xref: /openbmc/qemu/hw/char/cadence_uart.c (revision d9d3aaea)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "hw/char/cadence_uart.h"
21 
22 #ifdef CADENCE_UART_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24     fprintf(stderr,  ": %s: ", __func__); \
25     fprintf(stderr, ## __VA_ARGS__); \
26     } while (0);
27 #else
28     #define DB_PRINT(...)
29 #endif
30 
31 #define UART_SR_INTR_RTRIG     0x00000001
32 #define UART_SR_INTR_REMPTY    0x00000002
33 #define UART_SR_INTR_RFUL      0x00000004
34 #define UART_SR_INTR_TEMPTY    0x00000008
35 #define UART_SR_INTR_TFUL      0x00000010
36 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
37 #define UART_SR_TTRIG          0x00002000
38 #define UART_INTR_TTRIG        0x00000400
39 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
40  * SR, then the same bit in CISR is set high too */
41 #define UART_SR_TO_CISR_MASK   0x0000001F
42 
43 #define UART_INTR_ROVR         0x00000020
44 #define UART_INTR_FRAME        0x00000040
45 #define UART_INTR_PARE         0x00000080
46 #define UART_INTR_TIMEOUT      0x00000100
47 #define UART_INTR_DMSI         0x00000200
48 #define UART_INTR_TOVR         0x00001000
49 
50 #define UART_SR_RACTIVE    0x00000400
51 #define UART_SR_TACTIVE    0x00000800
52 #define UART_SR_FDELT      0x00001000
53 
54 #define UART_CR_RXRST       0x00000001
55 #define UART_CR_TXRST       0x00000002
56 #define UART_CR_RX_EN       0x00000004
57 #define UART_CR_RX_DIS      0x00000008
58 #define UART_CR_TX_EN       0x00000010
59 #define UART_CR_TX_DIS      0x00000020
60 #define UART_CR_RST_TO      0x00000040
61 #define UART_CR_STARTBRK    0x00000080
62 #define UART_CR_STOPBRK     0x00000100
63 
64 #define UART_MR_CLKS            0x00000001
65 #define UART_MR_CHRL            0x00000006
66 #define UART_MR_CHRL_SH         1
67 #define UART_MR_PAR             0x00000038
68 #define UART_MR_PAR_SH          3
69 #define UART_MR_NBSTOP          0x000000C0
70 #define UART_MR_NBSTOP_SH       6
71 #define UART_MR_CHMODE          0x00000300
72 #define UART_MR_CHMODE_SH       8
73 #define UART_MR_UCLKEN          0x00000400
74 #define UART_MR_IRMODE          0x00000800
75 
76 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
77 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
78 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
79 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
80 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
81 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
82 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
83 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
84 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
85 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
86 
87 #define UART_INPUT_CLK         50000000
88 
89 #define R_CR       (0x00/4)
90 #define R_MR       (0x04/4)
91 #define R_IER      (0x08/4)
92 #define R_IDR      (0x0C/4)
93 #define R_IMR      (0x10/4)
94 #define R_CISR     (0x14/4)
95 #define R_BRGR     (0x18/4)
96 #define R_RTOR     (0x1C/4)
97 #define R_RTRIG    (0x20/4)
98 #define R_MCR      (0x24/4)
99 #define R_MSR      (0x28/4)
100 #define R_SR       (0x2C/4)
101 #define R_TX_RX    (0x30/4)
102 #define R_BDIV     (0x34/4)
103 #define R_FDEL     (0x38/4)
104 #define R_PMIN     (0x3C/4)
105 #define R_PWID     (0x40/4)
106 #define R_TTRIG    (0x44/4)
107 
108 
109 static void uart_update_status(CadenceUARTState *s)
110 {
111     s->r[R_SR] = 0;
112 
113     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
114                                                            : 0;
115     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
116     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
117 
118     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
119                                                            : 0;
120     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
121     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
122 
123     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
124     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
125     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
126 }
127 
128 static void fifo_trigger_update(void *opaque)
129 {
130     CadenceUARTState *s = opaque;
131 
132     s->r[R_CISR] |= UART_INTR_TIMEOUT;
133 
134     uart_update_status(s);
135 }
136 
137 static void uart_rx_reset(CadenceUARTState *s)
138 {
139     s->rx_wpos = 0;
140     s->rx_count = 0;
141     if (s->chr) {
142         qemu_chr_accept_input(s->chr);
143     }
144 }
145 
146 static void uart_tx_reset(CadenceUARTState *s)
147 {
148     s->tx_count = 0;
149 }
150 
151 static void uart_send_breaks(CadenceUARTState *s)
152 {
153     int break_enabled = 1;
154 
155     if (s->chr) {
156         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
157                                    &break_enabled);
158     }
159 }
160 
161 static void uart_parameters_setup(CadenceUARTState *s)
162 {
163     QEMUSerialSetParams ssp;
164     unsigned int baud_rate, packet_size;
165 
166     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
167             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
168 
169     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
170     packet_size = 1;
171 
172     switch (s->r[R_MR] & UART_MR_PAR) {
173     case UART_PARITY_EVEN:
174         ssp.parity = 'E';
175         packet_size++;
176         break;
177     case UART_PARITY_ODD:
178         ssp.parity = 'O';
179         packet_size++;
180         break;
181     default:
182         ssp.parity = 'N';
183         break;
184     }
185 
186     switch (s->r[R_MR] & UART_MR_CHRL) {
187     case UART_DATA_BITS_6:
188         ssp.data_bits = 6;
189         break;
190     case UART_DATA_BITS_7:
191         ssp.data_bits = 7;
192         break;
193     default:
194         ssp.data_bits = 8;
195         break;
196     }
197 
198     switch (s->r[R_MR] & UART_MR_NBSTOP) {
199     case UART_STOP_BITS_1:
200         ssp.stop_bits = 1;
201         break;
202     default:
203         ssp.stop_bits = 2;
204         break;
205     }
206 
207     packet_size += ssp.data_bits + ssp.stop_bits;
208     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
209     if (s->chr) {
210         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
211     }
212 }
213 
214 static int uart_can_receive(void *opaque)
215 {
216     CadenceUARTState *s = opaque;
217     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
218     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
219 
220     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
221         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
222     }
223     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
224         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
225     }
226     return ret;
227 }
228 
229 static void uart_ctrl_update(CadenceUARTState *s)
230 {
231     if (s->r[R_CR] & UART_CR_TXRST) {
232         uart_tx_reset(s);
233     }
234 
235     if (s->r[R_CR] & UART_CR_RXRST) {
236         uart_rx_reset(s);
237     }
238 
239     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
240 
241     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
242         uart_send_breaks(s);
243     }
244 }
245 
246 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
247 {
248     CadenceUARTState *s = opaque;
249     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
250     int i;
251 
252     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
253         return;
254     }
255 
256     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
257         s->r[R_CISR] |= UART_INTR_ROVR;
258     } else {
259         for (i = 0; i < size; i++) {
260             s->rx_fifo[s->rx_wpos] = buf[i];
261             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
262             s->rx_count++;
263         }
264         timer_mod(s->fifo_trigger_handle, new_rx_time +
265                                                 (s->char_tx_time * 4));
266     }
267     uart_update_status(s);
268 }
269 
270 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
271                                   void *opaque)
272 {
273     CadenceUARTState *s = opaque;
274     int ret;
275 
276     /* instant drain the fifo when there's no back-end */
277     if (!s->chr) {
278         s->tx_count = 0;
279         return FALSE;
280     }
281 
282     if (!s->tx_count) {
283         return FALSE;
284     }
285 
286     ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
287     s->tx_count -= ret;
288     memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
289 
290     if (s->tx_count) {
291         int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
292                                       cadence_uart_xmit, s);
293         assert(r);
294     }
295 
296     uart_update_status(s);
297     return FALSE;
298 }
299 
300 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
301                                int size)
302 {
303     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
304         return;
305     }
306 
307     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
308         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
309         /*
310          * This can only be a guest error via a bad tx fifo register push,
311          * as can_receive() should stop remote loop and echo modes ever getting
312          * us to here.
313          */
314         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
315         s->r[R_CISR] |= UART_INTR_ROVR;
316     }
317 
318     memcpy(s->tx_fifo + s->tx_count, buf, size);
319     s->tx_count += size;
320 
321     cadence_uart_xmit(NULL, G_IO_OUT, s);
322 }
323 
324 static void uart_receive(void *opaque, const uint8_t *buf, int size)
325 {
326     CadenceUARTState *s = opaque;
327     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
328 
329     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
330         uart_write_rx_fifo(opaque, buf, size);
331     }
332     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
333         uart_write_tx_fifo(s, buf, size);
334     }
335 }
336 
337 static void uart_event(void *opaque, int event)
338 {
339     CadenceUARTState *s = opaque;
340     uint8_t buf = '\0';
341 
342     if (event == CHR_EVENT_BREAK) {
343         uart_write_rx_fifo(opaque, &buf, 1);
344     }
345 
346     uart_update_status(s);
347 }
348 
349 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
350 {
351     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
352         return;
353     }
354 
355     if (s->rx_count) {
356         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
357                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
358         *c = s->rx_fifo[rx_rpos];
359         s->rx_count--;
360 
361         if (s->chr) {
362             qemu_chr_accept_input(s->chr);
363         }
364     } else {
365         *c = 0;
366     }
367 
368     uart_update_status(s);
369 }
370 
371 static void uart_write(void *opaque, hwaddr offset,
372                           uint64_t value, unsigned size)
373 {
374     CadenceUARTState *s = opaque;
375 
376     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
377     offset >>= 2;
378     if (offset >= CADENCE_UART_R_MAX) {
379         return;
380     }
381     switch (offset) {
382     case R_IER: /* ier (wts imr) */
383         s->r[R_IMR] |= value;
384         break;
385     case R_IDR: /* idr (wtc imr) */
386         s->r[R_IMR] &= ~value;
387         break;
388     case R_IMR: /* imr (read only) */
389         break;
390     case R_CISR: /* cisr (wtc) */
391         s->r[R_CISR] &= ~value;
392         break;
393     case R_TX_RX: /* UARTDR */
394         switch (s->r[R_MR] & UART_MR_CHMODE) {
395         case NORMAL_MODE:
396             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
397             break;
398         case LOCAL_LOOPBACK:
399             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
400             break;
401         }
402         break;
403     default:
404         s->r[offset] = value;
405     }
406 
407     switch (offset) {
408     case R_CR:
409         uart_ctrl_update(s);
410         break;
411     case R_MR:
412         uart_parameters_setup(s);
413         break;
414     }
415     uart_update_status(s);
416 }
417 
418 static uint64_t uart_read(void *opaque, hwaddr offset,
419         unsigned size)
420 {
421     CadenceUARTState *s = opaque;
422     uint32_t c = 0;
423 
424     offset >>= 2;
425     if (offset >= CADENCE_UART_R_MAX) {
426         c = 0;
427     } else if (offset == R_TX_RX) {
428         uart_read_rx_fifo(s, &c);
429     } else {
430        c = s->r[offset];
431     }
432 
433     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
434     return c;
435 }
436 
437 static const MemoryRegionOps uart_ops = {
438     .read = uart_read,
439     .write = uart_write,
440     .endianness = DEVICE_NATIVE_ENDIAN,
441 };
442 
443 static void cadence_uart_reset(DeviceState *dev)
444 {
445     CadenceUARTState *s = CADENCE_UART(dev);
446 
447     s->r[R_CR] = 0x00000128;
448     s->r[R_IMR] = 0;
449     s->r[R_CISR] = 0;
450     s->r[R_RTRIG] = 0x00000020;
451     s->r[R_BRGR] = 0x0000000F;
452     s->r[R_TTRIG] = 0x00000020;
453 
454     uart_rx_reset(s);
455     uart_tx_reset(s);
456 
457     uart_update_status(s);
458 }
459 
460 static void cadence_uart_realize(DeviceState *dev, Error **errp)
461 {
462     CadenceUARTState *s = CADENCE_UART(dev);
463 
464     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
465                                           fifo_trigger_update, s);
466 
467     /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
468     s->chr = qemu_char_get_next_serial();
469 
470     if (s->chr) {
471         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
472                               uart_event, s);
473     }
474 }
475 
476 static void cadence_uart_init(Object *obj)
477 {
478     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
479     CadenceUARTState *s = CADENCE_UART(obj);
480 
481     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
482     sysbus_init_mmio(sbd, &s->iomem);
483     sysbus_init_irq(sbd, &s->irq);
484 
485     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
486 }
487 
488 static int cadence_uart_post_load(void *opaque, int version_id)
489 {
490     CadenceUARTState *s = opaque;
491 
492     uart_parameters_setup(s);
493     uart_update_status(s);
494     return 0;
495 }
496 
497 static const VMStateDescription vmstate_cadence_uart = {
498     .name = "cadence_uart",
499     .version_id = 2,
500     .minimum_version_id = 2,
501     .post_load = cadence_uart_post_load,
502     .fields = (VMStateField[]) {
503         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
504         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
505                             CADENCE_UART_RX_FIFO_SIZE),
506         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
507                             CADENCE_UART_TX_FIFO_SIZE),
508         VMSTATE_UINT32(rx_count, CadenceUARTState),
509         VMSTATE_UINT32(tx_count, CadenceUARTState),
510         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
511         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
512         VMSTATE_END_OF_LIST()
513     }
514 };
515 
516 static void cadence_uart_class_init(ObjectClass *klass, void *data)
517 {
518     DeviceClass *dc = DEVICE_CLASS(klass);
519 
520     dc->realize = cadence_uart_realize;
521     dc->vmsd = &vmstate_cadence_uart;
522     dc->reset = cadence_uart_reset;
523     /* Reason: realize() method uses qemu_char_get_next_serial() */
524     dc->cannot_instantiate_with_device_add_yet = true;
525 }
526 
527 static const TypeInfo cadence_uart_info = {
528     .name          = TYPE_CADENCE_UART,
529     .parent        = TYPE_SYS_BUS_DEVICE,
530     .instance_size = sizeof(CadenceUARTState),
531     .instance_init = cadence_uart_init,
532     .class_init    = cadence_uart_class_init,
533 };
534 
535 static void cadence_uart_register_types(void)
536 {
537     type_register_static(&cadence_uart_info);
538 }
539 
540 type_init(cadence_uart_register_types)
541