xref: /openbmc/qemu/hw/char/cadence_uart.c (revision 8692aa29)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "sysemu/char.h"
22 #include "qemu/timer.h"
23 #include "qemu/log.h"
24 #include "hw/char/cadence_uart.h"
25 
26 #ifdef CADENCE_UART_ERR_DEBUG
27 #define DB_PRINT(...) do { \
28     fprintf(stderr,  ": %s: ", __func__); \
29     fprintf(stderr, ## __VA_ARGS__); \
30     } while (0);
31 #else
32     #define DB_PRINT(...)
33 #endif
34 
35 #define UART_SR_INTR_RTRIG     0x00000001
36 #define UART_SR_INTR_REMPTY    0x00000002
37 #define UART_SR_INTR_RFUL      0x00000004
38 #define UART_SR_INTR_TEMPTY    0x00000008
39 #define UART_SR_INTR_TFUL      0x00000010
40 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
41 #define UART_SR_TTRIG          0x00002000
42 #define UART_INTR_TTRIG        0x00000400
43 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
44  * SR, then the same bit in CISR is set high too */
45 #define UART_SR_TO_CISR_MASK   0x0000001F
46 
47 #define UART_INTR_ROVR         0x00000020
48 #define UART_INTR_FRAME        0x00000040
49 #define UART_INTR_PARE         0x00000080
50 #define UART_INTR_TIMEOUT      0x00000100
51 #define UART_INTR_DMSI         0x00000200
52 #define UART_INTR_TOVR         0x00001000
53 
54 #define UART_SR_RACTIVE    0x00000400
55 #define UART_SR_TACTIVE    0x00000800
56 #define UART_SR_FDELT      0x00001000
57 
58 #define UART_CR_RXRST       0x00000001
59 #define UART_CR_TXRST       0x00000002
60 #define UART_CR_RX_EN       0x00000004
61 #define UART_CR_RX_DIS      0x00000008
62 #define UART_CR_TX_EN       0x00000010
63 #define UART_CR_TX_DIS      0x00000020
64 #define UART_CR_RST_TO      0x00000040
65 #define UART_CR_STARTBRK    0x00000080
66 #define UART_CR_STOPBRK     0x00000100
67 
68 #define UART_MR_CLKS            0x00000001
69 #define UART_MR_CHRL            0x00000006
70 #define UART_MR_CHRL_SH         1
71 #define UART_MR_PAR             0x00000038
72 #define UART_MR_PAR_SH          3
73 #define UART_MR_NBSTOP          0x000000C0
74 #define UART_MR_NBSTOP_SH       6
75 #define UART_MR_CHMODE          0x00000300
76 #define UART_MR_CHMODE_SH       8
77 #define UART_MR_UCLKEN          0x00000400
78 #define UART_MR_IRMODE          0x00000800
79 
80 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
81 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
82 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
83 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
84 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
85 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
86 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
87 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
88 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
89 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
90 
91 #define UART_INPUT_CLK         50000000
92 
93 #define R_CR       (0x00/4)
94 #define R_MR       (0x04/4)
95 #define R_IER      (0x08/4)
96 #define R_IDR      (0x0C/4)
97 #define R_IMR      (0x10/4)
98 #define R_CISR     (0x14/4)
99 #define R_BRGR     (0x18/4)
100 #define R_RTOR     (0x1C/4)
101 #define R_RTRIG    (0x20/4)
102 #define R_MCR      (0x24/4)
103 #define R_MSR      (0x28/4)
104 #define R_SR       (0x2C/4)
105 #define R_TX_RX    (0x30/4)
106 #define R_BDIV     (0x34/4)
107 #define R_FDEL     (0x38/4)
108 #define R_PMIN     (0x3C/4)
109 #define R_PWID     (0x40/4)
110 #define R_TTRIG    (0x44/4)
111 
112 
113 static void uart_update_status(CadenceUARTState *s)
114 {
115     s->r[R_SR] = 0;
116 
117     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
118                                                            : 0;
119     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
120     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
121 
122     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
123                                                            : 0;
124     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
125     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
126 
127     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
128     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
129     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
130 }
131 
132 static void fifo_trigger_update(void *opaque)
133 {
134     CadenceUARTState *s = opaque;
135 
136     s->r[R_CISR] |= UART_INTR_TIMEOUT;
137 
138     uart_update_status(s);
139 }
140 
141 static void uart_rx_reset(CadenceUARTState *s)
142 {
143     s->rx_wpos = 0;
144     s->rx_count = 0;
145     if (s->chr) {
146         qemu_chr_accept_input(s->chr);
147     }
148 }
149 
150 static void uart_tx_reset(CadenceUARTState *s)
151 {
152     s->tx_count = 0;
153 }
154 
155 static void uart_send_breaks(CadenceUARTState *s)
156 {
157     int break_enabled = 1;
158 
159     if (s->chr) {
160         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
161                                    &break_enabled);
162     }
163 }
164 
165 static void uart_parameters_setup(CadenceUARTState *s)
166 {
167     QEMUSerialSetParams ssp;
168     unsigned int baud_rate, packet_size;
169 
170     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
171             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
172 
173     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
174     packet_size = 1;
175 
176     switch (s->r[R_MR] & UART_MR_PAR) {
177     case UART_PARITY_EVEN:
178         ssp.parity = 'E';
179         packet_size++;
180         break;
181     case UART_PARITY_ODD:
182         ssp.parity = 'O';
183         packet_size++;
184         break;
185     default:
186         ssp.parity = 'N';
187         break;
188     }
189 
190     switch (s->r[R_MR] & UART_MR_CHRL) {
191     case UART_DATA_BITS_6:
192         ssp.data_bits = 6;
193         break;
194     case UART_DATA_BITS_7:
195         ssp.data_bits = 7;
196         break;
197     default:
198         ssp.data_bits = 8;
199         break;
200     }
201 
202     switch (s->r[R_MR] & UART_MR_NBSTOP) {
203     case UART_STOP_BITS_1:
204         ssp.stop_bits = 1;
205         break;
206     default:
207         ssp.stop_bits = 2;
208         break;
209     }
210 
211     packet_size += ssp.data_bits + ssp.stop_bits;
212     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
213     if (s->chr) {
214         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
215     }
216 }
217 
218 static int uart_can_receive(void *opaque)
219 {
220     CadenceUARTState *s = opaque;
221     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
222     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
223 
224     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
225         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
226     }
227     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
228         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
229     }
230     return ret;
231 }
232 
233 static void uart_ctrl_update(CadenceUARTState *s)
234 {
235     if (s->r[R_CR] & UART_CR_TXRST) {
236         uart_tx_reset(s);
237     }
238 
239     if (s->r[R_CR] & UART_CR_RXRST) {
240         uart_rx_reset(s);
241     }
242 
243     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
244 
245     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
246         uart_send_breaks(s);
247     }
248 }
249 
250 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
251 {
252     CadenceUARTState *s = opaque;
253     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254     int i;
255 
256     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
257         return;
258     }
259 
260     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
261         s->r[R_CISR] |= UART_INTR_ROVR;
262     } else {
263         for (i = 0; i < size; i++) {
264             s->rx_fifo[s->rx_wpos] = buf[i];
265             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
266             s->rx_count++;
267         }
268         timer_mod(s->fifo_trigger_handle, new_rx_time +
269                                                 (s->char_tx_time * 4));
270     }
271     uart_update_status(s);
272 }
273 
274 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
275                                   void *opaque)
276 {
277     CadenceUARTState *s = opaque;
278     int ret;
279 
280     /* instant drain the fifo when there's no back-end */
281     if (!s->chr) {
282         s->tx_count = 0;
283         return FALSE;
284     }
285 
286     if (!s->tx_count) {
287         return FALSE;
288     }
289 
290     ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
291 
292     if (ret >= 0) {
293         s->tx_count -= ret;
294         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
295     }
296 
297     if (s->tx_count) {
298         guint r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
299                                         cadence_uart_xmit, s);
300         if (!r) {
301             s->tx_count = 0;
302             return FALSE;
303         }
304     }
305 
306     uart_update_status(s);
307     return FALSE;
308 }
309 
310 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
311                                int size)
312 {
313     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
314         return;
315     }
316 
317     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
318         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
319         /*
320          * This can only be a guest error via a bad tx fifo register push,
321          * as can_receive() should stop remote loop and echo modes ever getting
322          * us to here.
323          */
324         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
325         s->r[R_CISR] |= UART_INTR_ROVR;
326     }
327 
328     memcpy(s->tx_fifo + s->tx_count, buf, size);
329     s->tx_count += size;
330 
331     cadence_uart_xmit(NULL, G_IO_OUT, s);
332 }
333 
334 static void uart_receive(void *opaque, const uint8_t *buf, int size)
335 {
336     CadenceUARTState *s = opaque;
337     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
338 
339     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
340         uart_write_rx_fifo(opaque, buf, size);
341     }
342     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
343         uart_write_tx_fifo(s, buf, size);
344     }
345 }
346 
347 static void uart_event(void *opaque, int event)
348 {
349     CadenceUARTState *s = opaque;
350     uint8_t buf = '\0';
351 
352     if (event == CHR_EVENT_BREAK) {
353         uart_write_rx_fifo(opaque, &buf, 1);
354     }
355 
356     uart_update_status(s);
357 }
358 
359 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
360 {
361     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
362         return;
363     }
364 
365     if (s->rx_count) {
366         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
367                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
368         *c = s->rx_fifo[rx_rpos];
369         s->rx_count--;
370 
371         if (s->chr) {
372             qemu_chr_accept_input(s->chr);
373         }
374     } else {
375         *c = 0;
376     }
377 
378     uart_update_status(s);
379 }
380 
381 static void uart_write(void *opaque, hwaddr offset,
382                           uint64_t value, unsigned size)
383 {
384     CadenceUARTState *s = opaque;
385 
386     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
387     offset >>= 2;
388     if (offset >= CADENCE_UART_R_MAX) {
389         return;
390     }
391     switch (offset) {
392     case R_IER: /* ier (wts imr) */
393         s->r[R_IMR] |= value;
394         break;
395     case R_IDR: /* idr (wtc imr) */
396         s->r[R_IMR] &= ~value;
397         break;
398     case R_IMR: /* imr (read only) */
399         break;
400     case R_CISR: /* cisr (wtc) */
401         s->r[R_CISR] &= ~value;
402         break;
403     case R_TX_RX: /* UARTDR */
404         switch (s->r[R_MR] & UART_MR_CHMODE) {
405         case NORMAL_MODE:
406             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
407             break;
408         case LOCAL_LOOPBACK:
409             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
410             break;
411         }
412         break;
413     default:
414         s->r[offset] = value;
415     }
416 
417     switch (offset) {
418     case R_CR:
419         uart_ctrl_update(s);
420         break;
421     case R_MR:
422         uart_parameters_setup(s);
423         break;
424     }
425     uart_update_status(s);
426 }
427 
428 static uint64_t uart_read(void *opaque, hwaddr offset,
429         unsigned size)
430 {
431     CadenceUARTState *s = opaque;
432     uint32_t c = 0;
433 
434     offset >>= 2;
435     if (offset >= CADENCE_UART_R_MAX) {
436         c = 0;
437     } else if (offset == R_TX_RX) {
438         uart_read_rx_fifo(s, &c);
439     } else {
440        c = s->r[offset];
441     }
442 
443     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
444     return c;
445 }
446 
447 static const MemoryRegionOps uart_ops = {
448     .read = uart_read,
449     .write = uart_write,
450     .endianness = DEVICE_NATIVE_ENDIAN,
451 };
452 
453 static void cadence_uart_reset(DeviceState *dev)
454 {
455     CadenceUARTState *s = CADENCE_UART(dev);
456 
457     s->r[R_CR] = 0x00000128;
458     s->r[R_IMR] = 0;
459     s->r[R_CISR] = 0;
460     s->r[R_RTRIG] = 0x00000020;
461     s->r[R_BRGR] = 0x0000000F;
462     s->r[R_TTRIG] = 0x00000020;
463 
464     uart_rx_reset(s);
465     uart_tx_reset(s);
466 
467     uart_update_status(s);
468 }
469 
470 static void cadence_uart_realize(DeviceState *dev, Error **errp)
471 {
472     CadenceUARTState *s = CADENCE_UART(dev);
473 
474     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
475                                           fifo_trigger_update, s);
476 
477     if (s->chr) {
478         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
479                               uart_event, s);
480     }
481 }
482 
483 static void cadence_uart_init(Object *obj)
484 {
485     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
486     CadenceUARTState *s = CADENCE_UART(obj);
487 
488     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
489     sysbus_init_mmio(sbd, &s->iomem);
490     sysbus_init_irq(sbd, &s->irq);
491 
492     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
493 }
494 
495 static int cadence_uart_post_load(void *opaque, int version_id)
496 {
497     CadenceUARTState *s = opaque;
498 
499     uart_parameters_setup(s);
500     uart_update_status(s);
501     return 0;
502 }
503 
504 static const VMStateDescription vmstate_cadence_uart = {
505     .name = "cadence_uart",
506     .version_id = 2,
507     .minimum_version_id = 2,
508     .post_load = cadence_uart_post_load,
509     .fields = (VMStateField[]) {
510         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
511         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
512                             CADENCE_UART_RX_FIFO_SIZE),
513         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
514                             CADENCE_UART_TX_FIFO_SIZE),
515         VMSTATE_UINT32(rx_count, CadenceUARTState),
516         VMSTATE_UINT32(tx_count, CadenceUARTState),
517         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
518         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
519         VMSTATE_END_OF_LIST()
520     }
521 };
522 
523 static Property cadence_uart_properties[] = {
524     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
525     DEFINE_PROP_END_OF_LIST(),
526 };
527 
528 static void cadence_uart_class_init(ObjectClass *klass, void *data)
529 {
530     DeviceClass *dc = DEVICE_CLASS(klass);
531 
532     dc->realize = cadence_uart_realize;
533     dc->vmsd = &vmstate_cadence_uart;
534     dc->reset = cadence_uart_reset;
535     dc->props = cadence_uart_properties;
536   }
537 
538 static const TypeInfo cadence_uart_info = {
539     .name          = TYPE_CADENCE_UART,
540     .parent        = TYPE_SYS_BUS_DEVICE,
541     .instance_size = sizeof(CadenceUARTState),
542     .instance_init = cadence_uart_init,
543     .class_init    = cadence_uart_class_init,
544 };
545 
546 static void cadence_uart_register_types(void)
547 {
548     type_register_static(&cadence_uart_info);
549 }
550 
551 type_init(cadence_uart_register_types)
552