xref: /openbmc/qemu/hw/char/escc.c (revision 095859e5)
1 /*
2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/module.h"
32 #include "hw/char/escc.h"
33 #include "ui/console.h"
34 
35 #include "qemu/cutils.h"
36 #include "trace.h"
37 
38 /*
39  * Chipset docs:
40  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
41  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
42  *
43  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
44  * (Slave I/O), also produced as NCR89C105. See
45  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
46  *
47  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
48  * mouse and keyboard ports don't implement all functions and they are
49  * only asynchronous. There is no DMA.
50  *
51  * Z85C30 is also used on PowerMacs and m68k Macs.
52  *
53  * There are some small differences between Sparc version (sunzilog)
54  * and PowerMac (pmac):
55  *  Offset between control and data registers
56  *  There is some kind of lockup bug, but we can ignore it
57  *  CTS is inverted
58  *  DMA on pmac using DBDMA chip
59  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
60  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
61  *
62  * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
63  * but registers are grouped by type and not by channel:
64  * channel is selected by bit 0 of the address (instead of bit 1)
65  * and register is selected by bit 1 of the address (instead of bit 0).
66  */
67 
68 /*
69  * Modifications:
70  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
71  *                                  serial mouse queue.
72  *                                  Implemented serial mouse protocol.
73  *
74  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
75  */
76 
77 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
78 
79 #define SERIAL_CTRL 0
80 #define SERIAL_DATA 1
81 
82 #define W_CMD     0
83 #define CMD_PTR_MASK   0x07
84 #define CMD_CMD_MASK   0x38
85 #define CMD_HI         0x08
86 #define CMD_CLR_TXINT  0x28
87 #define CMD_CLR_IUS    0x38
88 #define W_INTR    1
89 #define INTR_INTALL    0x01
90 #define INTR_TXINT     0x02
91 #define INTR_PAR_SPEC  0x04
92 #define INTR_RXMODEMSK 0x18
93 #define INTR_RXINT1ST  0x08
94 #define INTR_RXINTALL  0x10
95 #define INTR_WTRQ_TXRX 0x20
96 #define W_IVEC    2
97 #define W_RXCTRL  3
98 #define RXCTRL_RXEN    0x01
99 #define RXCTRL_HUNT    0x10
100 #define W_TXCTRL1 4
101 #define TXCTRL1_PAREN  0x01
102 #define TXCTRL1_PAREV  0x02
103 #define TXCTRL1_1STOP  0x04
104 #define TXCTRL1_1HSTOP 0x08
105 #define TXCTRL1_2STOP  0x0c
106 #define TXCTRL1_STPMSK 0x0c
107 #define TXCTRL1_CLK1X  0x00
108 #define TXCTRL1_CLK16X 0x40
109 #define TXCTRL1_CLK32X 0x80
110 #define TXCTRL1_CLK64X 0xc0
111 #define TXCTRL1_CLKMSK 0xc0
112 #define W_TXCTRL2 5
113 #define TXCTRL2_TXCRC  0x01
114 #define TXCTRL2_TXEN   0x08
115 #define TXCTRL2_BITMSK 0x60
116 #define TXCTRL2_5BITS  0x00
117 #define TXCTRL2_7BITS  0x20
118 #define TXCTRL2_6BITS  0x40
119 #define TXCTRL2_8BITS  0x60
120 #define W_SYNC1   6
121 #define W_SYNC2   7
122 #define W_TXBUF   8
123 #define W_MINTR   9
124 #define MINTR_VIS      0x01
125 #define MINTR_NV       0x02
126 #define MINTR_STATUSHI 0x10
127 #define MINTR_SOFTIACK 0x20
128 #define MINTR_RST_MASK 0xc0
129 #define MINTR_RST_B    0x40
130 #define MINTR_RST_A    0x80
131 #define MINTR_RST_ALL  0xc0
132 #define W_MISC1  10
133 #define MISC1_ENC_MASK 0x60
134 #define W_CLOCK  11
135 #define CLOCK_TRXC     0x08
136 #define W_BRGLO  12
137 #define W_BRGHI  13
138 #define W_MISC2  14
139 #define MISC2_BRG_EN   0x01
140 #define MISC2_BRG_SRC  0x02
141 #define MISC2_LCL_LOOP 0x10
142 #define MISC2_PLLCMD0  0x20
143 #define MISC2_PLLCMD1  0x40
144 #define MISC2_PLLCMD2  0x80
145 #define W_EXTINT 15
146 #define EXTINT_DCD     0x08
147 #define EXTINT_SYNCINT 0x10
148 #define EXTINT_CTSINT  0x20
149 #define EXTINT_TXUNDRN 0x40
150 #define EXTINT_BRKINT  0x80
151 
152 #define R_STATUS  0
153 #define STATUS_RXAV    0x01
154 #define STATUS_ZERO    0x02
155 #define STATUS_TXEMPTY 0x04
156 #define STATUS_DCD     0x08
157 #define STATUS_SYNC    0x10
158 #define STATUS_CTS     0x20
159 #define STATUS_TXUNDRN 0x40
160 #define STATUS_BRK     0x80
161 #define R_SPEC    1
162 #define SPEC_ALLSENT   0x01
163 #define SPEC_BITS8     0x06
164 #define R_IVEC    2
165 #define IVEC_TXINTB    0x00
166 #define IVEC_LONOINT   0x06
167 #define IVEC_LORXINTA  0x0c
168 #define IVEC_LORXINTB  0x04
169 #define IVEC_LOTXINTA  0x08
170 #define IVEC_HINOINT   0x60
171 #define IVEC_HIRXINTA  0x30
172 #define IVEC_HIRXINTB  0x20
173 #define IVEC_HITXINTA  0x10
174 #define R_INTR    3
175 #define INTR_EXTINTB   0x01
176 #define INTR_TXINTB    0x02
177 #define INTR_RXINTB    0x04
178 #define INTR_EXTINTA   0x08
179 #define INTR_TXINTA    0x10
180 #define INTR_RXINTA    0x20
181 #define R_IPEN    4
182 #define R_TXCTRL1 5
183 #define R_TXCTRL2 6
184 #define R_BC      7
185 #define R_RXBUF   8
186 #define R_RXCTRL  9
187 #define R_MISC   10
188 #define MISC_2CLKMISS  0x40
189 #define R_MISC1  11
190 #define R_BRGLO  12
191 #define R_BRGHI  13
192 #define R_MISC1I 14
193 #define R_EXTINT 15
194 
195 static uint8_t sunkbd_layout_dip_switch(const char *sunkbd_layout);
196 static void handle_kbd_command(ESCCChannelState *s, int val);
197 static int serial_can_receive(void *opaque);
198 static void serial_receive_byte(ESCCChannelState *s, int ch);
199 
200 static int reg_shift(ESCCState *s)
201 {
202     return s->bit_swap ? s->it_shift + 1 : s->it_shift;
203 }
204 
205 static int chn_shift(ESCCState *s)
206 {
207     return s->bit_swap ? s->it_shift : s->it_shift + 1;
208 }
209 
210 static void clear_queue(void *opaque)
211 {
212     ESCCChannelState *s = opaque;
213     ESCCSERIOQueue *q = &s->queue;
214     q->rptr = q->wptr = q->count = 0;
215 }
216 
217 static void put_queue(void *opaque, int b)
218 {
219     ESCCChannelState *s = opaque;
220     ESCCSERIOQueue *q = &s->queue;
221 
222     trace_escc_put_queue(CHN_C(s), b);
223     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
224         return;
225     }
226     q->data[q->wptr] = b;
227     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
228         q->wptr = 0;
229     }
230     q->count++;
231     serial_receive_byte(s, 0);
232 }
233 
234 static uint32_t get_queue(void *opaque)
235 {
236     ESCCChannelState *s = opaque;
237     ESCCSERIOQueue *q = &s->queue;
238     int val;
239 
240     if (q->count == 0) {
241         return 0;
242     } else {
243         val = q->data[q->rptr];
244         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
245             q->rptr = 0;
246         }
247         q->count--;
248     }
249     trace_escc_get_queue(CHN_C(s), val);
250     if (q->count > 0) {
251         serial_receive_byte(s, 0);
252     }
253     return val;
254 }
255 
256 static int escc_update_irq_chn(ESCCChannelState *s)
257 {
258     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
259         /* tx ints enabled, pending */
260         ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
261         ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
262             s->rxint == 1) ||
263         /* rx ints enabled, pending */
264         ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
265             (s->rregs[R_STATUS] & STATUS_BRK)))) {
266         /* break int e&p */
267         return 1;
268     }
269     return 0;
270 }
271 
272 static void escc_update_irq(ESCCChannelState *s)
273 {
274     int irq;
275 
276     irq = escc_update_irq_chn(s);
277     irq |= escc_update_irq_chn(s->otherchn);
278 
279     trace_escc_update_irq(irq);
280     qemu_set_irq(s->irq, irq);
281 }
282 
283 static void escc_reset_chn(ESCCChannelState *s)
284 {
285     s->reg = 0;
286     s->rx = s->tx = 0;
287     s->rxint = s->txint = 0;
288     s->rxint_under_svc = s->txint_under_svc = 0;
289     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
290     clear_queue(s);
291 }
292 
293 static void escc_soft_reset_chn(ESCCChannelState *s)
294 {
295     escc_reset_chn(s);
296 
297     s->wregs[W_CMD] = 0;
298     s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
299     s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
300     /* 1 stop bit */
301     s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
302     s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
303     s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
304     s->wregs[W_MISC1] &= MISC1_ENC_MASK;
305     /* PLL disabled */
306     s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
307                          MISC2_PLLCMD1 | MISC2_PLLCMD2;
308     s->wregs[W_MISC2] |= MISC2_PLLCMD0;
309     /* Enable most interrupts */
310     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
311                          EXTINT_TXUNDRN | EXTINT_BRKINT;
312 
313     s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
314     s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
315     if (s->disabled) {
316         s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
317     }
318     s->rregs[R_SPEC] &= SPEC_ALLSENT;
319     s->rregs[R_SPEC] |= SPEC_BITS8;
320     s->rregs[R_INTR] = 0;
321     s->rregs[R_MISC] &= MISC_2CLKMISS;
322 }
323 
324 static void escc_hard_reset_chn(ESCCChannelState *s)
325 {
326     escc_soft_reset_chn(s);
327 
328     /*
329      * Hard reset is almost identical to soft reset above, except that the
330      * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
331      * (W_MISC2) have extra bits forced to 0/1
332      */
333     s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
334     s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
335     s->wregs[W_MISC1] = 0;
336     s->wregs[W_CLOCK] = CLOCK_TRXC;
337     s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
338     s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
339 }
340 
341 static void escc_reset(DeviceState *d)
342 {
343     ESCCState *s = ESCC(d);
344     int i, j;
345 
346     for (i = 0; i < 2; i++) {
347         ESCCChannelState *cs = &s->chn[i];
348 
349         /*
350          * According to the ESCC datasheet "Miscellaneous Questions" section
351          * on page 384, the values of the ESCC registers are not guaranteed on
352          * power-on until an explicit hardware or software reset has been
353          * issued. For now we zero the registers so that a device reset always
354          * returns the emulated device to a fixed state.
355          */
356         for (j = 0; j < ESCC_SERIAL_REGS; j++) {
357             cs->rregs[j] = 0;
358             cs->wregs[j] = 0;
359         }
360 
361         /*
362          * ...but there is an exception. The "Transmit Interrupts and Transmit
363          * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
364          * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
365          * (including a hardware reset by software), or a channel reset, this
366          * bit is set to 1". The Sun PROM checks this bit early on startup and
367          * gets stuck in an infinite loop if it is not set.
368          */
369         cs->rregs[R_STATUS] |= STATUS_TXEMPTY;
370 
371         escc_reset_chn(cs);
372     }
373 }
374 
375 static inline void set_rxint(ESCCChannelState *s)
376 {
377     s->rxint = 1;
378     /*
379      * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
380      * than chn_a rx/tx/special_condition service
381      */
382     s->rxint_under_svc = 1;
383     if (s->chn == escc_chn_a) {
384         s->rregs[R_INTR] |= INTR_RXINTA;
385         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
386             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
387         } else {
388             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
389         }
390     } else {
391         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
392         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
393             s->rregs[R_IVEC] = IVEC_HIRXINTB;
394         } else {
395             s->rregs[R_IVEC] = IVEC_LORXINTB;
396         }
397     }
398     escc_update_irq(s);
399 }
400 
401 static inline void set_txint(ESCCChannelState *s)
402 {
403     s->txint = 1;
404     if (!s->rxint_under_svc) {
405         s->txint_under_svc = 1;
406         if (s->chn == escc_chn_a) {
407             if (s->wregs[W_INTR] & INTR_TXINT) {
408                 s->rregs[R_INTR] |= INTR_TXINTA;
409             }
410             if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
411                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
412             } else {
413                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
414             }
415         } else {
416             s->rregs[R_IVEC] = IVEC_TXINTB;
417             if (s->wregs[W_INTR] & INTR_TXINT) {
418                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
419             }
420         }
421         escc_update_irq(s);
422     }
423 }
424 
425 static inline void clr_rxint(ESCCChannelState *s)
426 {
427     s->rxint = 0;
428     s->rxint_under_svc = 0;
429     if (s->chn == escc_chn_a) {
430         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
431             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
432         } else {
433             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
434         }
435         s->rregs[R_INTR] &= ~INTR_RXINTA;
436     } else {
437         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
438             s->rregs[R_IVEC] = IVEC_HINOINT;
439         } else {
440             s->rregs[R_IVEC] = IVEC_LONOINT;
441         }
442         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
443     }
444     if (s->txint) {
445         set_txint(s);
446     }
447     escc_update_irq(s);
448 }
449 
450 static inline void clr_txint(ESCCChannelState *s)
451 {
452     s->txint = 0;
453     s->txint_under_svc = 0;
454     if (s->chn == escc_chn_a) {
455         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
456             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
457         } else {
458             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
459         }
460         s->rregs[R_INTR] &= ~INTR_TXINTA;
461     } else {
462         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
463         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
464             s->rregs[R_IVEC] = IVEC_HINOINT;
465         } else {
466             s->rregs[R_IVEC] = IVEC_LONOINT;
467         }
468         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
469     }
470     if (s->rxint) {
471         set_rxint(s);
472     }
473     escc_update_irq(s);
474 }
475 
476 static void escc_update_parameters(ESCCChannelState *s)
477 {
478     int speed, parity, data_bits, stop_bits;
479     QEMUSerialSetParams ssp;
480 
481     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
482         return;
483     }
484 
485     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
486         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
487             parity = 'E';
488         } else {
489             parity = 'O';
490         }
491     } else {
492         parity = 'N';
493     }
494     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
495         stop_bits = 2;
496     } else {
497         stop_bits = 1;
498     }
499     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
500     case TXCTRL2_5BITS:
501         data_bits = 5;
502         break;
503     case TXCTRL2_7BITS:
504         data_bits = 7;
505         break;
506     case TXCTRL2_6BITS:
507         data_bits = 6;
508         break;
509     default:
510     case TXCTRL2_8BITS:
511         data_bits = 8;
512         break;
513     }
514     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
515     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
516     case TXCTRL1_CLK1X:
517         break;
518     case TXCTRL1_CLK16X:
519         speed /= 16;
520         break;
521     case TXCTRL1_CLK32X:
522         speed /= 32;
523         break;
524     default:
525     case TXCTRL1_CLK64X:
526         speed /= 64;
527         break;
528     }
529     ssp.speed = speed;
530     ssp.parity = parity;
531     ssp.data_bits = data_bits;
532     ssp.stop_bits = stop_bits;
533     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
534     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
535 }
536 
537 static void escc_mem_write(void *opaque, hwaddr addr,
538                            uint64_t val, unsigned size)
539 {
540     ESCCState *serial = opaque;
541     ESCCChannelState *s;
542     uint32_t saddr;
543     int newreg, channel;
544 
545     val &= 0xff;
546     saddr = (addr >> reg_shift(serial)) & 1;
547     channel = (addr >> chn_shift(serial)) & 1;
548     s = &serial->chn[channel];
549     switch (saddr) {
550     case SERIAL_CTRL:
551         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
552         newreg = 0;
553         switch (s->reg) {
554         case W_CMD:
555             newreg = val & CMD_PTR_MASK;
556             val &= CMD_CMD_MASK;
557             switch (val) {
558             case CMD_HI:
559                 newreg |= CMD_HI;
560                 break;
561             case CMD_CLR_TXINT:
562                 clr_txint(s);
563                 break;
564             case CMD_CLR_IUS:
565                 if (s->rxint_under_svc) {
566                     s->rxint_under_svc = 0;
567                     if (s->txint) {
568                         set_txint(s);
569                     }
570                 } else if (s->txint_under_svc) {
571                     s->txint_under_svc = 0;
572                 }
573                 escc_update_irq(s);
574                 break;
575             default:
576                 break;
577             }
578             break;
579         case W_RXCTRL:
580             s->wregs[s->reg] = val;
581             if (val & RXCTRL_HUNT) {
582                 s->rregs[R_STATUS] |= STATUS_SYNC;
583             }
584             break;
585         case W_INTR ... W_IVEC:
586         case W_SYNC1 ... W_TXBUF:
587         case W_MISC1 ... W_CLOCK:
588         case W_MISC2 ... W_EXTINT:
589             s->wregs[s->reg] = val;
590             break;
591         case W_TXCTRL1:
592             s->wregs[s->reg] = val;
593             /*
594              * The ESCC datasheet states that SPEC_ALLSENT is always set in
595              * sync mode, and set in async mode when all characters have
596              * cleared the transmitter. Since writes to SERIAL_DATA use the
597              * blocking qemu_chr_fe_write_all() function to write each
598              * character, the guest can never see the state when async data
599              * is in the process of being transmitted so we can set this bit
600              * unconditionally regardless of the state of the W_TXCTRL1 mode
601              * bits.
602              */
603             s->rregs[R_SPEC] |= SPEC_ALLSENT;
604             escc_update_parameters(s);
605             break;
606         case W_TXCTRL2:
607             s->wregs[s->reg] = val;
608             escc_update_parameters(s);
609             break;
610         case W_BRGLO:
611         case W_BRGHI:
612             s->wregs[s->reg] = val;
613             s->rregs[s->reg] = val;
614             escc_update_parameters(s);
615             break;
616         case W_MINTR:
617             switch (val & MINTR_RST_MASK) {
618             case 0:
619             default:
620                 break;
621             case MINTR_RST_B:
622                 trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
623                 escc_soft_reset_chn(&serial->chn[0]);
624                 return;
625             case MINTR_RST_A:
626                 trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
627                 escc_soft_reset_chn(&serial->chn[1]);
628                 return;
629             case MINTR_RST_ALL:
630                 trace_escc_hard_reset();
631                 escc_hard_reset_chn(&serial->chn[0]);
632                 escc_hard_reset_chn(&serial->chn[1]);
633                 return;
634             }
635             break;
636         default:
637             break;
638         }
639         if (s->reg == 0) {
640             s->reg = newreg;
641         } else {
642             s->reg = 0;
643         }
644         break;
645     case SERIAL_DATA:
646         trace_escc_mem_writeb_data(CHN_C(s), val);
647         /*
648          * Lower the irq when data is written to the Tx buffer and no other
649          * interrupts are currently pending. The irq will be raised again once
650          * the Tx buffer becomes empty below.
651          */
652         s->txint = 0;
653         escc_update_irq(s);
654         s->tx = val;
655         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
656             if (s->wregs[W_MISC2] & MISC2_LCL_LOOP) {
657                 serial_receive_byte(s, s->tx);
658             } else if (qemu_chr_fe_backend_connected(&s->chr)) {
659                 /*
660                  * XXX this blocks entire thread. Rewrite to use
661                  * qemu_chr_fe_write and background I/O callbacks
662                  */
663                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
664             } else if (s->type == escc_kbd && !s->disabled) {
665                 handle_kbd_command(s, val);
666             }
667         }
668         s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
669         s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
670         set_txint(s);
671         break;
672     default:
673         break;
674     }
675 }
676 
677 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
678                               unsigned size)
679 {
680     ESCCState *serial = opaque;
681     ESCCChannelState *s;
682     uint32_t saddr;
683     uint32_t ret;
684     int channel;
685 
686     saddr = (addr >> reg_shift(serial)) & 1;
687     channel = (addr >> chn_shift(serial)) & 1;
688     s = &serial->chn[channel];
689     switch (saddr) {
690     case SERIAL_CTRL:
691         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
692         ret = s->rregs[s->reg];
693         s->reg = 0;
694         return ret;
695     case SERIAL_DATA:
696         s->rregs[R_STATUS] &= ~STATUS_RXAV;
697         clr_rxint(s);
698         if (s->type == escc_kbd || s->type == escc_mouse) {
699             ret = get_queue(s);
700         } else {
701             ret = s->rx;
702         }
703         trace_escc_mem_readb_data(CHN_C(s), ret);
704         qemu_chr_fe_accept_input(&s->chr);
705         return ret;
706     default:
707         break;
708     }
709     return 0;
710 }
711 
712 static const MemoryRegionOps escc_mem_ops = {
713     .read = escc_mem_read,
714     .write = escc_mem_write,
715     .endianness = DEVICE_NATIVE_ENDIAN,
716     .valid = {
717         .min_access_size = 1,
718         .max_access_size = 1,
719     },
720 };
721 
722 static int serial_can_receive(void *opaque)
723 {
724     ESCCChannelState *s = opaque;
725     int ret;
726 
727     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
728         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
729         /* char already available */
730         ret = 0;
731     } else {
732         ret = 1;
733     }
734     return ret;
735 }
736 
737 static void serial_receive_byte(ESCCChannelState *s, int ch)
738 {
739     trace_escc_serial_receive_byte(CHN_C(s), ch);
740     s->rregs[R_STATUS] |= STATUS_RXAV;
741     s->rx = ch;
742     set_rxint(s);
743 }
744 
745 static void serial_receive_break(ESCCChannelState *s)
746 {
747     s->rregs[R_STATUS] |= STATUS_BRK;
748     escc_update_irq(s);
749 }
750 
751 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
752 {
753     ESCCChannelState *s = opaque;
754     serial_receive_byte(s, buf[0]);
755 }
756 
757 static void serial_event(void *opaque, QEMUChrEvent event)
758 {
759     ESCCChannelState *s = opaque;
760     if (event == CHR_EVENT_BREAK) {
761         serial_receive_break(s);
762     }
763 }
764 
765 static const VMStateDescription vmstate_escc_chn = {
766     .name = "escc_chn",
767     .version_id = 2,
768     .minimum_version_id = 1,
769     .fields = (VMStateField[]) {
770         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
771         VMSTATE_UINT32(reg, ESCCChannelState),
772         VMSTATE_UINT32(rxint, ESCCChannelState),
773         VMSTATE_UINT32(txint, ESCCChannelState),
774         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
775         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
776         VMSTATE_UINT8(rx, ESCCChannelState),
777         VMSTATE_UINT8(tx, ESCCChannelState),
778         VMSTATE_BUFFER(wregs, ESCCChannelState),
779         VMSTATE_BUFFER(rregs, ESCCChannelState),
780         VMSTATE_END_OF_LIST()
781     }
782 };
783 
784 static const VMStateDescription vmstate_escc = {
785     .name = "escc",
786     .version_id = 2,
787     .minimum_version_id = 1,
788     .fields = (VMStateField[]) {
789         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
790                              ESCCChannelState),
791         VMSTATE_END_OF_LIST()
792     }
793 };
794 
795 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
796                                 InputEvent *evt)
797 {
798     ESCCChannelState *s = (ESCCChannelState *)dev;
799     int qcode, keycode;
800     InputKeyEvent *key;
801 
802     assert(evt->type == INPUT_EVENT_KIND_KEY);
803     key = evt->u.key.data;
804     qcode = qemu_input_key_value_to_qcode(key->key);
805     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
806                                key->down);
807 
808     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
809         if (key->down) {
810             s->caps_lock_mode ^= 1;
811             if (s->caps_lock_mode == 2) {
812                 return; /* Drop second press */
813             }
814         } else {
815             s->caps_lock_mode ^= 2;
816             if (s->caps_lock_mode == 3) {
817                 return; /* Drop first release */
818             }
819         }
820     }
821 
822     if (qcode == Q_KEY_CODE_NUM_LOCK) {
823         if (key->down) {
824             s->num_lock_mode ^= 1;
825             if (s->num_lock_mode == 2) {
826                 return; /* Drop second press */
827             }
828         } else {
829             s->num_lock_mode ^= 2;
830             if (s->num_lock_mode == 3) {
831                 return; /* Drop first release */
832             }
833         }
834     }
835 
836     if (qcode >= qemu_input_map_qcode_to_sun_len) {
837         return;
838     }
839 
840     keycode = qemu_input_map_qcode_to_sun[qcode];
841     if (!key->down) {
842         keycode |= 0x80;
843     }
844     trace_escc_sunkbd_event_out(keycode);
845     put_queue(s, keycode);
846 }
847 
848 static QemuInputHandler sunkbd_handler = {
849     .name  = "sun keyboard",
850     .mask  = INPUT_EVENT_MASK_KEY,
851     .event = sunkbd_handle_event,
852 };
853 
854 static uint8_t sunkbd_layout_dip_switch(const char *kbd_layout)
855 {
856     /* Return the value of the dip-switches in a SUN Type 5 keyboard */
857     static uint8_t ret = 0xff;
858 
859     if ((ret == 0xff) && kbd_layout) {
860         int i;
861         struct layout_values {
862             const char *lang;
863             uint8_t dip;
864         } languages[] =
865             /*
866              * Dip values from table 3-16 Layouts for Type 4, 5 and 5c Keyboards
867              */
868             {
869                 {"en-us", 0x21}, /* U.S.A. (US5.kt) */
870                                  /* 0x22 is some other US (US_UNIX5.kt) */
871                 {"fr",    0x23}, /* France (France5.kt) */
872                 {"da",    0x24}, /* Denmark (Denmark5.kt) */
873                 {"de",    0x25}, /* Germany (Germany5.kt) */
874                 {"it",    0x26}, /* Italy (Italy5.kt) */
875                 {"nl",    0x27}, /* The Netherlands (Netherland5.kt) */
876                 {"no",    0x28}, /* Norway (Norway.kt) */
877                 {"pt",    0x29}, /* Portugal (Portugal5.kt) */
878                 {"es",    0x2a}, /* Spain (Spain5.kt) */
879                 {"sv",    0x2b}, /* Sweden (Sweden5.kt) */
880                 {"fr-ch", 0x2c}, /* Switzerland/French (Switzer_Fr5.kt) */
881                 {"de-ch", 0x2d}, /* Switzerland/German (Switzer_Ge5.kt) */
882                 {"en-gb", 0x2e}, /* Great Britain (UK5.kt) */
883                 {"ko",    0x2f}, /* Korea (Korea5.kt) */
884                 {"tw",    0x30}, /* Taiwan (Taiwan5.kt) */
885                 {"ja",    0x31}, /* Japan (Japan5.kt) */
886                 {"fr-ca", 0x32}, /* Canada/French (Canada_Fr5.kt) */
887                 {"hu",    0x33}, /* Hungary (Hungary5.kt) */
888                 {"pl",    0x34}, /* Poland (Poland5.kt) */
889                 {"cz",    0x35}, /* Czech (Czech5.kt) */
890                 {"ru",    0x36}, /* Russia (Russia5.kt) */
891                 {"lv",    0x37}, /* Latvia (Latvia5.kt) */
892                 {"tr",    0x38}, /* Turkey-Q5 (TurkeyQ5.kt) */
893                 {"gr",    0x39}, /* Greece (Greece5.kt) */
894                 {"ar",    0x3a}, /* Arabic (Arabic5.kt) */
895                 {"lt",    0x3b}, /* Lithuania (Lithuania5.kt) */
896                 {"nl-be", 0x3c}, /* Belgium (Belgian5.kt) */
897                 {"be",    0x3c}, /* Belgium (Belgian5.kt) */
898             };
899 
900         for (i = 0;
901              i < sizeof(languages) / sizeof(struct layout_values);
902              i++) {
903             if (!strcmp(kbd_layout, languages[i].lang)) {
904                 ret = languages[i].dip;
905                 return ret;
906             }
907         }
908 
909         /* Found no known language code */
910         if ((kbd_layout[0] >= '0') && (kbd_layout[0] <= '9')) {
911             unsigned int tmp;
912 
913             /* As a fallback we also accept numeric dip switch value */
914             if (!qemu_strtoui(kbd_layout, NULL, 0, &tmp)) {
915                 ret = tmp;
916             }
917         }
918     }
919 
920     if (ret == 0xff) {
921         /* Final fallback if keyboard_layout was not set or recognized */
922         ret = 0x21; /* en-us layout */
923     }
924     return ret;
925 }
926 
927 static void handle_kbd_command(ESCCChannelState *s, int val)
928 {
929     trace_escc_kbd_command(val);
930     if (s->led_mode) { /* Ignore led byte */
931         s->led_mode = 0;
932         return;
933     }
934     switch (val) {
935     case 1: /* Reset, return type code */
936         clear_queue(s);
937         put_queue(s, 0xff);
938         put_queue(s, 4); /* Type 4 */
939         put_queue(s, 0x7f);
940         break;
941     case 0xe: /* Set leds */
942         s->led_mode = 1;
943         break;
944     case 7: /* Query layout */
945     case 0xf:
946         clear_queue(s);
947         put_queue(s, 0xfe);
948         put_queue(s, sunkbd_layout_dip_switch(s->sunkbd_layout));
949         break;
950     default:
951         break;
952     }
953 }
954 
955 static void sunmouse_event(void *opaque,
956                                int dx, int dy, int dz, int buttons_state)
957 {
958     ESCCChannelState *s = opaque;
959     int ch;
960 
961     trace_escc_sunmouse_event(dx, dy, buttons_state);
962     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
963 
964     if (buttons_state & MOUSE_EVENT_LBUTTON) {
965         ch ^= 0x4;
966     }
967     if (buttons_state & MOUSE_EVENT_MBUTTON) {
968         ch ^= 0x2;
969     }
970     if (buttons_state & MOUSE_EVENT_RBUTTON) {
971         ch ^= 0x1;
972     }
973 
974     put_queue(s, ch);
975 
976     ch = dx;
977 
978     if (ch > 127) {
979         ch = 127;
980     } else if (ch < -127) {
981         ch = -127;
982     }
983 
984     put_queue(s, ch & 0xff);
985 
986     ch = -dy;
987 
988     if (ch > 127) {
989         ch = 127;
990     } else if (ch < -127) {
991         ch = -127;
992     }
993 
994     put_queue(s, ch & 0xff);
995 
996     /* MSC protocol specifies two extra motion bytes */
997 
998     put_queue(s, 0);
999     put_queue(s, 0);
1000 }
1001 
1002 static void escc_init1(Object *obj)
1003 {
1004     ESCCState *s = ESCC(obj);
1005     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
1006     unsigned int i;
1007 
1008     for (i = 0; i < 2; i++) {
1009         sysbus_init_irq(dev, &s->chn[i].irq);
1010         s->chn[i].chn = 1 - i;
1011     }
1012     s->chn[0].otherchn = &s->chn[1];
1013     s->chn[1].otherchn = &s->chn[0];
1014 
1015     sysbus_init_mmio(dev, &s->mmio);
1016 }
1017 
1018 static void escc_realize(DeviceState *dev, Error **errp)
1019 {
1020     ESCCState *s = ESCC(dev);
1021     unsigned int i;
1022 
1023     s->chn[0].disabled = s->disabled;
1024     s->chn[1].disabled = s->disabled;
1025 
1026     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
1027                           ESCC_SIZE << s->it_shift);
1028 
1029     for (i = 0; i < 2; i++) {
1030         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
1031             s->chn[i].clock = s->frequency / 2;
1032             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
1033                                      serial_receive1, serial_event, NULL,
1034                                      &s->chn[i], NULL, true);
1035         }
1036     }
1037 
1038     if (s->chn[0].type == escc_mouse) {
1039         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
1040                                      "QEMU Sun Mouse");
1041     }
1042     if (s->chn[1].type == escc_kbd) {
1043         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
1044                                                    &sunkbd_handler);
1045     }
1046 }
1047 
1048 static Property escc_properties[] = {
1049     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
1050     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
1051     DEFINE_PROP_BOOL("bit_swap",    ESCCState, bit_swap,    false),
1052     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
1053     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
1054     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
1055     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
1056     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
1057     DEFINE_PROP_STRING("chnA-sunkbd-layout", ESCCState, chn[1].sunkbd_layout),
1058     DEFINE_PROP_END_OF_LIST(),
1059 };
1060 
1061 static void escc_class_init(ObjectClass *klass, void *data)
1062 {
1063     DeviceClass *dc = DEVICE_CLASS(klass);
1064 
1065     dc->reset = escc_reset;
1066     dc->realize = escc_realize;
1067     dc->vmsd = &vmstate_escc;
1068     device_class_set_props(dc, escc_properties);
1069     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
1070 }
1071 
1072 static const TypeInfo escc_info = {
1073     .name          = TYPE_ESCC,
1074     .parent        = TYPE_SYS_BUS_DEVICE,
1075     .instance_size = sizeof(ESCCState),
1076     .instance_init = escc_init1,
1077     .class_init    = escc_class_init,
1078 };
1079 
1080 static void escc_register_types(void)
1081 {
1082     type_register_static(&escc_info);
1083 }
1084 
1085 type_init(escc_register_types)
1086