1 /* 2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/irq.h" 27 #include "hw/qdev-properties.h" 28 #include "hw/qdev-properties-system.h" 29 #include "hw/sysbus.h" 30 #include "migration/vmstate.h" 31 #include "qemu/module.h" 32 #include "hw/char/escc.h" 33 #include "ui/console.h" 34 #include "trace.h" 35 36 /* 37 * Chipset docs: 38 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual", 39 * http://www.zilog.com/docs/serial/scc_escc_um.pdf 40 * 41 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001 42 * (Slave I/O), also produced as NCR89C105. See 43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt 44 * 45 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips, 46 * mouse and keyboard ports don't implement all functions and they are 47 * only asynchronous. There is no DMA. 48 * 49 * Z85C30 is also used on PowerMacs and m68k Macs. 50 * 51 * There are some small differences between Sparc version (sunzilog) 52 * and PowerMac (pmac): 53 * Offset between control and data registers 54 * There is some kind of lockup bug, but we can ignore it 55 * CTS is inverted 56 * DMA on pmac using DBDMA chip 57 * pmac can do IRDA and faster rates, sunzilog can only do 38400 58 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz 59 * 60 * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog), 61 * but registers are grouped by type and not by channel: 62 * channel is selected by bit 0 of the address (instead of bit 1) 63 * and register is selected by bit 1 of the address (instead of bit 0). 64 */ 65 66 /* 67 * Modifications: 68 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented 69 * serial mouse queue. 70 * Implemented serial mouse protocol. 71 * 72 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic 73 */ 74 75 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a') 76 77 #define SERIAL_CTRL 0 78 #define SERIAL_DATA 1 79 80 #define W_CMD 0 81 #define CMD_PTR_MASK 0x07 82 #define CMD_CMD_MASK 0x38 83 #define CMD_HI 0x08 84 #define CMD_CLR_TXINT 0x28 85 #define CMD_CLR_IUS 0x38 86 #define W_INTR 1 87 #define INTR_INTALL 0x01 88 #define INTR_TXINT 0x02 89 #define INTR_PAR_SPEC 0x04 90 #define INTR_RXMODEMSK 0x18 91 #define INTR_RXINT1ST 0x08 92 #define INTR_RXINTALL 0x10 93 #define INTR_WTRQ_TXRX 0x20 94 #define W_IVEC 2 95 #define W_RXCTRL 3 96 #define RXCTRL_RXEN 0x01 97 #define RXCTRL_HUNT 0x10 98 #define W_TXCTRL1 4 99 #define TXCTRL1_PAREN 0x01 100 #define TXCTRL1_PAREV 0x02 101 #define TXCTRL1_1STOP 0x04 102 #define TXCTRL1_1HSTOP 0x08 103 #define TXCTRL1_2STOP 0x0c 104 #define TXCTRL1_STPMSK 0x0c 105 #define TXCTRL1_CLK1X 0x00 106 #define TXCTRL1_CLK16X 0x40 107 #define TXCTRL1_CLK32X 0x80 108 #define TXCTRL1_CLK64X 0xc0 109 #define TXCTRL1_CLKMSK 0xc0 110 #define W_TXCTRL2 5 111 #define TXCTRL2_TXCRC 0x01 112 #define TXCTRL2_TXEN 0x08 113 #define TXCTRL2_BITMSK 0x60 114 #define TXCTRL2_5BITS 0x00 115 #define TXCTRL2_7BITS 0x20 116 #define TXCTRL2_6BITS 0x40 117 #define TXCTRL2_8BITS 0x60 118 #define W_SYNC1 6 119 #define W_SYNC2 7 120 #define W_TXBUF 8 121 #define W_MINTR 9 122 #define MINTR_VIS 0x01 123 #define MINTR_NV 0x02 124 #define MINTR_STATUSHI 0x10 125 #define MINTR_SOFTIACK 0x20 126 #define MINTR_RST_MASK 0xc0 127 #define MINTR_RST_B 0x40 128 #define MINTR_RST_A 0x80 129 #define MINTR_RST_ALL 0xc0 130 #define W_MISC1 10 131 #define MISC1_ENC_MASK 0x60 132 #define W_CLOCK 11 133 #define CLOCK_TRXC 0x08 134 #define W_BRGLO 12 135 #define W_BRGHI 13 136 #define W_MISC2 14 137 #define MISC2_BRG_EN 0x01 138 #define MISC2_BRG_SRC 0x02 139 #define MISC2_LCL_LOOP 0x10 140 #define MISC2_PLLCMD0 0x20 141 #define MISC2_PLLCMD1 0x40 142 #define MISC2_PLLCMD2 0x80 143 #define W_EXTINT 15 144 #define EXTINT_DCD 0x08 145 #define EXTINT_SYNCINT 0x10 146 #define EXTINT_CTSINT 0x20 147 #define EXTINT_TXUNDRN 0x40 148 #define EXTINT_BRKINT 0x80 149 150 #define R_STATUS 0 151 #define STATUS_RXAV 0x01 152 #define STATUS_ZERO 0x02 153 #define STATUS_TXEMPTY 0x04 154 #define STATUS_DCD 0x08 155 #define STATUS_SYNC 0x10 156 #define STATUS_CTS 0x20 157 #define STATUS_TXUNDRN 0x40 158 #define STATUS_BRK 0x80 159 #define R_SPEC 1 160 #define SPEC_ALLSENT 0x01 161 #define SPEC_BITS8 0x06 162 #define R_IVEC 2 163 #define IVEC_TXINTB 0x00 164 #define IVEC_LONOINT 0x06 165 #define IVEC_LORXINTA 0x0c 166 #define IVEC_LORXINTB 0x04 167 #define IVEC_LOTXINTA 0x08 168 #define IVEC_HINOINT 0x60 169 #define IVEC_HIRXINTA 0x30 170 #define IVEC_HIRXINTB 0x20 171 #define IVEC_HITXINTA 0x10 172 #define R_INTR 3 173 #define INTR_EXTINTB 0x01 174 #define INTR_TXINTB 0x02 175 #define INTR_RXINTB 0x04 176 #define INTR_EXTINTA 0x08 177 #define INTR_TXINTA 0x10 178 #define INTR_RXINTA 0x20 179 #define R_IPEN 4 180 #define R_TXCTRL1 5 181 #define R_TXCTRL2 6 182 #define R_BC 7 183 #define R_RXBUF 8 184 #define R_RXCTRL 9 185 #define R_MISC 10 186 #define MISC_2CLKMISS 0x40 187 #define R_MISC1 11 188 #define R_BRGLO 12 189 #define R_BRGHI 13 190 #define R_MISC1I 14 191 #define R_EXTINT 15 192 193 static void handle_kbd_command(ESCCChannelState *s, int val); 194 static int serial_can_receive(void *opaque); 195 static void serial_receive_byte(ESCCChannelState *s, int ch); 196 197 static int reg_shift(ESCCState *s) 198 { 199 return s->bit_swap ? s->it_shift + 1 : s->it_shift; 200 } 201 202 static int chn_shift(ESCCState *s) 203 { 204 return s->bit_swap ? s->it_shift : s->it_shift + 1; 205 } 206 207 static void clear_queue(void *opaque) 208 { 209 ESCCChannelState *s = opaque; 210 ESCCSERIOQueue *q = &s->queue; 211 q->rptr = q->wptr = q->count = 0; 212 } 213 214 static void put_queue(void *opaque, int b) 215 { 216 ESCCChannelState *s = opaque; 217 ESCCSERIOQueue *q = &s->queue; 218 219 trace_escc_put_queue(CHN_C(s), b); 220 if (q->count >= ESCC_SERIO_QUEUE_SIZE) { 221 return; 222 } 223 q->data[q->wptr] = b; 224 if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) { 225 q->wptr = 0; 226 } 227 q->count++; 228 serial_receive_byte(s, 0); 229 } 230 231 static uint32_t get_queue(void *opaque) 232 { 233 ESCCChannelState *s = opaque; 234 ESCCSERIOQueue *q = &s->queue; 235 int val; 236 237 if (q->count == 0) { 238 return 0; 239 } else { 240 val = q->data[q->rptr]; 241 if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) { 242 q->rptr = 0; 243 } 244 q->count--; 245 } 246 trace_escc_get_queue(CHN_C(s), val); 247 if (q->count > 0) { 248 serial_receive_byte(s, 0); 249 } 250 return val; 251 } 252 253 static int escc_update_irq_chn(ESCCChannelState *s) 254 { 255 if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) || 256 /* tx ints enabled, pending */ 257 ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) || 258 ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) && 259 s->rxint == 1) || 260 /* rx ints enabled, pending */ 261 ((s->wregs[W_EXTINT] & EXTINT_BRKINT) && 262 (s->rregs[R_STATUS] & STATUS_BRK)))) { 263 /* break int e&p */ 264 return 1; 265 } 266 return 0; 267 } 268 269 static void escc_update_irq(ESCCChannelState *s) 270 { 271 int irq; 272 273 irq = escc_update_irq_chn(s); 274 irq |= escc_update_irq_chn(s->otherchn); 275 276 trace_escc_update_irq(irq); 277 qemu_set_irq(s->irq, irq); 278 } 279 280 static void escc_reset_chn(ESCCChannelState *s) 281 { 282 s->reg = 0; 283 s->rx = s->tx = 0; 284 s->rxint = s->txint = 0; 285 s->rxint_under_svc = s->txint_under_svc = 0; 286 s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0; 287 clear_queue(s); 288 } 289 290 static void escc_soft_reset_chn(ESCCChannelState *s) 291 { 292 escc_reset_chn(s); 293 294 s->wregs[W_CMD] = 0; 295 s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX; 296 s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN; 297 /* 1 stop bit */ 298 s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP; 299 s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS; 300 s->wregs[W_MINTR] &= ~MINTR_SOFTIACK; 301 s->wregs[W_MISC1] &= MISC1_ENC_MASK; 302 /* PLL disabled */ 303 s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC | 304 MISC2_PLLCMD1 | MISC2_PLLCMD2; 305 s->wregs[W_MISC2] |= MISC2_PLLCMD0; 306 /* Enable most interrupts */ 307 s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT | 308 EXTINT_TXUNDRN | EXTINT_BRKINT; 309 310 s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK; 311 s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN; 312 if (s->disabled) { 313 s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS; 314 } 315 s->rregs[R_SPEC] &= SPEC_ALLSENT; 316 s->rregs[R_SPEC] |= SPEC_BITS8; 317 s->rregs[R_INTR] = 0; 318 s->rregs[R_MISC] &= MISC_2CLKMISS; 319 } 320 321 static void escc_hard_reset_chn(ESCCChannelState *s) 322 { 323 escc_soft_reset_chn(s); 324 325 /* 326 * Hard reset is almost identical to soft reset above, except that the 327 * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14 328 * (W_MISC2) have extra bits forced to 0/1 329 */ 330 s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV; 331 s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A; 332 s->wregs[W_MISC1] = 0; 333 s->wregs[W_CLOCK] = CLOCK_TRXC; 334 s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2; 335 s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0; 336 } 337 338 static void escc_reset(DeviceState *d) 339 { 340 ESCCState *s = ESCC(d); 341 int i, j; 342 343 for (i = 0; i < 2; i++) { 344 ESCCChannelState *cs = &s->chn[i]; 345 346 /* 347 * According to the ESCC datasheet "Miscellaneous Questions" section 348 * on page 384, the values of the ESCC registers are not guaranteed on 349 * power-on until an explicit hardware or software reset has been 350 * issued. For now we zero the registers so that a device reset always 351 * returns the emulated device to a fixed state. 352 */ 353 for (j = 0; j < ESCC_SERIAL_REGS; j++) { 354 cs->rregs[j] = 0; 355 cs->wregs[j] = 0; 356 } 357 358 /* 359 * ...but there is an exception. The "Transmit Interrupts and Transmit 360 * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of 361 * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset 362 * (including a hardware reset by software), or a channel reset, this 363 * bit is set to 1". The Sun PROM checks this bit early on startup and 364 * gets stuck in an infinite loop if it is not set. 365 */ 366 cs->rregs[R_STATUS] |= STATUS_TXEMPTY; 367 368 escc_reset_chn(cs); 369 } 370 } 371 372 static inline void set_rxint(ESCCChannelState *s) 373 { 374 s->rxint = 1; 375 /* 376 * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority 377 * than chn_a rx/tx/special_condition service 378 */ 379 s->rxint_under_svc = 1; 380 if (s->chn == escc_chn_a) { 381 s->rregs[R_INTR] |= INTR_RXINTA; 382 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 383 s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA; 384 } else { 385 s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA; 386 } 387 } else { 388 s->otherchn->rregs[R_INTR] |= INTR_RXINTB; 389 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 390 s->rregs[R_IVEC] = IVEC_HIRXINTB; 391 } else { 392 s->rregs[R_IVEC] = IVEC_LORXINTB; 393 } 394 } 395 escc_update_irq(s); 396 } 397 398 static inline void set_txint(ESCCChannelState *s) 399 { 400 s->txint = 1; 401 if (!s->rxint_under_svc) { 402 s->txint_under_svc = 1; 403 if (s->chn == escc_chn_a) { 404 if (s->wregs[W_INTR] & INTR_TXINT) { 405 s->rregs[R_INTR] |= INTR_TXINTA; 406 } 407 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 408 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA; 409 } else { 410 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA; 411 } 412 } else { 413 s->rregs[R_IVEC] = IVEC_TXINTB; 414 if (s->wregs[W_INTR] & INTR_TXINT) { 415 s->otherchn->rregs[R_INTR] |= INTR_TXINTB; 416 } 417 } 418 escc_update_irq(s); 419 } 420 } 421 422 static inline void clr_rxint(ESCCChannelState *s) 423 { 424 s->rxint = 0; 425 s->rxint_under_svc = 0; 426 if (s->chn == escc_chn_a) { 427 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 428 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; 429 } else { 430 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; 431 } 432 s->rregs[R_INTR] &= ~INTR_RXINTA; 433 } else { 434 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 435 s->rregs[R_IVEC] = IVEC_HINOINT; 436 } else { 437 s->rregs[R_IVEC] = IVEC_LONOINT; 438 } 439 s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB; 440 } 441 if (s->txint) { 442 set_txint(s); 443 } 444 escc_update_irq(s); 445 } 446 447 static inline void clr_txint(ESCCChannelState *s) 448 { 449 s->txint = 0; 450 s->txint_under_svc = 0; 451 if (s->chn == escc_chn_a) { 452 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 453 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; 454 } else { 455 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; 456 } 457 s->rregs[R_INTR] &= ~INTR_TXINTA; 458 } else { 459 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; 460 if (s->wregs[W_MINTR] & MINTR_STATUSHI) { 461 s->rregs[R_IVEC] = IVEC_HINOINT; 462 } else { 463 s->rregs[R_IVEC] = IVEC_LONOINT; 464 } 465 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; 466 } 467 if (s->rxint) { 468 set_rxint(s); 469 } 470 escc_update_irq(s); 471 } 472 473 static void escc_update_parameters(ESCCChannelState *s) 474 { 475 int speed, parity, data_bits, stop_bits; 476 QEMUSerialSetParams ssp; 477 478 if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) { 479 return; 480 } 481 482 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) { 483 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) { 484 parity = 'E'; 485 } else { 486 parity = 'O'; 487 } 488 } else { 489 parity = 'N'; 490 } 491 if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) { 492 stop_bits = 2; 493 } else { 494 stop_bits = 1; 495 } 496 switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) { 497 case TXCTRL2_5BITS: 498 data_bits = 5; 499 break; 500 case TXCTRL2_7BITS: 501 data_bits = 7; 502 break; 503 case TXCTRL2_6BITS: 504 data_bits = 6; 505 break; 506 default: 507 case TXCTRL2_8BITS: 508 data_bits = 8; 509 break; 510 } 511 speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2); 512 switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) { 513 case TXCTRL1_CLK1X: 514 break; 515 case TXCTRL1_CLK16X: 516 speed /= 16; 517 break; 518 case TXCTRL1_CLK32X: 519 speed /= 32; 520 break; 521 default: 522 case TXCTRL1_CLK64X: 523 speed /= 64; 524 break; 525 } 526 ssp.speed = speed; 527 ssp.parity = parity; 528 ssp.data_bits = data_bits; 529 ssp.stop_bits = stop_bits; 530 trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits); 531 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); 532 } 533 534 static void escc_mem_write(void *opaque, hwaddr addr, 535 uint64_t val, unsigned size) 536 { 537 ESCCState *serial = opaque; 538 ESCCChannelState *s; 539 uint32_t saddr; 540 int newreg, channel; 541 542 val &= 0xff; 543 saddr = (addr >> reg_shift(serial)) & 1; 544 channel = (addr >> chn_shift(serial)) & 1; 545 s = &serial->chn[channel]; 546 switch (saddr) { 547 case SERIAL_CTRL: 548 trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff); 549 newreg = 0; 550 switch (s->reg) { 551 case W_CMD: 552 newreg = val & CMD_PTR_MASK; 553 val &= CMD_CMD_MASK; 554 switch (val) { 555 case CMD_HI: 556 newreg |= CMD_HI; 557 break; 558 case CMD_CLR_TXINT: 559 clr_txint(s); 560 break; 561 case CMD_CLR_IUS: 562 if (s->rxint_under_svc) { 563 s->rxint_under_svc = 0; 564 if (s->txint) { 565 set_txint(s); 566 } 567 } else if (s->txint_under_svc) { 568 s->txint_under_svc = 0; 569 } 570 escc_update_irq(s); 571 break; 572 default: 573 break; 574 } 575 break; 576 case W_RXCTRL: 577 s->wregs[s->reg] = val; 578 if (val & RXCTRL_HUNT) { 579 s->rregs[R_STATUS] |= STATUS_SYNC; 580 } 581 break; 582 case W_INTR ... W_IVEC: 583 case W_SYNC1 ... W_TXBUF: 584 case W_MISC1 ... W_CLOCK: 585 case W_MISC2 ... W_EXTINT: 586 s->wregs[s->reg] = val; 587 break; 588 case W_TXCTRL1: 589 s->wregs[s->reg] = val; 590 /* 591 * The ESCC datasheet states that SPEC_ALLSENT is always set in 592 * sync mode, and set in async mode when all characters have 593 * cleared the transmitter. Since writes to SERIAL_DATA use the 594 * blocking qemu_chr_fe_write_all() function to write each 595 * character, the guest can never see the state when async data 596 * is in the process of being transmitted so we can set this bit 597 * unconditionally regardless of the state of the W_TXCTRL1 mode 598 * bits. 599 */ 600 s->rregs[R_SPEC] |= SPEC_ALLSENT; 601 escc_update_parameters(s); 602 break; 603 case W_TXCTRL2: 604 s->wregs[s->reg] = val; 605 escc_update_parameters(s); 606 break; 607 case W_BRGLO: 608 case W_BRGHI: 609 s->wregs[s->reg] = val; 610 s->rregs[s->reg] = val; 611 escc_update_parameters(s); 612 break; 613 case W_MINTR: 614 switch (val & MINTR_RST_MASK) { 615 case 0: 616 default: 617 break; 618 case MINTR_RST_B: 619 trace_escc_soft_reset_chn(CHN_C(&serial->chn[0])); 620 escc_soft_reset_chn(&serial->chn[0]); 621 return; 622 case MINTR_RST_A: 623 trace_escc_soft_reset_chn(CHN_C(&serial->chn[1])); 624 escc_soft_reset_chn(&serial->chn[1]); 625 return; 626 case MINTR_RST_ALL: 627 trace_escc_hard_reset(); 628 escc_hard_reset_chn(&serial->chn[0]); 629 escc_hard_reset_chn(&serial->chn[1]); 630 return; 631 } 632 break; 633 default: 634 break; 635 } 636 if (s->reg == 0) { 637 s->reg = newreg; 638 } else { 639 s->reg = 0; 640 } 641 break; 642 case SERIAL_DATA: 643 trace_escc_mem_writeb_data(CHN_C(s), val); 644 /* 645 * Lower the irq when data is written to the Tx buffer and no other 646 * interrupts are currently pending. The irq will be raised again once 647 * the Tx buffer becomes empty below. 648 */ 649 s->txint = 0; 650 escc_update_irq(s); 651 s->tx = val; 652 if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */ 653 if (qemu_chr_fe_backend_connected(&s->chr)) { 654 /* 655 * XXX this blocks entire thread. Rewrite to use 656 * qemu_chr_fe_write and background I/O callbacks 657 */ 658 qemu_chr_fe_write_all(&s->chr, &s->tx, 1); 659 } else if (s->type == escc_kbd && !s->disabled) { 660 handle_kbd_command(s, val); 661 } 662 } 663 s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */ 664 s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */ 665 set_txint(s); 666 break; 667 default: 668 break; 669 } 670 } 671 672 static uint64_t escc_mem_read(void *opaque, hwaddr addr, 673 unsigned size) 674 { 675 ESCCState *serial = opaque; 676 ESCCChannelState *s; 677 uint32_t saddr; 678 uint32_t ret; 679 int channel; 680 681 saddr = (addr >> reg_shift(serial)) & 1; 682 channel = (addr >> chn_shift(serial)) & 1; 683 s = &serial->chn[channel]; 684 switch (saddr) { 685 case SERIAL_CTRL: 686 trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]); 687 ret = s->rregs[s->reg]; 688 s->reg = 0; 689 return ret; 690 case SERIAL_DATA: 691 s->rregs[R_STATUS] &= ~STATUS_RXAV; 692 clr_rxint(s); 693 if (s->type == escc_kbd || s->type == escc_mouse) { 694 ret = get_queue(s); 695 } else { 696 ret = s->rx; 697 } 698 trace_escc_mem_readb_data(CHN_C(s), ret); 699 qemu_chr_fe_accept_input(&s->chr); 700 return ret; 701 default: 702 break; 703 } 704 return 0; 705 } 706 707 static const MemoryRegionOps escc_mem_ops = { 708 .read = escc_mem_read, 709 .write = escc_mem_write, 710 .endianness = DEVICE_NATIVE_ENDIAN, 711 .valid = { 712 .min_access_size = 1, 713 .max_access_size = 1, 714 }, 715 }; 716 717 static int serial_can_receive(void *opaque) 718 { 719 ESCCChannelState *s = opaque; 720 int ret; 721 722 if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */ 723 || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) { 724 /* char already available */ 725 ret = 0; 726 } else { 727 ret = 1; 728 } 729 return ret; 730 } 731 732 static void serial_receive_byte(ESCCChannelState *s, int ch) 733 { 734 trace_escc_serial_receive_byte(CHN_C(s), ch); 735 s->rregs[R_STATUS] |= STATUS_RXAV; 736 s->rx = ch; 737 set_rxint(s); 738 } 739 740 static void serial_receive_break(ESCCChannelState *s) 741 { 742 s->rregs[R_STATUS] |= STATUS_BRK; 743 escc_update_irq(s); 744 } 745 746 static void serial_receive1(void *opaque, const uint8_t *buf, int size) 747 { 748 ESCCChannelState *s = opaque; 749 serial_receive_byte(s, buf[0]); 750 } 751 752 static void serial_event(void *opaque, QEMUChrEvent event) 753 { 754 ESCCChannelState *s = opaque; 755 if (event == CHR_EVENT_BREAK) { 756 serial_receive_break(s); 757 } 758 } 759 760 static const VMStateDescription vmstate_escc_chn = { 761 .name = "escc_chn", 762 .version_id = 2, 763 .minimum_version_id = 1, 764 .fields = (VMStateField[]) { 765 VMSTATE_UINT32(vmstate_dummy, ESCCChannelState), 766 VMSTATE_UINT32(reg, ESCCChannelState), 767 VMSTATE_UINT32(rxint, ESCCChannelState), 768 VMSTATE_UINT32(txint, ESCCChannelState), 769 VMSTATE_UINT32(rxint_under_svc, ESCCChannelState), 770 VMSTATE_UINT32(txint_under_svc, ESCCChannelState), 771 VMSTATE_UINT8(rx, ESCCChannelState), 772 VMSTATE_UINT8(tx, ESCCChannelState), 773 VMSTATE_BUFFER(wregs, ESCCChannelState), 774 VMSTATE_BUFFER(rregs, ESCCChannelState), 775 VMSTATE_END_OF_LIST() 776 } 777 }; 778 779 static const VMStateDescription vmstate_escc = { 780 .name = "escc", 781 .version_id = 2, 782 .minimum_version_id = 1, 783 .fields = (VMStateField[]) { 784 VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn, 785 ESCCChannelState), 786 VMSTATE_END_OF_LIST() 787 } 788 }; 789 790 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src, 791 InputEvent *evt) 792 { 793 ESCCChannelState *s = (ESCCChannelState *)dev; 794 int qcode, keycode; 795 InputKeyEvent *key; 796 797 assert(evt->type == INPUT_EVENT_KIND_KEY); 798 key = evt->u.key.data; 799 qcode = qemu_input_key_value_to_qcode(key->key); 800 trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode), 801 key->down); 802 803 if (qcode == Q_KEY_CODE_CAPS_LOCK) { 804 if (key->down) { 805 s->caps_lock_mode ^= 1; 806 if (s->caps_lock_mode == 2) { 807 return; /* Drop second press */ 808 } 809 } else { 810 s->caps_lock_mode ^= 2; 811 if (s->caps_lock_mode == 3) { 812 return; /* Drop first release */ 813 } 814 } 815 } 816 817 if (qcode == Q_KEY_CODE_NUM_LOCK) { 818 if (key->down) { 819 s->num_lock_mode ^= 1; 820 if (s->num_lock_mode == 2) { 821 return; /* Drop second press */ 822 } 823 } else { 824 s->num_lock_mode ^= 2; 825 if (s->num_lock_mode == 3) { 826 return; /* Drop first release */ 827 } 828 } 829 } 830 831 if (qcode > qemu_input_map_qcode_to_sun_len) { 832 return; 833 } 834 835 keycode = qemu_input_map_qcode_to_sun[qcode]; 836 if (!key->down) { 837 keycode |= 0x80; 838 } 839 trace_escc_sunkbd_event_out(keycode); 840 put_queue(s, keycode); 841 } 842 843 static QemuInputHandler sunkbd_handler = { 844 .name = "sun keyboard", 845 .mask = INPUT_EVENT_MASK_KEY, 846 .event = sunkbd_handle_event, 847 }; 848 849 static void handle_kbd_command(ESCCChannelState *s, int val) 850 { 851 trace_escc_kbd_command(val); 852 if (s->led_mode) { /* Ignore led byte */ 853 s->led_mode = 0; 854 return; 855 } 856 switch (val) { 857 case 1: /* Reset, return type code */ 858 clear_queue(s); 859 put_queue(s, 0xff); 860 put_queue(s, 4); /* Type 4 */ 861 put_queue(s, 0x7f); 862 break; 863 case 0xe: /* Set leds */ 864 s->led_mode = 1; 865 break; 866 case 7: /* Query layout */ 867 case 0xf: 868 clear_queue(s); 869 put_queue(s, 0xfe); 870 put_queue(s, 0x21); /* en-us layout */ 871 break; 872 default: 873 break; 874 } 875 } 876 877 static void sunmouse_event(void *opaque, 878 int dx, int dy, int dz, int buttons_state) 879 { 880 ESCCChannelState *s = opaque; 881 int ch; 882 883 trace_escc_sunmouse_event(dx, dy, buttons_state); 884 ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */ 885 886 if (buttons_state & MOUSE_EVENT_LBUTTON) { 887 ch ^= 0x4; 888 } 889 if (buttons_state & MOUSE_EVENT_MBUTTON) { 890 ch ^= 0x2; 891 } 892 if (buttons_state & MOUSE_EVENT_RBUTTON) { 893 ch ^= 0x1; 894 } 895 896 put_queue(s, ch); 897 898 ch = dx; 899 900 if (ch > 127) { 901 ch = 127; 902 } else if (ch < -127) { 903 ch = -127; 904 } 905 906 put_queue(s, ch & 0xff); 907 908 ch = -dy; 909 910 if (ch > 127) { 911 ch = 127; 912 } else if (ch < -127) { 913 ch = -127; 914 } 915 916 put_queue(s, ch & 0xff); 917 918 /* MSC protocol specifies two extra motion bytes */ 919 920 put_queue(s, 0); 921 put_queue(s, 0); 922 } 923 924 static void escc_init1(Object *obj) 925 { 926 ESCCState *s = ESCC(obj); 927 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 928 unsigned int i; 929 930 for (i = 0; i < 2; i++) { 931 sysbus_init_irq(dev, &s->chn[i].irq); 932 s->chn[i].chn = 1 - i; 933 } 934 s->chn[0].otherchn = &s->chn[1]; 935 s->chn[1].otherchn = &s->chn[0]; 936 937 sysbus_init_mmio(dev, &s->mmio); 938 } 939 940 static void escc_realize(DeviceState *dev, Error **errp) 941 { 942 ESCCState *s = ESCC(dev); 943 unsigned int i; 944 945 s->chn[0].disabled = s->disabled; 946 s->chn[1].disabled = s->disabled; 947 948 memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc", 949 ESCC_SIZE << s->it_shift); 950 951 for (i = 0; i < 2; i++) { 952 if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) { 953 s->chn[i].clock = s->frequency / 2; 954 qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive, 955 serial_receive1, serial_event, NULL, 956 &s->chn[i], NULL, true); 957 } 958 } 959 960 if (s->chn[0].type == escc_mouse) { 961 qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0, 962 "QEMU Sun Mouse"); 963 } 964 if (s->chn[1].type == escc_kbd) { 965 s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]), 966 &sunkbd_handler); 967 } 968 } 969 970 static Property escc_properties[] = { 971 DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0), 972 DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0), 973 DEFINE_PROP_BOOL("bit_swap", ESCCState, bit_swap, false), 974 DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0), 975 DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0), 976 DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0), 977 DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr), 978 DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr), 979 DEFINE_PROP_END_OF_LIST(), 980 }; 981 982 static void escc_class_init(ObjectClass *klass, void *data) 983 { 984 DeviceClass *dc = DEVICE_CLASS(klass); 985 986 dc->reset = escc_reset; 987 dc->realize = escc_realize; 988 dc->vmsd = &vmstate_escc; 989 device_class_set_props(dc, escc_properties); 990 set_bit(DEVICE_CATEGORY_INPUT, dc->categories); 991 } 992 993 static const TypeInfo escc_info = { 994 .name = TYPE_ESCC, 995 .parent = TYPE_SYS_BUS_DEVICE, 996 .instance_size = sizeof(ESCCState), 997 .instance_init = escc_init1, 998 .class_init = escc_class_init, 999 }; 1000 1001 static void escc_register_types(void) 1002 { 1003 type_register_static(&escc_info); 1004 } 1005 1006 type_init(escc_register_types) 1007