1 /* 2 * Device model for Cadence UART 3 * 4 * Copyright (c) 2010 Xilinx Inc. 5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) 6 * Copyright (c) 2012 PetaLogix Pty Ltd. 7 * Written by Haibing Ma 8 * M.Habib 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "hw/sysbus.h" 21 #include "sysemu/char.h" 22 #include "qemu/timer.h" 23 #include "qemu/log.h" 24 #include "hw/char/cadence_uart.h" 25 26 #ifdef CADENCE_UART_ERR_DEBUG 27 #define DB_PRINT(...) do { \ 28 fprintf(stderr, ": %s: ", __func__); \ 29 fprintf(stderr, ## __VA_ARGS__); \ 30 } while (0); 31 #else 32 #define DB_PRINT(...) 33 #endif 34 35 #define UART_SR_INTR_RTRIG 0x00000001 36 #define UART_SR_INTR_REMPTY 0x00000002 37 #define UART_SR_INTR_RFUL 0x00000004 38 #define UART_SR_INTR_TEMPTY 0x00000008 39 #define UART_SR_INTR_TFUL 0x00000010 40 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */ 41 #define UART_SR_TTRIG 0x00002000 42 #define UART_INTR_TTRIG 0x00000400 43 /* bits fields in CSR that correlate to CISR. If any of these bits are set in 44 * SR, then the same bit in CISR is set high too */ 45 #define UART_SR_TO_CISR_MASK 0x0000001F 46 47 #define UART_INTR_ROVR 0x00000020 48 #define UART_INTR_FRAME 0x00000040 49 #define UART_INTR_PARE 0x00000080 50 #define UART_INTR_TIMEOUT 0x00000100 51 #define UART_INTR_DMSI 0x00000200 52 #define UART_INTR_TOVR 0x00001000 53 54 #define UART_SR_RACTIVE 0x00000400 55 #define UART_SR_TACTIVE 0x00000800 56 #define UART_SR_FDELT 0x00001000 57 58 #define UART_CR_RXRST 0x00000001 59 #define UART_CR_TXRST 0x00000002 60 #define UART_CR_RX_EN 0x00000004 61 #define UART_CR_RX_DIS 0x00000008 62 #define UART_CR_TX_EN 0x00000010 63 #define UART_CR_TX_DIS 0x00000020 64 #define UART_CR_RST_TO 0x00000040 65 #define UART_CR_STARTBRK 0x00000080 66 #define UART_CR_STOPBRK 0x00000100 67 68 #define UART_MR_CLKS 0x00000001 69 #define UART_MR_CHRL 0x00000006 70 #define UART_MR_CHRL_SH 1 71 #define UART_MR_PAR 0x00000038 72 #define UART_MR_PAR_SH 3 73 #define UART_MR_NBSTOP 0x000000C0 74 #define UART_MR_NBSTOP_SH 6 75 #define UART_MR_CHMODE 0x00000300 76 #define UART_MR_CHMODE_SH 8 77 #define UART_MR_UCLKEN 0x00000400 78 #define UART_MR_IRMODE 0x00000800 79 80 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH) 81 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH) 82 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH) 83 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH) 84 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH) 85 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH) 86 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH) 87 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH) 88 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH) 89 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH) 90 91 #define UART_INPUT_CLK 50000000 92 93 #define R_CR (0x00/4) 94 #define R_MR (0x04/4) 95 #define R_IER (0x08/4) 96 #define R_IDR (0x0C/4) 97 #define R_IMR (0x10/4) 98 #define R_CISR (0x14/4) 99 #define R_BRGR (0x18/4) 100 #define R_RTOR (0x1C/4) 101 #define R_RTRIG (0x20/4) 102 #define R_MCR (0x24/4) 103 #define R_MSR (0x28/4) 104 #define R_SR (0x2C/4) 105 #define R_TX_RX (0x30/4) 106 #define R_BDIV (0x34/4) 107 #define R_FDEL (0x38/4) 108 #define R_PMIN (0x3C/4) 109 #define R_PWID (0x40/4) 110 #define R_TTRIG (0x44/4) 111 112 113 static void uart_update_status(CadenceUARTState *s) 114 { 115 s->r[R_SR] = 0; 116 117 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL 118 : 0; 119 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0; 120 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0; 121 122 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL 123 : 0; 124 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0; 125 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0; 126 127 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK; 128 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0; 129 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR])); 130 } 131 132 static void fifo_trigger_update(void *opaque) 133 { 134 CadenceUARTState *s = opaque; 135 136 s->r[R_CISR] |= UART_INTR_TIMEOUT; 137 138 uart_update_status(s); 139 } 140 141 static void uart_rx_reset(CadenceUARTState *s) 142 { 143 s->rx_wpos = 0; 144 s->rx_count = 0; 145 qemu_chr_fe_accept_input(&s->chr); 146 } 147 148 static void uart_tx_reset(CadenceUARTState *s) 149 { 150 s->tx_count = 0; 151 } 152 153 static void uart_send_breaks(CadenceUARTState *s) 154 { 155 int break_enabled = 1; 156 157 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, 158 &break_enabled); 159 } 160 161 static void uart_parameters_setup(CadenceUARTState *s) 162 { 163 QEMUSerialSetParams ssp; 164 unsigned int baud_rate, packet_size; 165 166 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? 167 UART_INPUT_CLK / 8 : UART_INPUT_CLK; 168 169 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1)); 170 packet_size = 1; 171 172 switch (s->r[R_MR] & UART_MR_PAR) { 173 case UART_PARITY_EVEN: 174 ssp.parity = 'E'; 175 packet_size++; 176 break; 177 case UART_PARITY_ODD: 178 ssp.parity = 'O'; 179 packet_size++; 180 break; 181 default: 182 ssp.parity = 'N'; 183 break; 184 } 185 186 switch (s->r[R_MR] & UART_MR_CHRL) { 187 case UART_DATA_BITS_6: 188 ssp.data_bits = 6; 189 break; 190 case UART_DATA_BITS_7: 191 ssp.data_bits = 7; 192 break; 193 default: 194 ssp.data_bits = 8; 195 break; 196 } 197 198 switch (s->r[R_MR] & UART_MR_NBSTOP) { 199 case UART_STOP_BITS_1: 200 ssp.stop_bits = 1; 201 break; 202 default: 203 ssp.stop_bits = 2; 204 break; 205 } 206 207 packet_size += ssp.data_bits + ssp.stop_bits; 208 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size; 209 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); 210 } 211 212 static int uart_can_receive(void *opaque) 213 { 214 CadenceUARTState *s = opaque; 215 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE); 216 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE; 217 218 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { 219 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count); 220 } 221 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { 222 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count); 223 } 224 return ret; 225 } 226 227 static void uart_ctrl_update(CadenceUARTState *s) 228 { 229 if (s->r[R_CR] & UART_CR_TXRST) { 230 uart_tx_reset(s); 231 } 232 233 if (s->r[R_CR] & UART_CR_RXRST) { 234 uart_rx_reset(s); 235 } 236 237 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST); 238 239 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) { 240 uart_send_breaks(s); 241 } 242 } 243 244 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size) 245 { 246 CadenceUARTState *s = opaque; 247 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 248 int i; 249 250 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { 251 return; 252 } 253 254 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) { 255 s->r[R_CISR] |= UART_INTR_ROVR; 256 } else { 257 for (i = 0; i < size; i++) { 258 s->rx_fifo[s->rx_wpos] = buf[i]; 259 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE; 260 s->rx_count++; 261 } 262 timer_mod(s->fifo_trigger_handle, new_rx_time + 263 (s->char_tx_time * 4)); 264 } 265 uart_update_status(s); 266 } 267 268 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond, 269 void *opaque) 270 { 271 CadenceUARTState *s = opaque; 272 int ret; 273 274 /* instant drain the fifo when there's no back-end */ 275 if (!qemu_chr_fe_get_driver(&s->chr)) { 276 s->tx_count = 0; 277 return FALSE; 278 } 279 280 if (!s->tx_count) { 281 return FALSE; 282 } 283 284 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count); 285 286 if (ret >= 0) { 287 s->tx_count -= ret; 288 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count); 289 } 290 291 if (s->tx_count) { 292 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, 293 cadence_uart_xmit, s); 294 if (!r) { 295 s->tx_count = 0; 296 return FALSE; 297 } 298 } 299 300 uart_update_status(s); 301 return FALSE; 302 } 303 304 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf, 305 int size) 306 { 307 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) { 308 return; 309 } 310 311 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) { 312 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count; 313 /* 314 * This can only be a guest error via a bad tx fifo register push, 315 * as can_receive() should stop remote loop and echo modes ever getting 316 * us to here. 317 */ 318 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow"); 319 s->r[R_CISR] |= UART_INTR_ROVR; 320 } 321 322 memcpy(s->tx_fifo + s->tx_count, buf, size); 323 s->tx_count += size; 324 325 cadence_uart_xmit(NULL, G_IO_OUT, s); 326 } 327 328 static void uart_receive(void *opaque, const uint8_t *buf, int size) 329 { 330 CadenceUARTState *s = opaque; 331 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE; 332 333 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { 334 uart_write_rx_fifo(opaque, buf, size); 335 } 336 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { 337 uart_write_tx_fifo(s, buf, size); 338 } 339 } 340 341 static void uart_event(void *opaque, int event) 342 { 343 CadenceUARTState *s = opaque; 344 uint8_t buf = '\0'; 345 346 if (event == CHR_EVENT_BREAK) { 347 uart_write_rx_fifo(opaque, &buf, 1); 348 } 349 350 uart_update_status(s); 351 } 352 353 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c) 354 { 355 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { 356 return; 357 } 358 359 if (s->rx_count) { 360 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos - 361 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE; 362 *c = s->rx_fifo[rx_rpos]; 363 s->rx_count--; 364 365 qemu_chr_fe_accept_input(&s->chr); 366 } else { 367 *c = 0; 368 } 369 370 uart_update_status(s); 371 } 372 373 static void uart_write(void *opaque, hwaddr offset, 374 uint64_t value, unsigned size) 375 { 376 CadenceUARTState *s = opaque; 377 378 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value); 379 offset >>= 2; 380 if (offset >= CADENCE_UART_R_MAX) { 381 return; 382 } 383 switch (offset) { 384 case R_IER: /* ier (wts imr) */ 385 s->r[R_IMR] |= value; 386 break; 387 case R_IDR: /* idr (wtc imr) */ 388 s->r[R_IMR] &= ~value; 389 break; 390 case R_IMR: /* imr (read only) */ 391 break; 392 case R_CISR: /* cisr (wtc) */ 393 s->r[R_CISR] &= ~value; 394 break; 395 case R_TX_RX: /* UARTDR */ 396 switch (s->r[R_MR] & UART_MR_CHMODE) { 397 case NORMAL_MODE: 398 uart_write_tx_fifo(s, (uint8_t *) &value, 1); 399 break; 400 case LOCAL_LOOPBACK: 401 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1); 402 break; 403 } 404 break; 405 default: 406 s->r[offset] = value; 407 } 408 409 switch (offset) { 410 case R_CR: 411 uart_ctrl_update(s); 412 break; 413 case R_MR: 414 uart_parameters_setup(s); 415 break; 416 } 417 uart_update_status(s); 418 } 419 420 static uint64_t uart_read(void *opaque, hwaddr offset, 421 unsigned size) 422 { 423 CadenceUARTState *s = opaque; 424 uint32_t c = 0; 425 426 offset >>= 2; 427 if (offset >= CADENCE_UART_R_MAX) { 428 c = 0; 429 } else if (offset == R_TX_RX) { 430 uart_read_rx_fifo(s, &c); 431 } else { 432 c = s->r[offset]; 433 } 434 435 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c); 436 return c; 437 } 438 439 static const MemoryRegionOps uart_ops = { 440 .read = uart_read, 441 .write = uart_write, 442 .endianness = DEVICE_NATIVE_ENDIAN, 443 }; 444 445 static void cadence_uart_reset(DeviceState *dev) 446 { 447 CadenceUARTState *s = CADENCE_UART(dev); 448 449 s->r[R_CR] = 0x00000128; 450 s->r[R_IMR] = 0; 451 s->r[R_CISR] = 0; 452 s->r[R_RTRIG] = 0x00000020; 453 s->r[R_BRGR] = 0x0000000F; 454 s->r[R_TTRIG] = 0x00000020; 455 456 uart_rx_reset(s); 457 uart_tx_reset(s); 458 459 uart_update_status(s); 460 } 461 462 static void cadence_uart_realize(DeviceState *dev, Error **errp) 463 { 464 CadenceUARTState *s = CADENCE_UART(dev); 465 466 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL, 467 fifo_trigger_update, s); 468 469 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, 470 uart_event, s, NULL, true); 471 } 472 473 static void cadence_uart_init(Object *obj) 474 { 475 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 476 CadenceUARTState *s = CADENCE_UART(obj); 477 478 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000); 479 sysbus_init_mmio(sbd, &s->iomem); 480 sysbus_init_irq(sbd, &s->irq); 481 482 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10; 483 } 484 485 static int cadence_uart_post_load(void *opaque, int version_id) 486 { 487 CadenceUARTState *s = opaque; 488 489 uart_parameters_setup(s); 490 uart_update_status(s); 491 return 0; 492 } 493 494 static const VMStateDescription vmstate_cadence_uart = { 495 .name = "cadence_uart", 496 .version_id = 2, 497 .minimum_version_id = 2, 498 .post_load = cadence_uart_post_load, 499 .fields = (VMStateField[]) { 500 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX), 501 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState, 502 CADENCE_UART_RX_FIFO_SIZE), 503 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState, 504 CADENCE_UART_TX_FIFO_SIZE), 505 VMSTATE_UINT32(rx_count, CadenceUARTState), 506 VMSTATE_UINT32(tx_count, CadenceUARTState), 507 VMSTATE_UINT32(rx_wpos, CadenceUARTState), 508 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState), 509 VMSTATE_END_OF_LIST() 510 } 511 }; 512 513 static Property cadence_uart_properties[] = { 514 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr), 515 DEFINE_PROP_END_OF_LIST(), 516 }; 517 518 static void cadence_uart_class_init(ObjectClass *klass, void *data) 519 { 520 DeviceClass *dc = DEVICE_CLASS(klass); 521 522 dc->realize = cadence_uart_realize; 523 dc->vmsd = &vmstate_cadence_uart; 524 dc->reset = cadence_uart_reset; 525 dc->props = cadence_uart_properties; 526 } 527 528 static const TypeInfo cadence_uart_info = { 529 .name = TYPE_CADENCE_UART, 530 .parent = TYPE_SYS_BUS_DEVICE, 531 .instance_size = sizeof(CadenceUARTState), 532 .instance_init = cadence_uart_init, 533 .class_init = cadence_uart_class_init, 534 }; 535 536 static void cadence_uart_register_types(void) 537 { 538 type_register_static(&cadence_uart_info); 539 } 540 541 type_init(cadence_uart_register_types) 542