xref: /openbmc/qemu/hw/char/cadence_uart.c (revision bcad45de6a0b5bf10a274872d2e45da3403232da)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "sysemu/char.h"
22 #include "qemu/timer.h"
23 #include "qemu/log.h"
24 #include "hw/char/cadence_uart.h"
25 
26 #ifdef CADENCE_UART_ERR_DEBUG
27 #define DB_PRINT(...) do { \
28     fprintf(stderr,  ": %s: ", __func__); \
29     fprintf(stderr, ## __VA_ARGS__); \
30     } while (0);
31 #else
32     #define DB_PRINT(...)
33 #endif
34 
35 #define UART_SR_INTR_RTRIG     0x00000001
36 #define UART_SR_INTR_REMPTY    0x00000002
37 #define UART_SR_INTR_RFUL      0x00000004
38 #define UART_SR_INTR_TEMPTY    0x00000008
39 #define UART_SR_INTR_TFUL      0x00000010
40 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
41 #define UART_SR_TTRIG          0x00002000
42 #define UART_INTR_TTRIG        0x00000400
43 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
44  * SR, then the same bit in CISR is set high too */
45 #define UART_SR_TO_CISR_MASK   0x0000001F
46 
47 #define UART_INTR_ROVR         0x00000020
48 #define UART_INTR_FRAME        0x00000040
49 #define UART_INTR_PARE         0x00000080
50 #define UART_INTR_TIMEOUT      0x00000100
51 #define UART_INTR_DMSI         0x00000200
52 #define UART_INTR_TOVR         0x00001000
53 
54 #define UART_SR_RACTIVE    0x00000400
55 #define UART_SR_TACTIVE    0x00000800
56 #define UART_SR_FDELT      0x00001000
57 
58 #define UART_CR_RXRST       0x00000001
59 #define UART_CR_TXRST       0x00000002
60 #define UART_CR_RX_EN       0x00000004
61 #define UART_CR_RX_DIS      0x00000008
62 #define UART_CR_TX_EN       0x00000010
63 #define UART_CR_TX_DIS      0x00000020
64 #define UART_CR_RST_TO      0x00000040
65 #define UART_CR_STARTBRK    0x00000080
66 #define UART_CR_STOPBRK     0x00000100
67 
68 #define UART_MR_CLKS            0x00000001
69 #define UART_MR_CHRL            0x00000006
70 #define UART_MR_CHRL_SH         1
71 #define UART_MR_PAR             0x00000038
72 #define UART_MR_PAR_SH          3
73 #define UART_MR_NBSTOP          0x000000C0
74 #define UART_MR_NBSTOP_SH       6
75 #define UART_MR_CHMODE          0x00000300
76 #define UART_MR_CHMODE_SH       8
77 #define UART_MR_UCLKEN          0x00000400
78 #define UART_MR_IRMODE          0x00000800
79 
80 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
81 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
82 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
83 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
84 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
85 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
86 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
87 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
88 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
89 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
90 
91 #define UART_INPUT_CLK         50000000
92 
93 #define R_CR       (0x00/4)
94 #define R_MR       (0x04/4)
95 #define R_IER      (0x08/4)
96 #define R_IDR      (0x0C/4)
97 #define R_IMR      (0x10/4)
98 #define R_CISR     (0x14/4)
99 #define R_BRGR     (0x18/4)
100 #define R_RTOR     (0x1C/4)
101 #define R_RTRIG    (0x20/4)
102 #define R_MCR      (0x24/4)
103 #define R_MSR      (0x28/4)
104 #define R_SR       (0x2C/4)
105 #define R_TX_RX    (0x30/4)
106 #define R_BDIV     (0x34/4)
107 #define R_FDEL     (0x38/4)
108 #define R_PMIN     (0x3C/4)
109 #define R_PWID     (0x40/4)
110 #define R_TTRIG    (0x44/4)
111 
112 
113 static void uart_update_status(CadenceUARTState *s)
114 {
115     s->r[R_SR] = 0;
116 
117     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
118                                                            : 0;
119     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
120     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
121 
122     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
123                                                            : 0;
124     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
125     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
126 
127     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
128     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
129     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
130 }
131 
132 static void fifo_trigger_update(void *opaque)
133 {
134     CadenceUARTState *s = opaque;
135 
136     s->r[R_CISR] |= UART_INTR_TIMEOUT;
137 
138     uart_update_status(s);
139 }
140 
141 static void uart_rx_reset(CadenceUARTState *s)
142 {
143     s->rx_wpos = 0;
144     s->rx_count = 0;
145     qemu_chr_fe_accept_input(&s->chr);
146 }
147 
148 static void uart_tx_reset(CadenceUARTState *s)
149 {
150     s->tx_count = 0;
151 }
152 
153 static void uart_send_breaks(CadenceUARTState *s)
154 {
155     int break_enabled = 1;
156 
157     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
158                       &break_enabled);
159 }
160 
161 static void uart_parameters_setup(CadenceUARTState *s)
162 {
163     QEMUSerialSetParams ssp;
164     unsigned int baud_rate, packet_size;
165 
166     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
167             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
168 
169     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
170     packet_size = 1;
171 
172     switch (s->r[R_MR] & UART_MR_PAR) {
173     case UART_PARITY_EVEN:
174         ssp.parity = 'E';
175         packet_size++;
176         break;
177     case UART_PARITY_ODD:
178         ssp.parity = 'O';
179         packet_size++;
180         break;
181     default:
182         ssp.parity = 'N';
183         break;
184     }
185 
186     switch (s->r[R_MR] & UART_MR_CHRL) {
187     case UART_DATA_BITS_6:
188         ssp.data_bits = 6;
189         break;
190     case UART_DATA_BITS_7:
191         ssp.data_bits = 7;
192         break;
193     default:
194         ssp.data_bits = 8;
195         break;
196     }
197 
198     switch (s->r[R_MR] & UART_MR_NBSTOP) {
199     case UART_STOP_BITS_1:
200         ssp.stop_bits = 1;
201         break;
202     default:
203         ssp.stop_bits = 2;
204         break;
205     }
206 
207     packet_size += ssp.data_bits + ssp.stop_bits;
208     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
209     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
210 }
211 
212 static int uart_can_receive(void *opaque)
213 {
214     CadenceUARTState *s = opaque;
215     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
216     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
217 
218     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
219         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
220     }
221     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
222         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
223     }
224     return ret;
225 }
226 
227 static void uart_ctrl_update(CadenceUARTState *s)
228 {
229     if (s->r[R_CR] & UART_CR_TXRST) {
230         uart_tx_reset(s);
231     }
232 
233     if (s->r[R_CR] & UART_CR_RXRST) {
234         uart_rx_reset(s);
235     }
236 
237     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
238 
239     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
240         uart_send_breaks(s);
241     }
242 }
243 
244 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
245 {
246     CadenceUARTState *s = opaque;
247     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
248     int i;
249 
250     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
251         return;
252     }
253 
254     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
255         s->r[R_CISR] |= UART_INTR_ROVR;
256     } else {
257         for (i = 0; i < size; i++) {
258             s->rx_fifo[s->rx_wpos] = buf[i];
259             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
260             s->rx_count++;
261         }
262         timer_mod(s->fifo_trigger_handle, new_rx_time +
263                                                 (s->char_tx_time * 4));
264     }
265     uart_update_status(s);
266 }
267 
268 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
269                                   void *opaque)
270 {
271     CadenceUARTState *s = opaque;
272     int ret;
273 
274     /* instant drain the fifo when there's no back-end */
275     if (!qemu_chr_fe_get_driver(&s->chr)) {
276         s->tx_count = 0;
277         return FALSE;
278     }
279 
280     if (!s->tx_count) {
281         return FALSE;
282     }
283 
284     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
285 
286     if (ret >= 0) {
287         s->tx_count -= ret;
288         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
289     }
290 
291     if (s->tx_count) {
292         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
293                                         cadence_uart_xmit, s);
294         if (!r) {
295             s->tx_count = 0;
296             return FALSE;
297         }
298     }
299 
300     uart_update_status(s);
301     return FALSE;
302 }
303 
304 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
305                                int size)
306 {
307     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
308         return;
309     }
310 
311     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
312         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
313         /*
314          * This can only be a guest error via a bad tx fifo register push,
315          * as can_receive() should stop remote loop and echo modes ever getting
316          * us to here.
317          */
318         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
319         s->r[R_CISR] |= UART_INTR_ROVR;
320     }
321 
322     memcpy(s->tx_fifo + s->tx_count, buf, size);
323     s->tx_count += size;
324 
325     cadence_uart_xmit(NULL, G_IO_OUT, s);
326 }
327 
328 static void uart_receive(void *opaque, const uint8_t *buf, int size)
329 {
330     CadenceUARTState *s = opaque;
331     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
332 
333     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
334         uart_write_rx_fifo(opaque, buf, size);
335     }
336     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
337         uart_write_tx_fifo(s, buf, size);
338     }
339 }
340 
341 static void uart_event(void *opaque, int event)
342 {
343     CadenceUARTState *s = opaque;
344     uint8_t buf = '\0';
345 
346     if (event == CHR_EVENT_BREAK) {
347         uart_write_rx_fifo(opaque, &buf, 1);
348     }
349 
350     uart_update_status(s);
351 }
352 
353 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
354 {
355     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
356         return;
357     }
358 
359     if (s->rx_count) {
360         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
361                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
362         *c = s->rx_fifo[rx_rpos];
363         s->rx_count--;
364 
365         qemu_chr_fe_accept_input(&s->chr);
366     } else {
367         *c = 0;
368     }
369 
370     uart_update_status(s);
371 }
372 
373 static void uart_write(void *opaque, hwaddr offset,
374                           uint64_t value, unsigned size)
375 {
376     CadenceUARTState *s = opaque;
377 
378     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
379     offset >>= 2;
380     if (offset >= CADENCE_UART_R_MAX) {
381         return;
382     }
383     switch (offset) {
384     case R_IER: /* ier (wts imr) */
385         s->r[R_IMR] |= value;
386         break;
387     case R_IDR: /* idr (wtc imr) */
388         s->r[R_IMR] &= ~value;
389         break;
390     case R_IMR: /* imr (read only) */
391         break;
392     case R_CISR: /* cisr (wtc) */
393         s->r[R_CISR] &= ~value;
394         break;
395     case R_TX_RX: /* UARTDR */
396         switch (s->r[R_MR] & UART_MR_CHMODE) {
397         case NORMAL_MODE:
398             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
399             break;
400         case LOCAL_LOOPBACK:
401             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
402             break;
403         }
404         break;
405     default:
406         s->r[offset] = value;
407     }
408 
409     switch (offset) {
410     case R_CR:
411         uart_ctrl_update(s);
412         break;
413     case R_MR:
414         uart_parameters_setup(s);
415         break;
416     }
417     uart_update_status(s);
418 }
419 
420 static uint64_t uart_read(void *opaque, hwaddr offset,
421         unsigned size)
422 {
423     CadenceUARTState *s = opaque;
424     uint32_t c = 0;
425 
426     offset >>= 2;
427     if (offset >= CADENCE_UART_R_MAX) {
428         c = 0;
429     } else if (offset == R_TX_RX) {
430         uart_read_rx_fifo(s, &c);
431     } else {
432        c = s->r[offset];
433     }
434 
435     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
436     return c;
437 }
438 
439 static const MemoryRegionOps uart_ops = {
440     .read = uart_read,
441     .write = uart_write,
442     .endianness = DEVICE_NATIVE_ENDIAN,
443 };
444 
445 static void cadence_uart_reset(DeviceState *dev)
446 {
447     CadenceUARTState *s = CADENCE_UART(dev);
448 
449     s->r[R_CR] = 0x00000128;
450     s->r[R_IMR] = 0;
451     s->r[R_CISR] = 0;
452     s->r[R_RTRIG] = 0x00000020;
453     s->r[R_BRGR] = 0x0000000F;
454     s->r[R_TTRIG] = 0x00000020;
455 
456     uart_rx_reset(s);
457     uart_tx_reset(s);
458 
459     uart_update_status(s);
460 }
461 
462 static void cadence_uart_realize(DeviceState *dev, Error **errp)
463 {
464     CadenceUARTState *s = CADENCE_UART(dev);
465 
466     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
467                                           fifo_trigger_update, s);
468 
469     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
470                              uart_event, s, NULL, true);
471 }
472 
473 static void cadence_uart_init(Object *obj)
474 {
475     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
476     CadenceUARTState *s = CADENCE_UART(obj);
477 
478     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
479     sysbus_init_mmio(sbd, &s->iomem);
480     sysbus_init_irq(sbd, &s->irq);
481 
482     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
483 }
484 
485 static int cadence_uart_post_load(void *opaque, int version_id)
486 {
487     CadenceUARTState *s = opaque;
488 
489     uart_parameters_setup(s);
490     uart_update_status(s);
491     return 0;
492 }
493 
494 static const VMStateDescription vmstate_cadence_uart = {
495     .name = "cadence_uart",
496     .version_id = 2,
497     .minimum_version_id = 2,
498     .post_load = cadence_uart_post_load,
499     .fields = (VMStateField[]) {
500         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
501         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
502                             CADENCE_UART_RX_FIFO_SIZE),
503         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
504                             CADENCE_UART_TX_FIFO_SIZE),
505         VMSTATE_UINT32(rx_count, CadenceUARTState),
506         VMSTATE_UINT32(tx_count, CadenceUARTState),
507         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
508         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
509         VMSTATE_END_OF_LIST()
510     }
511 };
512 
513 static Property cadence_uart_properties[] = {
514     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
515     DEFINE_PROP_END_OF_LIST(),
516 };
517 
518 static void cadence_uart_class_init(ObjectClass *klass, void *data)
519 {
520     DeviceClass *dc = DEVICE_CLASS(klass);
521 
522     dc->realize = cadence_uart_realize;
523     dc->vmsd = &vmstate_cadence_uart;
524     dc->reset = cadence_uart_reset;
525     dc->props = cadence_uart_properties;
526   }
527 
528 static const TypeInfo cadence_uart_info = {
529     .name          = TYPE_CADENCE_UART,
530     .parent        = TYPE_SYS_BUS_DEVICE,
531     .instance_size = sizeof(CadenceUARTState),
532     .instance_init = cadence_uart_init,
533     .class_init    = cadence_uart_class_init,
534 };
535 
536 static void cadence_uart_register_types(void)
537 {
538     type_register_static(&cadence_uart_info);
539 }
540 
541 type_init(cadence_uart_register_types)
542