xref: /openbmc/qemu/hw/char/cadence_uart.c (revision 1e5d8cac)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
22 
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25     fprintf(stderr,  ": %s: ", __func__); \
26     fprintf(stderr, ## __VA_ARGS__); \
27     } while (0);
28 #else
29     #define DB_PRINT(...)
30 #endif
31 
32 #define UART_SR_INTR_RTRIG     0x00000001
33 #define UART_SR_INTR_REMPTY    0x00000002
34 #define UART_SR_INTR_RFUL      0x00000004
35 #define UART_SR_INTR_TEMPTY    0x00000008
36 #define UART_SR_INTR_TFUL      0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG          0x00002000
39 #define UART_INTR_TTRIG        0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41  * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK   0x0000001F
43 
44 #define UART_INTR_ROVR         0x00000020
45 #define UART_INTR_FRAME        0x00000040
46 #define UART_INTR_PARE         0x00000080
47 #define UART_INTR_TIMEOUT      0x00000100
48 #define UART_INTR_DMSI         0x00000200
49 #define UART_INTR_TOVR         0x00001000
50 
51 #define UART_SR_RACTIVE    0x00000400
52 #define UART_SR_TACTIVE    0x00000800
53 #define UART_SR_FDELT      0x00001000
54 
55 #define UART_CR_RXRST       0x00000001
56 #define UART_CR_TXRST       0x00000002
57 #define UART_CR_RX_EN       0x00000004
58 #define UART_CR_RX_DIS      0x00000008
59 #define UART_CR_TX_EN       0x00000010
60 #define UART_CR_TX_DIS      0x00000020
61 #define UART_CR_RST_TO      0x00000040
62 #define UART_CR_STARTBRK    0x00000080
63 #define UART_CR_STOPBRK     0x00000100
64 
65 #define UART_MR_CLKS            0x00000001
66 #define UART_MR_CHRL            0x00000006
67 #define UART_MR_CHRL_SH         1
68 #define UART_MR_PAR             0x00000038
69 #define UART_MR_PAR_SH          3
70 #define UART_MR_NBSTOP          0x000000C0
71 #define UART_MR_NBSTOP_SH       6
72 #define UART_MR_CHMODE          0x00000300
73 #define UART_MR_CHMODE_SH       8
74 #define UART_MR_UCLKEN          0x00000400
75 #define UART_MR_IRMODE          0x00000800
76 
77 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
87 
88 #define RX_FIFO_SIZE           16
89 #define TX_FIFO_SIZE           16
90 #define UART_INPUT_CLK         50000000
91 
92 #define R_CR       (0x00/4)
93 #define R_MR       (0x04/4)
94 #define R_IER      (0x08/4)
95 #define R_IDR      (0x0C/4)
96 #define R_IMR      (0x10/4)
97 #define R_CISR     (0x14/4)
98 #define R_BRGR     (0x18/4)
99 #define R_RTOR     (0x1C/4)
100 #define R_RTRIG    (0x20/4)
101 #define R_MCR      (0x24/4)
102 #define R_MSR      (0x28/4)
103 #define R_SR       (0x2C/4)
104 #define R_TX_RX    (0x30/4)
105 #define R_BDIV     (0x34/4)
106 #define R_FDEL     (0x38/4)
107 #define R_PMIN     (0x3C/4)
108 #define R_PWID     (0x40/4)
109 #define R_TTRIG    (0x44/4)
110 
111 #define R_MAX (R_TTRIG + 1)
112 
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
115 
116 typedef struct {
117     /*< private >*/
118     SysBusDevice parent_obj;
119     /*< public >*/
120 
121     MemoryRegion iomem;
122     uint32_t r[R_MAX];
123     uint8_t rx_fifo[RX_FIFO_SIZE];
124     uint8_t tx_fifo[TX_FIFO_SIZE];
125     uint32_t rx_wpos;
126     uint32_t rx_count;
127     uint32_t tx_count;
128     uint64_t char_tx_time;
129     CharDriverState *chr;
130     qemu_irq irq;
131     QEMUTimer *fifo_trigger_handle;
132 } UartState;
133 
134 static void uart_update_status(UartState *s)
135 {
136     s->r[R_SR] = 0;
137 
138     s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
139     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
140     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
141 
142     s->r[R_SR] |= s->tx_count == TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0;
143     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
144     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
145 
146     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
147     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
148     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
149 }
150 
151 static void fifo_trigger_update(void *opaque)
152 {
153     UartState *s = (UartState *)opaque;
154 
155     s->r[R_CISR] |= UART_INTR_TIMEOUT;
156 
157     uart_update_status(s);
158 }
159 
160 static void uart_rx_reset(UartState *s)
161 {
162     s->rx_wpos = 0;
163     s->rx_count = 0;
164     if (s->chr) {
165         qemu_chr_accept_input(s->chr);
166     }
167 }
168 
169 static void uart_tx_reset(UartState *s)
170 {
171     s->tx_count = 0;
172 }
173 
174 static void uart_send_breaks(UartState *s)
175 {
176     int break_enabled = 1;
177 
178     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
179                                &break_enabled);
180 }
181 
182 static void uart_parameters_setup(UartState *s)
183 {
184     QEMUSerialSetParams ssp;
185     unsigned int baud_rate, packet_size;
186 
187     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
188             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
189 
190     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
191     packet_size = 1;
192 
193     switch (s->r[R_MR] & UART_MR_PAR) {
194     case UART_PARITY_EVEN:
195         ssp.parity = 'E';
196         packet_size++;
197         break;
198     case UART_PARITY_ODD:
199         ssp.parity = 'O';
200         packet_size++;
201         break;
202     default:
203         ssp.parity = 'N';
204         break;
205     }
206 
207     switch (s->r[R_MR] & UART_MR_CHRL) {
208     case UART_DATA_BITS_6:
209         ssp.data_bits = 6;
210         break;
211     case UART_DATA_BITS_7:
212         ssp.data_bits = 7;
213         break;
214     default:
215         ssp.data_bits = 8;
216         break;
217     }
218 
219     switch (s->r[R_MR] & UART_MR_NBSTOP) {
220     case UART_STOP_BITS_1:
221         ssp.stop_bits = 1;
222         break;
223     default:
224         ssp.stop_bits = 2;
225         break;
226     }
227 
228     packet_size += ssp.data_bits + ssp.stop_bits;
229     s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
230     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
231 }
232 
233 static int uart_can_receive(void *opaque)
234 {
235     UartState *s = (UartState *)opaque;
236     int ret = MAX(RX_FIFO_SIZE, TX_FIFO_SIZE);
237     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
238 
239     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
240         ret = MIN(ret, RX_FIFO_SIZE - s->rx_count);
241     }
242     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
243         ret = MIN(ret, TX_FIFO_SIZE - s->tx_count);
244     }
245     return ret;
246 }
247 
248 static void uart_ctrl_update(UartState *s)
249 {
250     if (s->r[R_CR] & UART_CR_TXRST) {
251         uart_tx_reset(s);
252     }
253 
254     if (s->r[R_CR] & UART_CR_RXRST) {
255         uart_rx_reset(s);
256     }
257 
258     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
259 
260     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
261         uart_send_breaks(s);
262     }
263 }
264 
265 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
266 {
267     UartState *s = (UartState *)opaque;
268     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
269     int i;
270 
271     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
272         return;
273     }
274 
275     if (s->rx_count == RX_FIFO_SIZE) {
276         s->r[R_CISR] |= UART_INTR_ROVR;
277     } else {
278         for (i = 0; i < size; i++) {
279             s->rx_fifo[s->rx_wpos] = buf[i];
280             s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
281             s->rx_count++;
282         }
283         timer_mod(s->fifo_trigger_handle, new_rx_time +
284                                                 (s->char_tx_time * 4));
285     }
286     uart_update_status(s);
287 }
288 
289 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
290 {
291     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
292         return;
293     }
294 
295     if (size > TX_FIFO_SIZE - s->tx_count) {
296         size = TX_FIFO_SIZE - s->tx_count;
297         /*
298          * This can only be a guest error via a bad tx fifo register push,
299          * as can_receive() should stop remote loop and echo modes ever getting
300          * us to here.
301          */
302         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
303         s->r[R_CISR] |= UART_INTR_ROVR;
304     }
305 
306     memcpy(s->tx_fifo + s->tx_count, buf, size);
307     s->tx_count += size;
308 
309     qemu_chr_fe_write_all(s->chr, s->tx_fifo, s->tx_count);
310     s->tx_count = 0;
311 }
312 
313 static void uart_receive(void *opaque, const uint8_t *buf, int size)
314 {
315     UartState *s = (UartState *)opaque;
316     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
317 
318     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
319         uart_write_rx_fifo(opaque, buf, size);
320     }
321     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
322         uart_write_tx_fifo(s, buf, size);
323     }
324 }
325 
326 static void uart_event(void *opaque, int event)
327 {
328     UartState *s = (UartState *)opaque;
329     uint8_t buf = '\0';
330 
331     if (event == CHR_EVENT_BREAK) {
332         uart_write_rx_fifo(opaque, &buf, 1);
333     }
334 
335     uart_update_status(s);
336 }
337 
338 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
339 {
340     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
341         return;
342     }
343 
344     if (s->rx_count) {
345         uint32_t rx_rpos =
346                 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
347         *c = s->rx_fifo[rx_rpos];
348         s->rx_count--;
349 
350         qemu_chr_accept_input(s->chr);
351     } else {
352         *c = 0;
353     }
354 
355     uart_update_status(s);
356 }
357 
358 static void uart_write(void *opaque, hwaddr offset,
359                           uint64_t value, unsigned size)
360 {
361     UartState *s = (UartState *)opaque;
362 
363     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
364     offset >>= 2;
365     switch (offset) {
366     case R_IER: /* ier (wts imr) */
367         s->r[R_IMR] |= value;
368         break;
369     case R_IDR: /* idr (wtc imr) */
370         s->r[R_IMR] &= ~value;
371         break;
372     case R_IMR: /* imr (read only) */
373         break;
374     case R_CISR: /* cisr (wtc) */
375         s->r[R_CISR] &= ~value;
376         break;
377     case R_TX_RX: /* UARTDR */
378         switch (s->r[R_MR] & UART_MR_CHMODE) {
379         case NORMAL_MODE:
380             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
381             break;
382         case LOCAL_LOOPBACK:
383             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
384             break;
385         }
386         break;
387     default:
388         s->r[offset] = value;
389     }
390 
391     switch (offset) {
392     case R_CR:
393         uart_ctrl_update(s);
394         break;
395     case R_MR:
396         uart_parameters_setup(s);
397         break;
398     }
399     uart_update_status(s);
400 }
401 
402 static uint64_t uart_read(void *opaque, hwaddr offset,
403         unsigned size)
404 {
405     UartState *s = (UartState *)opaque;
406     uint32_t c = 0;
407 
408     offset >>= 2;
409     if (offset >= R_MAX) {
410         c = 0;
411     } else if (offset == R_TX_RX) {
412         uart_read_rx_fifo(s, &c);
413     } else {
414        c = s->r[offset];
415     }
416 
417     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
418     return c;
419 }
420 
421 static const MemoryRegionOps uart_ops = {
422     .read = uart_read,
423     .write = uart_write,
424     .endianness = DEVICE_NATIVE_ENDIAN,
425 };
426 
427 static void cadence_uart_reset(DeviceState *dev)
428 {
429     UartState *s = CADENCE_UART(dev);
430 
431     s->r[R_CR] = 0x00000128;
432     s->r[R_IMR] = 0;
433     s->r[R_CISR] = 0;
434     s->r[R_RTRIG] = 0x00000020;
435     s->r[R_BRGR] = 0x0000000F;
436     s->r[R_TTRIG] = 0x00000020;
437 
438     uart_rx_reset(s);
439     uart_tx_reset(s);
440 
441     uart_update_status(s);
442 }
443 
444 static int cadence_uart_init(SysBusDevice *dev)
445 {
446     UartState *s = CADENCE_UART(dev);
447 
448     memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
449     sysbus_init_mmio(dev, &s->iomem);
450     sysbus_init_irq(dev, &s->irq);
451 
452     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
453             (QEMUTimerCB *)fifo_trigger_update, s);
454 
455     s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
456 
457     s->chr = qemu_char_get_next_serial();
458 
459     if (s->chr) {
460         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
461                               uart_event, s);
462     }
463 
464     return 0;
465 }
466 
467 static int cadence_uart_post_load(void *opaque, int version_id)
468 {
469     UartState *s = opaque;
470 
471     uart_parameters_setup(s);
472     uart_update_status(s);
473     return 0;
474 }
475 
476 static const VMStateDescription vmstate_cadence_uart = {
477     .name = "cadence_uart",
478     .version_id = 2,
479     .minimum_version_id = 2,
480     .minimum_version_id_old = 2,
481     .post_load = cadence_uart_post_load,
482     .fields = (VMStateField[]) {
483         VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
484         VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
485         VMSTATE_UINT8_ARRAY(tx_fifo, UartState, RX_FIFO_SIZE),
486         VMSTATE_UINT32(rx_count, UartState),
487         VMSTATE_UINT32(tx_count, UartState),
488         VMSTATE_UINT32(rx_wpos, UartState),
489         VMSTATE_TIMER(fifo_trigger_handle, UartState),
490         VMSTATE_END_OF_LIST()
491     }
492 };
493 
494 static void cadence_uart_class_init(ObjectClass *klass, void *data)
495 {
496     DeviceClass *dc = DEVICE_CLASS(klass);
497     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
498 
499     sdc->init = cadence_uart_init;
500     dc->vmsd = &vmstate_cadence_uart;
501     dc->reset = cadence_uart_reset;
502 }
503 
504 static const TypeInfo cadence_uart_info = {
505     .name          = TYPE_CADENCE_UART,
506     .parent        = TYPE_SYS_BUS_DEVICE,
507     .instance_size = sizeof(UartState),
508     .class_init    = cadence_uart_class_init,
509 };
510 
511 static void cadence_uart_register_types(void)
512 {
513     type_register_static(&cadence_uart_info);
514 }
515 
516 type_init(cadence_uart_register_types)
517