xref: /openbmc/qemu/hw/char/cadence_uart.c (revision 2152e08a)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
22 
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25     fprintf(stderr,  ": %s: ", __func__); \
26     fprintf(stderr, ## __VA_ARGS__); \
27     } while (0);
28 #else
29     #define DB_PRINT(...)
30 #endif
31 
32 #define UART_SR_INTR_RTRIG     0x00000001
33 #define UART_SR_INTR_REMPTY    0x00000002
34 #define UART_SR_INTR_RFUL      0x00000004
35 #define UART_SR_INTR_TEMPTY    0x00000008
36 #define UART_SR_INTR_TFUL      0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG          0x00002000
39 #define UART_INTR_TTRIG        0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41  * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK   0x0000001F
43 
44 #define UART_INTR_ROVR         0x00000020
45 #define UART_INTR_FRAME        0x00000040
46 #define UART_INTR_PARE         0x00000080
47 #define UART_INTR_TIMEOUT      0x00000100
48 #define UART_INTR_DMSI         0x00000200
49 #define UART_INTR_TOVR         0x00001000
50 
51 #define UART_SR_RACTIVE    0x00000400
52 #define UART_SR_TACTIVE    0x00000800
53 #define UART_SR_FDELT      0x00001000
54 
55 #define UART_CR_RXRST       0x00000001
56 #define UART_CR_TXRST       0x00000002
57 #define UART_CR_RX_EN       0x00000004
58 #define UART_CR_RX_DIS      0x00000008
59 #define UART_CR_TX_EN       0x00000010
60 #define UART_CR_TX_DIS      0x00000020
61 #define UART_CR_RST_TO      0x00000040
62 #define UART_CR_STARTBRK    0x00000080
63 #define UART_CR_STOPBRK     0x00000100
64 
65 #define UART_MR_CLKS            0x00000001
66 #define UART_MR_CHRL            0x00000006
67 #define UART_MR_CHRL_SH         1
68 #define UART_MR_PAR             0x00000038
69 #define UART_MR_PAR_SH          3
70 #define UART_MR_NBSTOP          0x000000C0
71 #define UART_MR_NBSTOP_SH       6
72 #define UART_MR_CHMODE          0x00000300
73 #define UART_MR_CHMODE_SH       8
74 #define UART_MR_UCLKEN          0x00000400
75 #define UART_MR_IRMODE          0x00000800
76 
77 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
87 
88 #define RX_FIFO_SIZE           16
89 #define TX_FIFO_SIZE           16
90 #define UART_INPUT_CLK         50000000
91 
92 #define R_CR       (0x00/4)
93 #define R_MR       (0x04/4)
94 #define R_IER      (0x08/4)
95 #define R_IDR      (0x0C/4)
96 #define R_IMR      (0x10/4)
97 #define R_CISR     (0x14/4)
98 #define R_BRGR     (0x18/4)
99 #define R_RTOR     (0x1C/4)
100 #define R_RTRIG    (0x20/4)
101 #define R_MCR      (0x24/4)
102 #define R_MSR      (0x28/4)
103 #define R_SR       (0x2C/4)
104 #define R_TX_RX    (0x30/4)
105 #define R_BDIV     (0x34/4)
106 #define R_FDEL     (0x38/4)
107 #define R_PMIN     (0x3C/4)
108 #define R_PWID     (0x40/4)
109 #define R_TTRIG    (0x44/4)
110 
111 #define R_MAX (R_TTRIG + 1)
112 
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
115 
116 typedef struct {
117     /*< private >*/
118     SysBusDevice parent_obj;
119     /*< public >*/
120 
121     MemoryRegion iomem;
122     uint32_t r[R_MAX];
123     uint8_t rx_fifo[RX_FIFO_SIZE];
124     uint8_t tx_fifo[TX_FIFO_SIZE];
125     uint32_t rx_wpos;
126     uint32_t rx_count;
127     uint32_t tx_count;
128     uint64_t char_tx_time;
129     CharDriverState *chr;
130     qemu_irq irq;
131     QEMUTimer *fifo_trigger_handle;
132 } UartState;
133 
134 static void uart_update_status(UartState *s)
135 {
136     s->r[R_SR] = 0;
137 
138     s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
139     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
140     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
141 
142     s->r[R_SR] |= s->tx_count == TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0;
143     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
144     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
145 
146     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
147     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
148     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
149 }
150 
151 static void fifo_trigger_update(void *opaque)
152 {
153     UartState *s = (UartState *)opaque;
154 
155     s->r[R_CISR] |= UART_INTR_TIMEOUT;
156 
157     uart_update_status(s);
158 }
159 
160 static void uart_rx_reset(UartState *s)
161 {
162     s->rx_wpos = 0;
163     s->rx_count = 0;
164     if (s->chr) {
165         qemu_chr_accept_input(s->chr);
166     }
167 }
168 
169 static void uart_tx_reset(UartState *s)
170 {
171     s->tx_count = 0;
172 }
173 
174 static void uart_send_breaks(UartState *s)
175 {
176     int break_enabled = 1;
177 
178     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
179                                &break_enabled);
180 }
181 
182 static void uart_parameters_setup(UartState *s)
183 {
184     QEMUSerialSetParams ssp;
185     unsigned int baud_rate, packet_size;
186 
187     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
188             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
189 
190     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
191     packet_size = 1;
192 
193     switch (s->r[R_MR] & UART_MR_PAR) {
194     case UART_PARITY_EVEN:
195         ssp.parity = 'E';
196         packet_size++;
197         break;
198     case UART_PARITY_ODD:
199         ssp.parity = 'O';
200         packet_size++;
201         break;
202     default:
203         ssp.parity = 'N';
204         break;
205     }
206 
207     switch (s->r[R_MR] & UART_MR_CHRL) {
208     case UART_DATA_BITS_6:
209         ssp.data_bits = 6;
210         break;
211     case UART_DATA_BITS_7:
212         ssp.data_bits = 7;
213         break;
214     default:
215         ssp.data_bits = 8;
216         break;
217     }
218 
219     switch (s->r[R_MR] & UART_MR_NBSTOP) {
220     case UART_STOP_BITS_1:
221         ssp.stop_bits = 1;
222         break;
223     default:
224         ssp.stop_bits = 2;
225         break;
226     }
227 
228     packet_size += ssp.data_bits + ssp.stop_bits;
229     s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
230     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
231 }
232 
233 static int uart_can_receive(void *opaque)
234 {
235     UartState *s = (UartState *)opaque;
236 
237     return RX_FIFO_SIZE - s->rx_count;
238 }
239 
240 static void uart_ctrl_update(UartState *s)
241 {
242     if (s->r[R_CR] & UART_CR_TXRST) {
243         uart_tx_reset(s);
244     }
245 
246     if (s->r[R_CR] & UART_CR_RXRST) {
247         uart_rx_reset(s);
248     }
249 
250     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
251 
252     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
253         uart_send_breaks(s);
254     }
255 }
256 
257 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
258 {
259     UartState *s = (UartState *)opaque;
260     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
261     int i;
262 
263     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
264         return;
265     }
266 
267     if (s->rx_count == RX_FIFO_SIZE) {
268         s->r[R_CISR] |= UART_INTR_ROVR;
269     } else {
270         for (i = 0; i < size; i++) {
271             s->rx_fifo[s->rx_wpos] = buf[i];
272             s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
273             s->rx_count++;
274         }
275         timer_mod(s->fifo_trigger_handle, new_rx_time +
276                                                 (s->char_tx_time * 4));
277     }
278     uart_update_status(s);
279 }
280 
281 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
282 {
283     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
284         return;
285     }
286 
287     qemu_chr_fe_write_all(s->chr, buf, size);
288 }
289 
290 static void uart_receive(void *opaque, const uint8_t *buf, int size)
291 {
292     UartState *s = (UartState *)opaque;
293     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
294 
295     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
296         uart_write_rx_fifo(opaque, buf, size);
297     }
298     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
299         uart_write_tx_fifo(s, buf, size);
300     }
301 }
302 
303 static void uart_event(void *opaque, int event)
304 {
305     UartState *s = (UartState *)opaque;
306     uint8_t buf = '\0';
307 
308     if (event == CHR_EVENT_BREAK) {
309         uart_write_rx_fifo(opaque, &buf, 1);
310     }
311 
312     uart_update_status(s);
313 }
314 
315 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
316 {
317     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
318         return;
319     }
320 
321     if (s->rx_count) {
322         uint32_t rx_rpos =
323                 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
324         *c = s->rx_fifo[rx_rpos];
325         s->rx_count--;
326 
327         qemu_chr_accept_input(s->chr);
328     } else {
329         *c = 0;
330     }
331 
332     uart_update_status(s);
333 }
334 
335 static void uart_write(void *opaque, hwaddr offset,
336                           uint64_t value, unsigned size)
337 {
338     UartState *s = (UartState *)opaque;
339 
340     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
341     offset >>= 2;
342     switch (offset) {
343     case R_IER: /* ier (wts imr) */
344         s->r[R_IMR] |= value;
345         break;
346     case R_IDR: /* idr (wtc imr) */
347         s->r[R_IMR] &= ~value;
348         break;
349     case R_IMR: /* imr (read only) */
350         break;
351     case R_CISR: /* cisr (wtc) */
352         s->r[R_CISR] &= ~value;
353         break;
354     case R_TX_RX: /* UARTDR */
355         switch (s->r[R_MR] & UART_MR_CHMODE) {
356         case NORMAL_MODE:
357             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
358             break;
359         case LOCAL_LOOPBACK:
360             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
361             break;
362         }
363         break;
364     default:
365         s->r[offset] = value;
366     }
367 
368     switch (offset) {
369     case R_CR:
370         uart_ctrl_update(s);
371         break;
372     case R_MR:
373         uart_parameters_setup(s);
374         break;
375     }
376     uart_update_status(s);
377 }
378 
379 static uint64_t uart_read(void *opaque, hwaddr offset,
380         unsigned size)
381 {
382     UartState *s = (UartState *)opaque;
383     uint32_t c = 0;
384 
385     offset >>= 2;
386     if (offset >= R_MAX) {
387         c = 0;
388     } else if (offset == R_TX_RX) {
389         uart_read_rx_fifo(s, &c);
390     } else {
391        c = s->r[offset];
392     }
393 
394     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
395     return c;
396 }
397 
398 static const MemoryRegionOps uart_ops = {
399     .read = uart_read,
400     .write = uart_write,
401     .endianness = DEVICE_NATIVE_ENDIAN,
402 };
403 
404 static void cadence_uart_reset(DeviceState *dev)
405 {
406     UartState *s = CADENCE_UART(dev);
407 
408     s->r[R_CR] = 0x00000128;
409     s->r[R_IMR] = 0;
410     s->r[R_CISR] = 0;
411     s->r[R_RTRIG] = 0x00000020;
412     s->r[R_BRGR] = 0x0000000F;
413     s->r[R_TTRIG] = 0x00000020;
414 
415     uart_rx_reset(s);
416     uart_tx_reset(s);
417 
418     s->rx_count = 0;
419     s->rx_wpos = 0;
420     uart_update_status(s);
421 }
422 
423 static int cadence_uart_init(SysBusDevice *dev)
424 {
425     UartState *s = CADENCE_UART(dev);
426 
427     memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
428     sysbus_init_mmio(dev, &s->iomem);
429     sysbus_init_irq(dev, &s->irq);
430 
431     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
432             (QEMUTimerCB *)fifo_trigger_update, s);
433 
434     s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
435 
436     s->chr = qemu_char_get_next_serial();
437 
438     if (s->chr) {
439         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
440                               uart_event, s);
441     }
442 
443     return 0;
444 }
445 
446 static int cadence_uart_post_load(void *opaque, int version_id)
447 {
448     UartState *s = opaque;
449 
450     uart_parameters_setup(s);
451     uart_update_status(s);
452     return 0;
453 }
454 
455 static const VMStateDescription vmstate_cadence_uart = {
456     .name = "cadence_uart",
457     .version_id = 2,
458     .minimum_version_id = 2,
459     .minimum_version_id_old = 2,
460     .post_load = cadence_uart_post_load,
461     .fields = (VMStateField[]) {
462         VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
463         VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
464         VMSTATE_UINT8_ARRAY(tx_fifo, UartState, RX_FIFO_SIZE),
465         VMSTATE_UINT32(rx_count, UartState),
466         VMSTATE_UINT32(tx_count, UartState),
467         VMSTATE_UINT32(rx_wpos, UartState),
468         VMSTATE_TIMER(fifo_trigger_handle, UartState),
469         VMSTATE_END_OF_LIST()
470     }
471 };
472 
473 static void cadence_uart_class_init(ObjectClass *klass, void *data)
474 {
475     DeviceClass *dc = DEVICE_CLASS(klass);
476     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
477 
478     sdc->init = cadence_uart_init;
479     dc->vmsd = &vmstate_cadence_uart;
480     dc->reset = cadence_uart_reset;
481 }
482 
483 static const TypeInfo cadence_uart_info = {
484     .name          = TYPE_CADENCE_UART,
485     .parent        = TYPE_SYS_BUS_DEVICE,
486     .instance_size = sizeof(UartState),
487     .class_init    = cadence_uart_class_init,
488 };
489 
490 static void cadence_uart_register_types(void)
491 {
492     type_register_static(&cadence_uart_info);
493 }
494 
495 type_init(cadence_uart_register_types)
496