xref: /openbmc/qemu/hw/char/cadence_uart.c (revision 0b1183e3)
1 /*
2  * Device model for Cadence UART
3  *
4  * Reference: Xilinx Zynq 7000 reference manual
5  *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6  *   - Chapter 19 UART Controller
7  *   - Appendix B for Register details
8  *
9  * Copyright (c) 2010 Xilinx Inc.
10  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11  * Copyright (c) 2012 PetaLogix Pty Ltd.
12  * Written by Haibing Ma
13  *            M.Habib
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "chardev/char-fe.h"
27 #include "chardev/char-serial.h"
28 #include "qemu/timer.h"
29 #include "qemu/log.h"
30 #include "hw/char/cadence_uart.h"
31 
32 #ifdef CADENCE_UART_ERR_DEBUG
33 #define DB_PRINT(...) do { \
34     fprintf(stderr,  ": %s: ", __func__); \
35     fprintf(stderr, ## __VA_ARGS__); \
36     } while (0);
37 #else
38     #define DB_PRINT(...)
39 #endif
40 
41 #define UART_SR_INTR_RTRIG     0x00000001
42 #define UART_SR_INTR_REMPTY    0x00000002
43 #define UART_SR_INTR_RFUL      0x00000004
44 #define UART_SR_INTR_TEMPTY    0x00000008
45 #define UART_SR_INTR_TFUL      0x00000010
46 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
47 #define UART_SR_TTRIG          0x00002000
48 #define UART_INTR_TTRIG        0x00000400
49 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
50  * SR, then the same bit in CISR is set high too */
51 #define UART_SR_TO_CISR_MASK   0x0000001F
52 
53 #define UART_INTR_ROVR         0x00000020
54 #define UART_INTR_FRAME        0x00000040
55 #define UART_INTR_PARE         0x00000080
56 #define UART_INTR_TIMEOUT      0x00000100
57 #define UART_INTR_DMSI         0x00000200
58 #define UART_INTR_TOVR         0x00001000
59 
60 #define UART_SR_RACTIVE    0x00000400
61 #define UART_SR_TACTIVE    0x00000800
62 #define UART_SR_FDELT      0x00001000
63 
64 #define UART_CR_RXRST       0x00000001
65 #define UART_CR_TXRST       0x00000002
66 #define UART_CR_RX_EN       0x00000004
67 #define UART_CR_RX_DIS      0x00000008
68 #define UART_CR_TX_EN       0x00000010
69 #define UART_CR_TX_DIS      0x00000020
70 #define UART_CR_RST_TO      0x00000040
71 #define UART_CR_STARTBRK    0x00000080
72 #define UART_CR_STOPBRK     0x00000100
73 
74 #define UART_MR_CLKS            0x00000001
75 #define UART_MR_CHRL            0x00000006
76 #define UART_MR_CHRL_SH         1
77 #define UART_MR_PAR             0x00000038
78 #define UART_MR_PAR_SH          3
79 #define UART_MR_NBSTOP          0x000000C0
80 #define UART_MR_NBSTOP_SH       6
81 #define UART_MR_CHMODE          0x00000300
82 #define UART_MR_CHMODE_SH       8
83 #define UART_MR_UCLKEN          0x00000400
84 #define UART_MR_IRMODE          0x00000800
85 
86 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
87 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
88 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
89 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
90 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
91 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
92 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
93 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
94 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
95 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
96 
97 #define UART_INPUT_CLK         50000000
98 
99 #define R_CR       (0x00/4)
100 #define R_MR       (0x04/4)
101 #define R_IER      (0x08/4)
102 #define R_IDR      (0x0C/4)
103 #define R_IMR      (0x10/4)
104 #define R_CISR     (0x14/4)
105 #define R_BRGR     (0x18/4)
106 #define R_RTOR     (0x1C/4)
107 #define R_RTRIG    (0x20/4)
108 #define R_MCR      (0x24/4)
109 #define R_MSR      (0x28/4)
110 #define R_SR       (0x2C/4)
111 #define R_TX_RX    (0x30/4)
112 #define R_BDIV     (0x34/4)
113 #define R_FDEL     (0x38/4)
114 #define R_PMIN     (0x3C/4)
115 #define R_PWID     (0x40/4)
116 #define R_TTRIG    (0x44/4)
117 
118 
119 static void uart_update_status(CadenceUARTState *s)
120 {
121     s->r[R_SR] = 0;
122 
123     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
124                                                            : 0;
125     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
126     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
127 
128     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
129                                                            : 0;
130     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
131     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
132 
133     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
134     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
135     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
136 }
137 
138 static void fifo_trigger_update(void *opaque)
139 {
140     CadenceUARTState *s = opaque;
141 
142     if (s->r[R_RTOR]) {
143         s->r[R_CISR] |= UART_INTR_TIMEOUT;
144         uart_update_status(s);
145     }
146 }
147 
148 static void uart_rx_reset(CadenceUARTState *s)
149 {
150     s->rx_wpos = 0;
151     s->rx_count = 0;
152     qemu_chr_fe_accept_input(&s->chr);
153 }
154 
155 static void uart_tx_reset(CadenceUARTState *s)
156 {
157     s->tx_count = 0;
158 }
159 
160 static void uart_send_breaks(CadenceUARTState *s)
161 {
162     int break_enabled = 1;
163 
164     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
165                       &break_enabled);
166 }
167 
168 static void uart_parameters_setup(CadenceUARTState *s)
169 {
170     QEMUSerialSetParams ssp;
171     unsigned int baud_rate, packet_size;
172 
173     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
174             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
175 
176     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
177     packet_size = 1;
178 
179     switch (s->r[R_MR] & UART_MR_PAR) {
180     case UART_PARITY_EVEN:
181         ssp.parity = 'E';
182         packet_size++;
183         break;
184     case UART_PARITY_ODD:
185         ssp.parity = 'O';
186         packet_size++;
187         break;
188     default:
189         ssp.parity = 'N';
190         break;
191     }
192 
193     switch (s->r[R_MR] & UART_MR_CHRL) {
194     case UART_DATA_BITS_6:
195         ssp.data_bits = 6;
196         break;
197     case UART_DATA_BITS_7:
198         ssp.data_bits = 7;
199         break;
200     default:
201         ssp.data_bits = 8;
202         break;
203     }
204 
205     switch (s->r[R_MR] & UART_MR_NBSTOP) {
206     case UART_STOP_BITS_1:
207         ssp.stop_bits = 1;
208         break;
209     default:
210         ssp.stop_bits = 2;
211         break;
212     }
213 
214     packet_size += ssp.data_bits + ssp.stop_bits;
215     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
216     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
217 }
218 
219 static int uart_can_receive(void *opaque)
220 {
221     CadenceUARTState *s = opaque;
222     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
223     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
224 
225     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
226         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
227     }
228     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
229         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
230     }
231     return ret;
232 }
233 
234 static void uart_ctrl_update(CadenceUARTState *s)
235 {
236     if (s->r[R_CR] & UART_CR_TXRST) {
237         uart_tx_reset(s);
238     }
239 
240     if (s->r[R_CR] & UART_CR_RXRST) {
241         uart_rx_reset(s);
242     }
243 
244     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
245 
246     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
247         uart_send_breaks(s);
248     }
249 }
250 
251 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
252 {
253     CadenceUARTState *s = opaque;
254     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
255     int i;
256 
257     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
258         return;
259     }
260 
261     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
262         s->r[R_CISR] |= UART_INTR_ROVR;
263     } else {
264         for (i = 0; i < size; i++) {
265             s->rx_fifo[s->rx_wpos] = buf[i];
266             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
267             s->rx_count++;
268         }
269         timer_mod(s->fifo_trigger_handle, new_rx_time +
270                                                 (s->char_tx_time * 4));
271     }
272     uart_update_status(s);
273 }
274 
275 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
276                                   void *opaque)
277 {
278     CadenceUARTState *s = opaque;
279     int ret;
280 
281     /* instant drain the fifo when there's no back-end */
282     if (!qemu_chr_fe_backend_connected(&s->chr)) {
283         s->tx_count = 0;
284         return FALSE;
285     }
286 
287     if (!s->tx_count) {
288         return FALSE;
289     }
290 
291     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
292 
293     if (ret >= 0) {
294         s->tx_count -= ret;
295         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
296     }
297 
298     if (s->tx_count) {
299         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
300                                         cadence_uart_xmit, s);
301         if (!r) {
302             s->tx_count = 0;
303             return FALSE;
304         }
305     }
306 
307     uart_update_status(s);
308     return FALSE;
309 }
310 
311 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
312                                int size)
313 {
314     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
315         return;
316     }
317 
318     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
319         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
320         /*
321          * This can only be a guest error via a bad tx fifo register push,
322          * as can_receive() should stop remote loop and echo modes ever getting
323          * us to here.
324          */
325         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
326         s->r[R_CISR] |= UART_INTR_ROVR;
327     }
328 
329     memcpy(s->tx_fifo + s->tx_count, buf, size);
330     s->tx_count += size;
331 
332     cadence_uart_xmit(NULL, G_IO_OUT, s);
333 }
334 
335 static void uart_receive(void *opaque, const uint8_t *buf, int size)
336 {
337     CadenceUARTState *s = opaque;
338     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
339 
340     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
341         uart_write_rx_fifo(opaque, buf, size);
342     }
343     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
344         uart_write_tx_fifo(s, buf, size);
345     }
346 }
347 
348 static void uart_event(void *opaque, int event)
349 {
350     CadenceUARTState *s = opaque;
351     uint8_t buf = '\0';
352 
353     if (event == CHR_EVENT_BREAK) {
354         uart_write_rx_fifo(opaque, &buf, 1);
355     }
356 
357     uart_update_status(s);
358 }
359 
360 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
361 {
362     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
363         return;
364     }
365 
366     if (s->rx_count) {
367         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
368                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
369         *c = s->rx_fifo[rx_rpos];
370         s->rx_count--;
371 
372         qemu_chr_fe_accept_input(&s->chr);
373     } else {
374         *c = 0;
375     }
376 
377     uart_update_status(s);
378 }
379 
380 static void uart_write(void *opaque, hwaddr offset,
381                           uint64_t value, unsigned size)
382 {
383     CadenceUARTState *s = opaque;
384 
385     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
386     offset >>= 2;
387     if (offset >= CADENCE_UART_R_MAX) {
388         return;
389     }
390     switch (offset) {
391     case R_IER: /* ier (wts imr) */
392         s->r[R_IMR] |= value;
393         break;
394     case R_IDR: /* idr (wtc imr) */
395         s->r[R_IMR] &= ~value;
396         break;
397     case R_IMR: /* imr (read only) */
398         break;
399     case R_CISR: /* cisr (wtc) */
400         s->r[R_CISR] &= ~value;
401         break;
402     case R_TX_RX: /* UARTDR */
403         switch (s->r[R_MR] & UART_MR_CHMODE) {
404         case NORMAL_MODE:
405             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
406             break;
407         case LOCAL_LOOPBACK:
408             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
409             break;
410         }
411         break;
412     case R_BRGR: /* Baud rate generator */
413         if (value >= 0x01) {
414             s->r[offset] = value & 0xFFFF;
415         }
416         break;
417     case R_BDIV:    /* Baud rate divider */
418         if (value >= 0x04) {
419             s->r[offset] = value & 0xFF;
420         }
421         break;
422     default:
423         s->r[offset] = value;
424     }
425 
426     switch (offset) {
427     case R_CR:
428         uart_ctrl_update(s);
429         break;
430     case R_MR:
431         uart_parameters_setup(s);
432         break;
433     }
434     uart_update_status(s);
435 }
436 
437 static uint64_t uart_read(void *opaque, hwaddr offset,
438         unsigned size)
439 {
440     CadenceUARTState *s = opaque;
441     uint32_t c = 0;
442 
443     offset >>= 2;
444     if (offset >= CADENCE_UART_R_MAX) {
445         c = 0;
446     } else if (offset == R_TX_RX) {
447         uart_read_rx_fifo(s, &c);
448     } else {
449        c = s->r[offset];
450     }
451 
452     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
453     return c;
454 }
455 
456 static const MemoryRegionOps uart_ops = {
457     .read = uart_read,
458     .write = uart_write,
459     .endianness = DEVICE_NATIVE_ENDIAN,
460 };
461 
462 static void cadence_uart_reset(DeviceState *dev)
463 {
464     CadenceUARTState *s = CADENCE_UART(dev);
465 
466     s->r[R_CR] = 0x00000128;
467     s->r[R_IMR] = 0;
468     s->r[R_CISR] = 0;
469     s->r[R_RTRIG] = 0x00000020;
470     s->r[R_BRGR] = 0x0000028B;
471     s->r[R_BDIV] = 0x0000000F;
472     s->r[R_TTRIG] = 0x00000020;
473 
474     uart_rx_reset(s);
475     uart_tx_reset(s);
476 
477     uart_update_status(s);
478 }
479 
480 static void cadence_uart_realize(DeviceState *dev, Error **errp)
481 {
482     CadenceUARTState *s = CADENCE_UART(dev);
483 
484     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
485                                           fifo_trigger_update, s);
486 
487     qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
488                              uart_event, NULL, s, NULL, true);
489 }
490 
491 static void cadence_uart_init(Object *obj)
492 {
493     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
494     CadenceUARTState *s = CADENCE_UART(obj);
495 
496     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
497     sysbus_init_mmio(sbd, &s->iomem);
498     sysbus_init_irq(sbd, &s->irq);
499 
500     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
501 }
502 
503 static int cadence_uart_post_load(void *opaque, int version_id)
504 {
505     CadenceUARTState *s = opaque;
506 
507     /* Ensure these two aren't invalid numbers */
508     if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
509         s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
510         /* Value is invalid, abort */
511         return 1;
512     }
513 
514     uart_parameters_setup(s);
515     uart_update_status(s);
516     return 0;
517 }
518 
519 static const VMStateDescription vmstate_cadence_uart = {
520     .name = "cadence_uart",
521     .version_id = 2,
522     .minimum_version_id = 2,
523     .post_load = cadence_uart_post_load,
524     .fields = (VMStateField[]) {
525         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
526         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
527                             CADENCE_UART_RX_FIFO_SIZE),
528         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
529                             CADENCE_UART_TX_FIFO_SIZE),
530         VMSTATE_UINT32(rx_count, CadenceUARTState),
531         VMSTATE_UINT32(tx_count, CadenceUARTState),
532         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
533         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
534         VMSTATE_END_OF_LIST()
535     }
536 };
537 
538 static Property cadence_uart_properties[] = {
539     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
540     DEFINE_PROP_END_OF_LIST(),
541 };
542 
543 static void cadence_uart_class_init(ObjectClass *klass, void *data)
544 {
545     DeviceClass *dc = DEVICE_CLASS(klass);
546 
547     dc->realize = cadence_uart_realize;
548     dc->vmsd = &vmstate_cadence_uart;
549     dc->reset = cadence_uart_reset;
550     dc->props = cadence_uart_properties;
551   }
552 
553 static const TypeInfo cadence_uart_info = {
554     .name          = TYPE_CADENCE_UART,
555     .parent        = TYPE_SYS_BUS_DEVICE,
556     .instance_size = sizeof(CadenceUARTState),
557     .instance_init = cadence_uart_init,
558     .class_init    = cadence_uart_class_init,
559 };
560 
561 static void cadence_uart_register_types(void)
562 {
563     type_register_static(&cadence_uart_info);
564 }
565 
566 type_init(cadence_uart_register_types)
567