xref: /openbmc/qemu/hw/char/cadence_uart.c (revision f6a51c84)
1 /*
2  * Device model for Cadence UART
3  *
4  * Reference: Xilinx Zynq 7000 reference manual
5  *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6  *   - Chapter 19 UART Controller
7  *   - Appendix B for Register details
8  *
9  * Copyright (c) 2010 Xilinx Inc.
10  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11  * Copyright (c) 2012 PetaLogix Pty Ltd.
12  * Written by Haibing Ma
13  *            M.Habib
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "sysemu/char.h"
27 #include "qemu/timer.h"
28 #include "qemu/log.h"
29 #include "hw/char/cadence_uart.h"
30 
31 #ifdef CADENCE_UART_ERR_DEBUG
32 #define DB_PRINT(...) do { \
33     fprintf(stderr,  ": %s: ", __func__); \
34     fprintf(stderr, ## __VA_ARGS__); \
35     } while (0);
36 #else
37     #define DB_PRINT(...)
38 #endif
39 
40 #define UART_SR_INTR_RTRIG     0x00000001
41 #define UART_SR_INTR_REMPTY    0x00000002
42 #define UART_SR_INTR_RFUL      0x00000004
43 #define UART_SR_INTR_TEMPTY    0x00000008
44 #define UART_SR_INTR_TFUL      0x00000010
45 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
46 #define UART_SR_TTRIG          0x00002000
47 #define UART_INTR_TTRIG        0x00000400
48 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
49  * SR, then the same bit in CISR is set high too */
50 #define UART_SR_TO_CISR_MASK   0x0000001F
51 
52 #define UART_INTR_ROVR         0x00000020
53 #define UART_INTR_FRAME        0x00000040
54 #define UART_INTR_PARE         0x00000080
55 #define UART_INTR_TIMEOUT      0x00000100
56 #define UART_INTR_DMSI         0x00000200
57 #define UART_INTR_TOVR         0x00001000
58 
59 #define UART_SR_RACTIVE    0x00000400
60 #define UART_SR_TACTIVE    0x00000800
61 #define UART_SR_FDELT      0x00001000
62 
63 #define UART_CR_RXRST       0x00000001
64 #define UART_CR_TXRST       0x00000002
65 #define UART_CR_RX_EN       0x00000004
66 #define UART_CR_RX_DIS      0x00000008
67 #define UART_CR_TX_EN       0x00000010
68 #define UART_CR_TX_DIS      0x00000020
69 #define UART_CR_RST_TO      0x00000040
70 #define UART_CR_STARTBRK    0x00000080
71 #define UART_CR_STOPBRK     0x00000100
72 
73 #define UART_MR_CLKS            0x00000001
74 #define UART_MR_CHRL            0x00000006
75 #define UART_MR_CHRL_SH         1
76 #define UART_MR_PAR             0x00000038
77 #define UART_MR_PAR_SH          3
78 #define UART_MR_NBSTOP          0x000000C0
79 #define UART_MR_NBSTOP_SH       6
80 #define UART_MR_CHMODE          0x00000300
81 #define UART_MR_CHMODE_SH       8
82 #define UART_MR_UCLKEN          0x00000400
83 #define UART_MR_IRMODE          0x00000800
84 
85 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
86 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
87 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
88 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
89 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
90 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
91 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
92 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
93 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
94 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
95 
96 #define UART_INPUT_CLK         50000000
97 
98 #define R_CR       (0x00/4)
99 #define R_MR       (0x04/4)
100 #define R_IER      (0x08/4)
101 #define R_IDR      (0x0C/4)
102 #define R_IMR      (0x10/4)
103 #define R_CISR     (0x14/4)
104 #define R_BRGR     (0x18/4)
105 #define R_RTOR     (0x1C/4)
106 #define R_RTRIG    (0x20/4)
107 #define R_MCR      (0x24/4)
108 #define R_MSR      (0x28/4)
109 #define R_SR       (0x2C/4)
110 #define R_TX_RX    (0x30/4)
111 #define R_BDIV     (0x34/4)
112 #define R_FDEL     (0x38/4)
113 #define R_PMIN     (0x3C/4)
114 #define R_PWID     (0x40/4)
115 #define R_TTRIG    (0x44/4)
116 
117 
118 static void uart_update_status(CadenceUARTState *s)
119 {
120     s->r[R_SR] = 0;
121 
122     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
123                                                            : 0;
124     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
125     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
126 
127     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
128                                                            : 0;
129     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
130     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
131 
132     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
133     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
134     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
135 }
136 
137 static void fifo_trigger_update(void *opaque)
138 {
139     CadenceUARTState *s = opaque;
140 
141     if (s->r[R_RTOR]) {
142         s->r[R_CISR] |= UART_INTR_TIMEOUT;
143         uart_update_status(s);
144     }
145 }
146 
147 static void uart_rx_reset(CadenceUARTState *s)
148 {
149     s->rx_wpos = 0;
150     s->rx_count = 0;
151     qemu_chr_fe_accept_input(&s->chr);
152 }
153 
154 static void uart_tx_reset(CadenceUARTState *s)
155 {
156     s->tx_count = 0;
157 }
158 
159 static void uart_send_breaks(CadenceUARTState *s)
160 {
161     int break_enabled = 1;
162 
163     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
164                       &break_enabled);
165 }
166 
167 static void uart_parameters_setup(CadenceUARTState *s)
168 {
169     QEMUSerialSetParams ssp;
170     unsigned int baud_rate, packet_size;
171 
172     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
173             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
174 
175     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
176     packet_size = 1;
177 
178     switch (s->r[R_MR] & UART_MR_PAR) {
179     case UART_PARITY_EVEN:
180         ssp.parity = 'E';
181         packet_size++;
182         break;
183     case UART_PARITY_ODD:
184         ssp.parity = 'O';
185         packet_size++;
186         break;
187     default:
188         ssp.parity = 'N';
189         break;
190     }
191 
192     switch (s->r[R_MR] & UART_MR_CHRL) {
193     case UART_DATA_BITS_6:
194         ssp.data_bits = 6;
195         break;
196     case UART_DATA_BITS_7:
197         ssp.data_bits = 7;
198         break;
199     default:
200         ssp.data_bits = 8;
201         break;
202     }
203 
204     switch (s->r[R_MR] & UART_MR_NBSTOP) {
205     case UART_STOP_BITS_1:
206         ssp.stop_bits = 1;
207         break;
208     default:
209         ssp.stop_bits = 2;
210         break;
211     }
212 
213     packet_size += ssp.data_bits + ssp.stop_bits;
214     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
215     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
216 }
217 
218 static int uart_can_receive(void *opaque)
219 {
220     CadenceUARTState *s = opaque;
221     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
222     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
223 
224     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
225         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
226     }
227     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
228         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
229     }
230     return ret;
231 }
232 
233 static void uart_ctrl_update(CadenceUARTState *s)
234 {
235     if (s->r[R_CR] & UART_CR_TXRST) {
236         uart_tx_reset(s);
237     }
238 
239     if (s->r[R_CR] & UART_CR_RXRST) {
240         uart_rx_reset(s);
241     }
242 
243     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
244 
245     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
246         uart_send_breaks(s);
247     }
248 }
249 
250 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
251 {
252     CadenceUARTState *s = opaque;
253     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254     int i;
255 
256     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
257         return;
258     }
259 
260     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
261         s->r[R_CISR] |= UART_INTR_ROVR;
262     } else {
263         for (i = 0; i < size; i++) {
264             s->rx_fifo[s->rx_wpos] = buf[i];
265             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
266             s->rx_count++;
267         }
268         timer_mod(s->fifo_trigger_handle, new_rx_time +
269                                                 (s->char_tx_time * 4));
270     }
271     uart_update_status(s);
272 }
273 
274 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
275                                   void *opaque)
276 {
277     CadenceUARTState *s = opaque;
278     int ret;
279 
280     /* instant drain the fifo when there's no back-end */
281     if (!qemu_chr_fe_get_driver(&s->chr)) {
282         s->tx_count = 0;
283         return FALSE;
284     }
285 
286     if (!s->tx_count) {
287         return FALSE;
288     }
289 
290     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
291 
292     if (ret >= 0) {
293         s->tx_count -= ret;
294         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
295     }
296 
297     if (s->tx_count) {
298         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
299                                         cadence_uart_xmit, s);
300         if (!r) {
301             s->tx_count = 0;
302             return FALSE;
303         }
304     }
305 
306     uart_update_status(s);
307     return FALSE;
308 }
309 
310 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
311                                int size)
312 {
313     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
314         return;
315     }
316 
317     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
318         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
319         /*
320          * This can only be a guest error via a bad tx fifo register push,
321          * as can_receive() should stop remote loop and echo modes ever getting
322          * us to here.
323          */
324         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
325         s->r[R_CISR] |= UART_INTR_ROVR;
326     }
327 
328     memcpy(s->tx_fifo + s->tx_count, buf, size);
329     s->tx_count += size;
330 
331     cadence_uart_xmit(NULL, G_IO_OUT, s);
332 }
333 
334 static void uart_receive(void *opaque, const uint8_t *buf, int size)
335 {
336     CadenceUARTState *s = opaque;
337     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
338 
339     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
340         uart_write_rx_fifo(opaque, buf, size);
341     }
342     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
343         uart_write_tx_fifo(s, buf, size);
344     }
345 }
346 
347 static void uart_event(void *opaque, int event)
348 {
349     CadenceUARTState *s = opaque;
350     uint8_t buf = '\0';
351 
352     if (event == CHR_EVENT_BREAK) {
353         uart_write_rx_fifo(opaque, &buf, 1);
354     }
355 
356     uart_update_status(s);
357 }
358 
359 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
360 {
361     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
362         return;
363     }
364 
365     if (s->rx_count) {
366         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
367                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
368         *c = s->rx_fifo[rx_rpos];
369         s->rx_count--;
370 
371         qemu_chr_fe_accept_input(&s->chr);
372     } else {
373         *c = 0;
374     }
375 
376     uart_update_status(s);
377 }
378 
379 static void uart_write(void *opaque, hwaddr offset,
380                           uint64_t value, unsigned size)
381 {
382     CadenceUARTState *s = opaque;
383 
384     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
385     offset >>= 2;
386     if (offset >= CADENCE_UART_R_MAX) {
387         return;
388     }
389     switch (offset) {
390     case R_IER: /* ier (wts imr) */
391         s->r[R_IMR] |= value;
392         break;
393     case R_IDR: /* idr (wtc imr) */
394         s->r[R_IMR] &= ~value;
395         break;
396     case R_IMR: /* imr (read only) */
397         break;
398     case R_CISR: /* cisr (wtc) */
399         s->r[R_CISR] &= ~value;
400         break;
401     case R_TX_RX: /* UARTDR */
402         switch (s->r[R_MR] & UART_MR_CHMODE) {
403         case NORMAL_MODE:
404             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
405             break;
406         case LOCAL_LOOPBACK:
407             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
408             break;
409         }
410         break;
411     case R_BRGR: /* Baud rate generator */
412         if (value >= 0x01) {
413             s->r[offset] = value & 0xFFFF;
414         }
415         break;
416     case R_BDIV:    /* Baud rate divider */
417         if (value >= 0x04) {
418             s->r[offset] = value & 0xFF;
419         }
420         break;
421     default:
422         s->r[offset] = value;
423     }
424 
425     switch (offset) {
426     case R_CR:
427         uart_ctrl_update(s);
428         break;
429     case R_MR:
430         uart_parameters_setup(s);
431         break;
432     }
433     uart_update_status(s);
434 }
435 
436 static uint64_t uart_read(void *opaque, hwaddr offset,
437         unsigned size)
438 {
439     CadenceUARTState *s = opaque;
440     uint32_t c = 0;
441 
442     offset >>= 2;
443     if (offset >= CADENCE_UART_R_MAX) {
444         c = 0;
445     } else if (offset == R_TX_RX) {
446         uart_read_rx_fifo(s, &c);
447     } else {
448        c = s->r[offset];
449     }
450 
451     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
452     return c;
453 }
454 
455 static const MemoryRegionOps uart_ops = {
456     .read = uart_read,
457     .write = uart_write,
458     .endianness = DEVICE_NATIVE_ENDIAN,
459 };
460 
461 static void cadence_uart_reset(DeviceState *dev)
462 {
463     CadenceUARTState *s = CADENCE_UART(dev);
464 
465     s->r[R_CR] = 0x00000128;
466     s->r[R_IMR] = 0;
467     s->r[R_CISR] = 0;
468     s->r[R_RTRIG] = 0x00000020;
469     s->r[R_BRGR] = 0x0000028B;
470     s->r[R_BDIV] = 0x0000000F;
471     s->r[R_TTRIG] = 0x00000020;
472 
473     uart_rx_reset(s);
474     uart_tx_reset(s);
475 
476     uart_update_status(s);
477 }
478 
479 static void cadence_uart_realize(DeviceState *dev, Error **errp)
480 {
481     CadenceUARTState *s = CADENCE_UART(dev);
482 
483     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
484                                           fifo_trigger_update, s);
485 
486     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
487                              uart_event, s, NULL, true);
488 }
489 
490 static void cadence_uart_init(Object *obj)
491 {
492     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
493     CadenceUARTState *s = CADENCE_UART(obj);
494 
495     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
496     sysbus_init_mmio(sbd, &s->iomem);
497     sysbus_init_irq(sbd, &s->irq);
498 
499     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
500 }
501 
502 static int cadence_uart_post_load(void *opaque, int version_id)
503 {
504     CadenceUARTState *s = opaque;
505 
506     /* Ensure these two aren't invalid numbers */
507     if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
508         s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
509         /* Value is invalid, abort */
510         return 1;
511     }
512 
513     uart_parameters_setup(s);
514     uart_update_status(s);
515     return 0;
516 }
517 
518 static const VMStateDescription vmstate_cadence_uart = {
519     .name = "cadence_uart",
520     .version_id = 2,
521     .minimum_version_id = 2,
522     .post_load = cadence_uart_post_load,
523     .fields = (VMStateField[]) {
524         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
525         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
526                             CADENCE_UART_RX_FIFO_SIZE),
527         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
528                             CADENCE_UART_TX_FIFO_SIZE),
529         VMSTATE_UINT32(rx_count, CadenceUARTState),
530         VMSTATE_UINT32(tx_count, CadenceUARTState),
531         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
532         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
533         VMSTATE_END_OF_LIST()
534     }
535 };
536 
537 static Property cadence_uart_properties[] = {
538     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
539     DEFINE_PROP_END_OF_LIST(),
540 };
541 
542 static void cadence_uart_class_init(ObjectClass *klass, void *data)
543 {
544     DeviceClass *dc = DEVICE_CLASS(klass);
545 
546     dc->realize = cadence_uart_realize;
547     dc->vmsd = &vmstate_cadence_uart;
548     dc->reset = cadence_uart_reset;
549     dc->props = cadence_uart_properties;
550   }
551 
552 static const TypeInfo cadence_uart_info = {
553     .name          = TYPE_CADENCE_UART,
554     .parent        = TYPE_SYS_BUS_DEVICE,
555     .instance_size = sizeof(CadenceUARTState),
556     .instance_init = cadence_uart_init,
557     .class_init    = cadence_uart_class_init,
558 };
559 
560 static void cadence_uart_register_types(void)
561 {
562     type_register_static(&cadence_uart_info);
563 }
564 
565 type_init(cadence_uart_register_types)
566