xref: /openbmc/qemu/hw/block/pflash_cfi01.c (revision b45c03f5)
1 /*
2  *  CFI parallel flash with Intel command set emulation
3  *
4  *  Copyright (c) 2006 Thorsten Zitterell
5  *  Copyright (c) 2005 Jocelyn Mayer
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22  * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23  * Supported commands/modes are:
24  * - flash read
25  * - flash write
26  * - flash ID read
27  * - sector erase
28  * - CFI queries
29  *
30  * It does not support timings
31  * It does not support flash interleaving
32  * It does not implement software data protection as found in many real chips
33  * It does not implement erase suspend/resume commands
34  * It does not implement multiple sectors erase
35  *
36  * It does not implement much more ...
37  */
38 
39 #include "hw/hw.h"
40 #include "hw/block/flash.h"
41 #include "sysemu/block-backend.h"
42 #include "qemu/timer.h"
43 #include "qemu/bitops.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/host-utils.h"
46 #include "hw/sysbus.h"
47 
48 #define PFLASH_BUG(fmt, ...) \
49 do { \
50     fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
51     exit(1); \
52 } while(0)
53 
54 /* #define PFLASH_DEBUG */
55 #ifdef PFLASH_DEBUG
56 #define DPRINTF(fmt, ...)                                   \
57 do {                                                        \
58     fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__);       \
59 } while (0)
60 #else
61 #define DPRINTF(fmt, ...) do { } while (0)
62 #endif
63 
64 #define TYPE_CFI_PFLASH01 "cfi.pflash01"
65 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
66 
67 #define PFLASH_BE          0
68 #define PFLASH_SECURE      1
69 
70 struct pflash_t {
71     /*< private >*/
72     SysBusDevice parent_obj;
73     /*< public >*/
74 
75     BlockBackend *blk;
76     uint32_t nb_blocs;
77     uint64_t sector_len;
78     uint8_t bank_width;
79     uint8_t device_width; /* If 0, device width not specified. */
80     uint8_t max_device_width;  /* max device width in bytes */
81     uint32_t features;
82     uint8_t wcycle; /* if 0, the flash is read normally */
83     int ro;
84     uint8_t cmd;
85     uint8_t status;
86     uint16_t ident0;
87     uint16_t ident1;
88     uint16_t ident2;
89     uint16_t ident3;
90     uint8_t cfi_len;
91     uint8_t cfi_table[0x52];
92     uint64_t counter;
93     unsigned int writeblock_size;
94     QEMUTimer *timer;
95     MemoryRegion mem;
96     char *name;
97     void *storage;
98 };
99 
100 static int pflash_post_load(void *opaque, int version_id);
101 
102 static const VMStateDescription vmstate_pflash = {
103     .name = "pflash_cfi01",
104     .version_id = 1,
105     .minimum_version_id = 1,
106     .post_load = pflash_post_load,
107     .fields = (VMStateField[]) {
108         VMSTATE_UINT8(wcycle, pflash_t),
109         VMSTATE_UINT8(cmd, pflash_t),
110         VMSTATE_UINT8(status, pflash_t),
111         VMSTATE_UINT64(counter, pflash_t),
112         VMSTATE_END_OF_LIST()
113     }
114 };
115 
116 static void pflash_timer (void *opaque)
117 {
118     pflash_t *pfl = opaque;
119 
120     DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
121     /* Reset flash */
122     pfl->status ^= 0x80;
123     memory_region_rom_device_set_romd(&pfl->mem, true);
124     pfl->wcycle = 0;
125     pfl->cmd = 0;
126 }
127 
128 /* Perform a CFI query based on the bank width of the flash.
129  * If this code is called we know we have a device_width set for
130  * this flash.
131  */
132 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
133 {
134     int i;
135     uint32_t resp = 0;
136     hwaddr boff;
137 
138     /* Adjust incoming offset to match expected device-width
139      * addressing. CFI query addresses are always specified in terms of
140      * the maximum supported width of the device.  This means that x8
141      * devices and x8/x16 devices in x8 mode behave differently.  For
142      * devices that are not used at their max width, we will be
143      * provided with addresses that use higher address bits than
144      * expected (based on the max width), so we will shift them lower
145      * so that they will match the addresses used when
146      * device_width==max_device_width.
147      */
148     boff = offset >> (ctz32(pfl->bank_width) +
149                       ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
150 
151     if (boff > pfl->cfi_len) {
152         return 0;
153     }
154     /* Now we will construct the CFI response generated by a single
155      * device, then replicate that for all devices that make up the
156      * bus.  For wide parts used in x8 mode, CFI query responses
157      * are different than native byte-wide parts.
158      */
159     resp = pfl->cfi_table[boff];
160     if (pfl->device_width != pfl->max_device_width) {
161         /* The only case currently supported is x8 mode for a
162          * wider part.
163          */
164         if (pfl->device_width != 1 || pfl->bank_width > 4) {
165             DPRINTF("%s: Unsupported device configuration: "
166                     "device_width=%d, max_device_width=%d\n",
167                     __func__, pfl->device_width,
168                     pfl->max_device_width);
169             return 0;
170         }
171         /* CFI query data is repeated, rather than zero padded for
172          * wide devices used in x8 mode.
173          */
174         for (i = 1; i < pfl->max_device_width; i++) {
175             resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
176         }
177     }
178     /* Replicate responses for each device in bank. */
179     if (pfl->device_width < pfl->bank_width) {
180         for (i = pfl->device_width;
181              i < pfl->bank_width; i += pfl->device_width) {
182             resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
183         }
184     }
185 
186     return resp;
187 }
188 
189 
190 
191 /* Perform a device id query based on the bank width of the flash. */
192 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
193 {
194     int i;
195     uint32_t resp;
196     hwaddr boff;
197 
198     /* Adjust incoming offset to match expected device-width
199      * addressing. Device ID read addresses are always specified in
200      * terms of the maximum supported width of the device.  This means
201      * that x8 devices and x8/x16 devices in x8 mode behave
202      * differently. For devices that are not used at their max width,
203      * we will be provided with addresses that use higher address bits
204      * than expected (based on the max width), so we will shift them
205      * lower so that they will match the addresses used when
206      * device_width==max_device_width.
207      */
208     boff = offset >> (ctz32(pfl->bank_width) +
209                       ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
210 
211     /* Mask off upper bits which may be used in to query block
212      * or sector lock status at other addresses.
213      * Offsets 2/3 are block lock status, is not emulated.
214      */
215     switch (boff & 0xFF) {
216     case 0:
217         resp = pfl->ident0;
218         DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
219         break;
220     case 1:
221         resp = pfl->ident1;
222         DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
223         break;
224     default:
225         DPRINTF("%s: Read Device Information offset=%x\n", __func__,
226                 (unsigned)offset);
227         return 0;
228         break;
229     }
230     /* Replicate responses for each device in bank. */
231     if (pfl->device_width < pfl->bank_width) {
232         for (i = pfl->device_width;
233               i < pfl->bank_width; i += pfl->device_width) {
234             resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
235         }
236     }
237 
238     return resp;
239 }
240 
241 static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
242                                  int width, int be)
243 {
244     uint8_t *p;
245     uint32_t ret;
246 
247     p = pfl->storage;
248     switch (width) {
249     case 1:
250         ret = p[offset];
251         DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
252                 __func__, offset, ret);
253         break;
254     case 2:
255         if (be) {
256             ret = p[offset] << 8;
257             ret |= p[offset + 1];
258         } else {
259             ret = p[offset];
260             ret |= p[offset + 1] << 8;
261         }
262         DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
263                 __func__, offset, ret);
264         break;
265     case 4:
266         if (be) {
267             ret = p[offset] << 24;
268             ret |= p[offset + 1] << 16;
269             ret |= p[offset + 2] << 8;
270             ret |= p[offset + 3];
271         } else {
272             ret = p[offset];
273             ret |= p[offset + 1] << 8;
274             ret |= p[offset + 2] << 16;
275             ret |= p[offset + 3] << 24;
276         }
277         DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
278                 __func__, offset, ret);
279         break;
280     default:
281         DPRINTF("BUG in %s\n", __func__);
282         abort();
283     }
284     return ret;
285 }
286 
287 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
288                              int width, int be)
289 {
290     hwaddr boff;
291     uint32_t ret;
292 
293     ret = -1;
294 
295 #if 0
296     DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
297             __func__, offset, pfl->cmd, width);
298 #endif
299     switch (pfl->cmd) {
300     default:
301         /* This should never happen : reset state & treat it as a read */
302         DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
303         pfl->wcycle = 0;
304         pfl->cmd = 0;
305         /* fall through to read code */
306     case 0x00:
307         /* Flash area read */
308         ret = pflash_data_read(pfl, offset, width, be);
309         break;
310     case 0x10: /* Single byte program */
311     case 0x20: /* Block erase */
312     case 0x28: /* Block erase */
313     case 0x40: /* single byte program */
314     case 0x50: /* Clear status register */
315     case 0x60: /* Block /un)lock */
316     case 0x70: /* Status Register */
317     case 0xe8: /* Write block */
318         /* Status register read.  Return status from each device in
319          * bank.
320          */
321         ret = pfl->status;
322         if (pfl->device_width && width > pfl->device_width) {
323             int shift = pfl->device_width * 8;
324             while (shift + pfl->device_width * 8 <= width * 8) {
325                 ret |= pfl->status << shift;
326                 shift += pfl->device_width * 8;
327             }
328         } else if (!pfl->device_width && width > 2) {
329             /* Handle 32 bit flash cases where device width is not
330              * set. (Existing behavior before device width added.)
331              */
332             ret |= pfl->status << 16;
333         }
334         DPRINTF("%s: status %x\n", __func__, ret);
335         break;
336     case 0x90:
337         if (!pfl->device_width) {
338             /* Preserve old behavior if device width not specified */
339             boff = offset & 0xFF;
340             if (pfl->bank_width == 2) {
341                 boff = boff >> 1;
342             } else if (pfl->bank_width == 4) {
343                 boff = boff >> 2;
344             }
345 
346             switch (boff) {
347             case 0:
348                 ret = pfl->ident0 << 8 | pfl->ident1;
349                 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
350                 break;
351             case 1:
352                 ret = pfl->ident2 << 8 | pfl->ident3;
353                 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
354                 break;
355             default:
356                 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
357                         (unsigned)boff);
358                 ret = 0;
359                 break;
360             }
361         } else {
362             /* If we have a read larger than the bank_width, combine multiple
363              * manufacturer/device ID queries into a single response.
364              */
365             int i;
366             for (i = 0; i < width; i += pfl->bank_width) {
367                 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
368                                 pflash_devid_query(pfl,
369                                                  offset + i * pfl->bank_width));
370             }
371         }
372         break;
373     case 0x98: /* Query mode */
374         if (!pfl->device_width) {
375             /* Preserve old behavior if device width not specified */
376             boff = offset & 0xFF;
377             if (pfl->bank_width == 2) {
378                 boff = boff >> 1;
379             } else if (pfl->bank_width == 4) {
380                 boff = boff >> 2;
381             }
382 
383             if (boff > pfl->cfi_len) {
384                 ret = 0;
385             } else {
386                 ret = pfl->cfi_table[boff];
387             }
388         } else {
389             /* If we have a read larger than the bank_width, combine multiple
390              * CFI queries into a single response.
391              */
392             int i;
393             for (i = 0; i < width; i += pfl->bank_width) {
394                 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
395                                 pflash_cfi_query(pfl,
396                                                  offset + i * pfl->bank_width));
397             }
398         }
399 
400         break;
401     }
402     return ret;
403 }
404 
405 /* update flash content on disk */
406 static void pflash_update(pflash_t *pfl, int offset,
407                           int size)
408 {
409     int offset_end;
410     if (pfl->blk) {
411         offset_end = offset + size;
412         /* round to sectors */
413         offset = offset >> 9;
414         offset_end = (offset_end + 511) >> 9;
415         blk_write(pfl->blk, offset, pfl->storage + (offset << 9),
416                   offset_end - offset);
417     }
418 }
419 
420 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
421                                      uint32_t value, int width, int be)
422 {
423     uint8_t *p = pfl->storage;
424 
425     DPRINTF("%s: block write offset " TARGET_FMT_plx
426             " value %x counter %016" PRIx64 "\n",
427             __func__, offset, value, pfl->counter);
428     switch (width) {
429     case 1:
430         p[offset] = value;
431         break;
432     case 2:
433         if (be) {
434             p[offset] = value >> 8;
435             p[offset + 1] = value;
436         } else {
437             p[offset] = value;
438             p[offset + 1] = value >> 8;
439         }
440         break;
441     case 4:
442         if (be) {
443             p[offset] = value >> 24;
444             p[offset + 1] = value >> 16;
445             p[offset + 2] = value >> 8;
446             p[offset + 3] = value;
447         } else {
448             p[offset] = value;
449             p[offset + 1] = value >> 8;
450             p[offset + 2] = value >> 16;
451             p[offset + 3] = value >> 24;
452         }
453         break;
454     }
455 
456 }
457 
458 static void pflash_write(pflash_t *pfl, hwaddr offset,
459                          uint32_t value, int width, int be)
460 {
461     uint8_t *p;
462     uint8_t cmd;
463 
464     cmd = value;
465 
466     DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
467             __func__, offset, value, width, pfl->wcycle);
468 
469     if (!pfl->wcycle) {
470         /* Set the device in I/O access mode */
471         memory_region_rom_device_set_romd(&pfl->mem, false);
472     }
473 
474     switch (pfl->wcycle) {
475     case 0:
476         /* read mode */
477         switch (cmd) {
478         case 0x00: /* ??? */
479             goto reset_flash;
480         case 0x10: /* Single Byte Program */
481         case 0x40: /* Single Byte Program */
482             DPRINTF("%s: Single Byte Program\n", __func__);
483             break;
484         case 0x20: /* Block erase */
485             p = pfl->storage;
486             offset &= ~(pfl->sector_len - 1);
487 
488             DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
489                     __func__, offset, (unsigned)pfl->sector_len);
490 
491             if (!pfl->ro) {
492                 memset(p + offset, 0xff, pfl->sector_len);
493                 pflash_update(pfl, offset, pfl->sector_len);
494             } else {
495                 pfl->status |= 0x20; /* Block erase error */
496             }
497             pfl->status |= 0x80; /* Ready! */
498             break;
499         case 0x50: /* Clear status bits */
500             DPRINTF("%s: Clear status bits\n", __func__);
501             pfl->status = 0x0;
502             goto reset_flash;
503         case 0x60: /* Block (un)lock */
504             DPRINTF("%s: Block unlock\n", __func__);
505             break;
506         case 0x70: /* Status Register */
507             DPRINTF("%s: Read status register\n", __func__);
508             pfl->cmd = cmd;
509             return;
510         case 0x90: /* Read Device ID */
511             DPRINTF("%s: Read Device information\n", __func__);
512             pfl->cmd = cmd;
513             return;
514         case 0x98: /* CFI query */
515             DPRINTF("%s: CFI query\n", __func__);
516             break;
517         case 0xe8: /* Write to buffer */
518             DPRINTF("%s: Write to buffer\n", __func__);
519             pfl->status |= 0x80; /* Ready! */
520             break;
521         case 0xf0: /* Probe for AMD flash */
522             DPRINTF("%s: Probe for AMD flash\n", __func__);
523             goto reset_flash;
524         case 0xff: /* Read array mode */
525             DPRINTF("%s: Read array mode\n", __func__);
526             goto reset_flash;
527         default:
528             goto error_flash;
529         }
530         pfl->wcycle++;
531         pfl->cmd = cmd;
532         break;
533     case 1:
534         switch (pfl->cmd) {
535         case 0x10: /* Single Byte Program */
536         case 0x40: /* Single Byte Program */
537             DPRINTF("%s: Single Byte Program\n", __func__);
538             if (!pfl->ro) {
539                 pflash_data_write(pfl, offset, value, width, be);
540                 pflash_update(pfl, offset, width);
541             } else {
542                 pfl->status |= 0x10; /* Programming error */
543             }
544             pfl->status |= 0x80; /* Ready! */
545             pfl->wcycle = 0;
546         break;
547         case 0x20: /* Block erase */
548         case 0x28:
549             if (cmd == 0xd0) { /* confirm */
550                 pfl->wcycle = 0;
551                 pfl->status |= 0x80;
552             } else if (cmd == 0xff) { /* read array mode */
553                 goto reset_flash;
554             } else
555                 goto error_flash;
556 
557             break;
558         case 0xe8:
559             /* Mask writeblock size based on device width, or bank width if
560              * device width not specified.
561              */
562             if (pfl->device_width) {
563                 value = extract32(value, 0, pfl->device_width * 8);
564             } else {
565                 value = extract32(value, 0, pfl->bank_width * 8);
566             }
567             DPRINTF("%s: block write of %x bytes\n", __func__, value);
568             pfl->counter = value;
569             pfl->wcycle++;
570             break;
571         case 0x60:
572             if (cmd == 0xd0) {
573                 pfl->wcycle = 0;
574                 pfl->status |= 0x80;
575             } else if (cmd == 0x01) {
576                 pfl->wcycle = 0;
577                 pfl->status |= 0x80;
578             } else if (cmd == 0xff) {
579                 goto reset_flash;
580             } else {
581                 DPRINTF("%s: Unknown (un)locking command\n", __func__);
582                 goto reset_flash;
583             }
584             break;
585         case 0x98:
586             if (cmd == 0xff) {
587                 goto reset_flash;
588             } else {
589                 DPRINTF("%s: leaving query mode\n", __func__);
590             }
591             break;
592         default:
593             goto error_flash;
594         }
595         break;
596     case 2:
597         switch (pfl->cmd) {
598         case 0xe8: /* Block write */
599             if (!pfl->ro) {
600                 pflash_data_write(pfl, offset, value, width, be);
601             } else {
602                 pfl->status |= 0x10; /* Programming error */
603             }
604 
605             pfl->status |= 0x80;
606 
607             if (!pfl->counter) {
608                 hwaddr mask = pfl->writeblock_size - 1;
609                 mask = ~mask;
610 
611                 DPRINTF("%s: block write finished\n", __func__);
612                 pfl->wcycle++;
613                 if (!pfl->ro) {
614                     /* Flush the entire write buffer onto backing storage.  */
615                     pflash_update(pfl, offset & mask, pfl->writeblock_size);
616                 } else {
617                     pfl->status |= 0x10; /* Programming error */
618                 }
619             }
620 
621             pfl->counter--;
622             break;
623         default:
624             goto error_flash;
625         }
626         break;
627     case 3: /* Confirm mode */
628         switch (pfl->cmd) {
629         case 0xe8: /* Block write */
630             if (cmd == 0xd0) {
631                 pfl->wcycle = 0;
632                 pfl->status |= 0x80;
633             } else {
634                 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
635                 PFLASH_BUG("Write block confirm");
636                 goto reset_flash;
637             }
638             break;
639         default:
640             goto error_flash;
641         }
642         break;
643     default:
644         /* Should never happen */
645         DPRINTF("%s: invalid write state\n",  __func__);
646         goto reset_flash;
647     }
648     return;
649 
650  error_flash:
651     qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
652                   "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
653                   "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
654 
655  reset_flash:
656     memory_region_rom_device_set_romd(&pfl->mem, true);
657 
658     pfl->wcycle = 0;
659     pfl->cmd = 0;
660 }
661 
662 
663 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
664                                               unsigned len, MemTxAttrs attrs)
665 {
666     pflash_t *pfl = opaque;
667     bool be = !!(pfl->features & (1 << PFLASH_BE));
668 
669     if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
670         *value = pflash_data_read(opaque, addr, len, be);
671     } else {
672         *value = pflash_read(opaque, addr, len, be);
673     }
674     return MEMTX_OK;
675 }
676 
677 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
678                                                unsigned len, MemTxAttrs attrs)
679 {
680     pflash_t *pfl = opaque;
681     bool be = !!(pfl->features & (1 << PFLASH_BE));
682 
683     if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
684         return MEMTX_ERROR;
685     } else {
686         pflash_write(opaque, addr, value, len, be);
687         return MEMTX_OK;
688     }
689 }
690 
691 static const MemoryRegionOps pflash_cfi01_ops = {
692     .read_with_attrs = pflash_mem_read_with_attrs,
693     .write_with_attrs = pflash_mem_write_with_attrs,
694     .endianness = DEVICE_NATIVE_ENDIAN,
695 };
696 
697 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
698 {
699     pflash_t *pfl = CFI_PFLASH01(dev);
700     uint64_t total_len;
701     int ret;
702     uint64_t blocks_per_device, device_len;
703     int num_devices;
704     Error *local_err = NULL;
705 
706     total_len = pfl->sector_len * pfl->nb_blocs;
707 
708     /* These are only used to expose the parameters of each device
709      * in the cfi_table[].
710      */
711     num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
712     blocks_per_device = pfl->nb_blocs / num_devices;
713     device_len = pfl->sector_len * blocks_per_device;
714 
715     /* XXX: to be fixed */
716 #if 0
717     if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
718         total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
719         return NULL;
720 #endif
721 
722     memory_region_init_rom_device(
723         &pfl->mem, OBJECT(dev),
724         &pflash_cfi01_ops,
725         pfl,
726         pfl->name, total_len, &local_err);
727     if (local_err) {
728         error_propagate(errp, local_err);
729         return;
730     }
731 
732     vmstate_register_ram(&pfl->mem, DEVICE(pfl));
733     pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
734     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
735 
736     if (pfl->blk) {
737         /* read the initial flash content */
738         ret = blk_read(pfl->blk, 0, pfl->storage, total_len >> 9);
739 
740         if (ret < 0) {
741             vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
742             error_setg(errp, "failed to read the initial flash content");
743             return;
744         }
745     }
746 
747     if (pfl->blk) {
748         pfl->ro = blk_is_read_only(pfl->blk);
749     } else {
750         pfl->ro = 0;
751     }
752 
753     /* Default to devices being used at their maximum device width. This was
754      * assumed before the device_width support was added.
755      */
756     if (!pfl->max_device_width) {
757         pfl->max_device_width = pfl->device_width;
758     }
759 
760     pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
761     pfl->wcycle = 0;
762     pfl->cmd = 0;
763     pfl->status = 0;
764     /* Hardcoded CFI table */
765     pfl->cfi_len = 0x52;
766     /* Standard "QRY" string */
767     pfl->cfi_table[0x10] = 'Q';
768     pfl->cfi_table[0x11] = 'R';
769     pfl->cfi_table[0x12] = 'Y';
770     /* Command set (Intel) */
771     pfl->cfi_table[0x13] = 0x01;
772     pfl->cfi_table[0x14] = 0x00;
773     /* Primary extended table address (none) */
774     pfl->cfi_table[0x15] = 0x31;
775     pfl->cfi_table[0x16] = 0x00;
776     /* Alternate command set (none) */
777     pfl->cfi_table[0x17] = 0x00;
778     pfl->cfi_table[0x18] = 0x00;
779     /* Alternate extended table (none) */
780     pfl->cfi_table[0x19] = 0x00;
781     pfl->cfi_table[0x1A] = 0x00;
782     /* Vcc min */
783     pfl->cfi_table[0x1B] = 0x45;
784     /* Vcc max */
785     pfl->cfi_table[0x1C] = 0x55;
786     /* Vpp min (no Vpp pin) */
787     pfl->cfi_table[0x1D] = 0x00;
788     /* Vpp max (no Vpp pin) */
789     pfl->cfi_table[0x1E] = 0x00;
790     /* Reserved */
791     pfl->cfi_table[0x1F] = 0x07;
792     /* Timeout for min size buffer write */
793     pfl->cfi_table[0x20] = 0x07;
794     /* Typical timeout for block erase */
795     pfl->cfi_table[0x21] = 0x0a;
796     /* Typical timeout for full chip erase (4096 ms) */
797     pfl->cfi_table[0x22] = 0x00;
798     /* Reserved */
799     pfl->cfi_table[0x23] = 0x04;
800     /* Max timeout for buffer write */
801     pfl->cfi_table[0x24] = 0x04;
802     /* Max timeout for block erase */
803     pfl->cfi_table[0x25] = 0x04;
804     /* Max timeout for chip erase */
805     pfl->cfi_table[0x26] = 0x00;
806     /* Device size */
807     pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
808     /* Flash device interface (8 & 16 bits) */
809     pfl->cfi_table[0x28] = 0x02;
810     pfl->cfi_table[0x29] = 0x00;
811     /* Max number of bytes in multi-bytes write */
812     if (pfl->bank_width == 1) {
813         pfl->cfi_table[0x2A] = 0x08;
814     } else {
815         pfl->cfi_table[0x2A] = 0x0B;
816     }
817     pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
818 
819     pfl->cfi_table[0x2B] = 0x00;
820     /* Number of erase block regions (uniform) */
821     pfl->cfi_table[0x2C] = 0x01;
822     /* Erase block region 1 */
823     pfl->cfi_table[0x2D] = blocks_per_device - 1;
824     pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
825     pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
826     pfl->cfi_table[0x30] = pfl->sector_len >> 16;
827 
828     /* Extended */
829     pfl->cfi_table[0x31] = 'P';
830     pfl->cfi_table[0x32] = 'R';
831     pfl->cfi_table[0x33] = 'I';
832 
833     pfl->cfi_table[0x34] = '1';
834     pfl->cfi_table[0x35] = '0';
835 
836     pfl->cfi_table[0x36] = 0x00;
837     pfl->cfi_table[0x37] = 0x00;
838     pfl->cfi_table[0x38] = 0x00;
839     pfl->cfi_table[0x39] = 0x00;
840 
841     pfl->cfi_table[0x3a] = 0x00;
842 
843     pfl->cfi_table[0x3b] = 0x00;
844     pfl->cfi_table[0x3c] = 0x00;
845 
846     pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
847 }
848 
849 static Property pflash_cfi01_properties[] = {
850     DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
851     /* num-blocks is the number of blocks actually visible to the guest,
852      * ie the total size of the device divided by the sector length.
853      * If we're emulating flash devices wired in parallel the actual
854      * number of blocks per indvidual device will differ.
855      */
856     DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
857     DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
858     /* width here is the overall width of this QEMU device in bytes.
859      * The QEMU device may be emulating a number of flash devices
860      * wired up in parallel; the width of each individual flash
861      * device should be specified via device-width. If the individual
862      * devices have a maximum width which is greater than the width
863      * they are being used for, this maximum width should be set via
864      * max-device-width (which otherwise defaults to device-width).
865      * So for instance a 32-bit wide QEMU flash device made from four
866      * 16-bit flash devices used in 8-bit wide mode would be configured
867      * with width = 4, device-width = 1, max-device-width = 2.
868      *
869      * If device-width is not specified we default to backwards
870      * compatible behaviour which is a bad emulation of two
871      * 16 bit devices making up a 32 bit wide QEMU device. This
872      * is deprecated for new uses of this device.
873      */
874     DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
875     DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
876     DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
877     DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
878     DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
879     DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
880     DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
881     DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
882     DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
883     DEFINE_PROP_STRING("name", struct pflash_t, name),
884     DEFINE_PROP_END_OF_LIST(),
885 };
886 
887 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
888 {
889     DeviceClass *dc = DEVICE_CLASS(klass);
890 
891     dc->realize = pflash_cfi01_realize;
892     dc->props = pflash_cfi01_properties;
893     dc->vmsd = &vmstate_pflash;
894     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
895 }
896 
897 
898 static const TypeInfo pflash_cfi01_info = {
899     .name           = TYPE_CFI_PFLASH01,
900     .parent         = TYPE_SYS_BUS_DEVICE,
901     .instance_size  = sizeof(struct pflash_t),
902     .class_init     = pflash_cfi01_class_init,
903 };
904 
905 static void pflash_cfi01_register_types(void)
906 {
907     type_register_static(&pflash_cfi01_info);
908 }
909 
910 type_init(pflash_cfi01_register_types)
911 
912 pflash_t *pflash_cfi01_register(hwaddr base,
913                                 DeviceState *qdev, const char *name,
914                                 hwaddr size,
915                                 BlockBackend *blk,
916                                 uint32_t sector_len, int nb_blocs,
917                                 int bank_width, uint16_t id0, uint16_t id1,
918                                 uint16_t id2, uint16_t id3, int be)
919 {
920     DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
921 
922     if (blk) {
923         qdev_prop_set_drive(dev, "drive", blk, &error_abort);
924     }
925     qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
926     qdev_prop_set_uint64(dev, "sector-length", sector_len);
927     qdev_prop_set_uint8(dev, "width", bank_width);
928     qdev_prop_set_bit(dev, "big-endian", !!be);
929     qdev_prop_set_uint16(dev, "id0", id0);
930     qdev_prop_set_uint16(dev, "id1", id1);
931     qdev_prop_set_uint16(dev, "id2", id2);
932     qdev_prop_set_uint16(dev, "id3", id3);
933     qdev_prop_set_string(dev, "name", name);
934     qdev_init_nofail(dev);
935 
936     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
937     return CFI_PFLASH01(dev);
938 }
939 
940 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
941 {
942     return &fl->mem;
943 }
944 
945 static int pflash_post_load(void *opaque, int version_id)
946 {
947     pflash_t *pfl = opaque;
948 
949     if (!pfl->ro) {
950         DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
951         pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
952     }
953     return 0;
954 }
955