTON)
755         ch ^= 0x2;
756     if (buttons_state & MOUSE_EVENT_RBUTTON)
757         ch ^= 0x1;
758 
759     put_queue(s, ch);
760 
761     ch = dx;
762 
763     if (ch > 127)
764         ch = 127;
765     else if (ch < -127)
766         ch = -127;
767 
768     put_queue(s, ch & 0xff);
769 
770     ch = -dy;
771 
772     if (ch > 127)
773         ch = 127;
774     else if (ch < -127)
775         ch = -127;
776 
777     put_queue(s, ch & 0xff);
778 
779     // MSC protocol specify two extra motion bytes
780 
781     put_queue(s, 0);
782     put_queue(s, 0);
783 }
784 
785 static void escc_init1(Object *obj)
786 {
787     ESCCState *s = ESCC(obj);
788     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
789     unsigned int i;
790 
791     for (i = 0; i < 2; i++) {
792         sysbus_init_irq(dev, &s->chn[i].irq);
793         s->chn[i].chn = 1 - i;
794     }
795     s->chn[0].otherchn = &s->chn[1];
796     s->chn[1].otherchn = &s->chn[0];
797 
798     sysbus_init_mmio(dev, &s->mmio);
799 }
800 
801 static void escc_realize(DeviceState *dev, Error **errp)
802 {
803     ESCCState *s = ESCC(dev);
804     unsigned int i;
805 
806     s->chn[0].disabled = s->disabled;
807     s->chn[1].disabled = s->disabled;
808 
809     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
810                           ESCC_SIZE << s->it_shift);
811 
812     for (i = 0; i < 2; i++) {
813         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
814             s->chn[i].clock = s->frequency / 2;
815             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
816                                      serial_receive1, serial_event, NULL,
817                                      &s->chn[i], NULL, true);
818         }
819     }
820 
821     if (s->chn[0].type == escc_mouse) {
822         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
823                                      "QEMU Sun Mouse");
824     }
825     if (s->chn[1].type == escc_kbd) {
826         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
827                                                    &sunkbd_handler);
828     }
829 }
830 
831 static Property escc_properties[] = {
832     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
833     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
834     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
835     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
836     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
837     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
838     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
839     DEFINE_PROP_END_OF_LIST(),
840 };
841 
842 static void escc_class_init(ObjectClass *klass, void *data)
843 {
844     DeviceClass *dc = DEVICE_CLASS(klass);
845 
846     dc->reset = escc_reset;
847     dc->realize = escc_realize;
848     dc->vmsd = &vmstate_escc;
849     dc->props = escc_properties;
850     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
851 }
852 
853 static const TypeInfo escc_info = {
854     .name          = TYPE_ESCC,
855     .parent        = TYPE_SYS_BUS_DEVICE,
856     .instance_size = sizeof(ESCCState),
857     .instance_init = escc_init1,
858     .class_init    = escc_class_init,
859 };
860 
861 static void escc_register_types(void)
862 {
863     type_register_static(&escc_info);
864 }
865 
866 type_init(escc_register_types)
867