1 /* 2 * CFI parallel flash with Intel command set emulation 3 * 4 * Copyright (c) 2006 Thorsten Zitterell 5 * Copyright (c) 2005 Jocelyn Mayer 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width. 23 * Supported commands/modes are: 24 * - flash read 25 * - flash write 26 * - flash ID read 27 * - sector erase 28 * - CFI queries 29 * 30 * It does not support timings 31 * It does not support flash interleaving 32 * It does not implement software data protection as found in many real chips 33 * It does not implement erase suspend/resume commands 34 * It does not implement multiple sectors erase 35 * 36 * It does not implement much more ... 37 */ 38 39 #include "hw/hw.h" 40 #include "hw/block/flash.h" 41 #include "block/block.h" 42 #include "qemu/timer.h" 43 #include "qemu/bitops.h" 44 #include "exec/address-spaces.h" 45 #include "qemu/host-utils.h" 46 #include "hw/sysbus.h" 47 48 #define PFLASH_BUG(fmt, ...) \ 49 do { \ 50 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \ 51 exit(1); \ 52 } while(0) 53 54 /* #define PFLASH_DEBUG */ 55 #ifdef PFLASH_DEBUG 56 #define DPRINTF(fmt, ...) \ 57 do { \ 58 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \ 59 } while (0) 60 #else 61 #define DPRINTF(fmt, ...) do { } while (0) 62 #endif 63 64 #define TYPE_CFI_PFLASH01 "cfi.pflash01" 65 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01) 66 67 struct pflash_t { 68 /*< private >*/ 69 SysBusDevice parent_obj; 70 /*< public >*/ 71 72 BlockDriverState *bs; 73 uint32_t nb_blocs; 74 uint64_t sector_len; 75 uint8_t bank_width; 76 uint8_t device_width; /* If 0, device width not specified. */ 77 uint8_t max_device_width; /* max device width in bytes */ 78 uint8_t be; 79 uint8_t wcycle; /* if 0, the flash is read normally */ 80 int ro; 81 uint8_t cmd; 82 uint8_t status; 83 uint16_t ident0; 84 uint16_t ident1; 85 uint16_t ident2; 86 uint16_t ident3; 87 uint8_t cfi_len; 88 uint8_t cfi_table[0x52]; 89 uint64_t counter; 90 unsigned int writeblock_size; 91 QEMUTimer *timer; 92 MemoryRegion mem; 93 char *name; 94 void *storage; 95 }; 96 97 static const VMStateDescription vmstate_pflash = { 98 .name = "pflash_cfi01", 99 .version_id = 1, 100 .minimum_version_id = 1, 101 .fields = (VMStateField[]) { 102 VMSTATE_UINT8(wcycle, pflash_t), 103 VMSTATE_UINT8(cmd, pflash_t), 104 VMSTATE_UINT8(status, pflash_t), 105 VMSTATE_UINT64(counter, pflash_t), 106 VMSTATE_END_OF_LIST() 107 } 108 }; 109 110 static void pflash_timer (void *opaque) 111 { 112 pflash_t *pfl = opaque; 113 114 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd); 115 /* Reset flash */ 116 pfl->status ^= 0x80; 117 memory_region_rom_device_set_romd(&pfl->mem, true); 118 pfl->wcycle = 0; 119 pfl->cmd = 0; 120 } 121 122 /* Perform a CFI query based on the bank width of the flash. 123 * If this code is called we know we have a device_width set for 124 * this flash. 125 */ 126 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset) 127 { 128 int i; 129 uint32_t resp = 0; 130 hwaddr boff; 131 132 /* Adjust incoming offset to match expected device-width 133 * addressing. CFI query addresses are always specified in terms of 134 * the maximum supported width of the device. This means that x8 135 * devices and x8/x16 devices in x8 mode behave differently. For 136 * devices that are not used at their max width, we will be 137 * provided with addresses that use higher address bits than 138 * expected (based on the max width), so we will shift them lower 139 * so that they will match the addresses used when 140 * device_width==max_device_width. 141 */ 142 boff = offset >> (ctz32(pfl->bank_width) + 143 ctz32(pfl->max_device_width) - ctz32(pfl->device_width)); 144 145 if (boff > pfl->cfi_len) { 146 return 0; 147 } 148 /* Now we will construct the CFI response generated by a single 149 * device, then replicate that for all devices that make up the 150 * bus. For wide parts used in x8 mode, CFI query responses 151 * are different than native byte-wide parts. 152 */ 153 resp = pfl->cfi_table[boff]; 154 if (pfl->device_width != pfl->max_device_width) { 155 /* The only case currently supported is x8 mode for a 156 * wider part. 157 */ 158 if (pfl->device_width != 1 || pfl->bank_width > 4) { 159 DPRINTF("%s: Unsupported device configuration: " 160 "device_width=%d, max_device_width=%d\n", 161 __func__, pfl->device_width, 162 pfl->max_device_width); 163 return 0; 164 } 165 /* CFI query data is repeated, rather than zero padded for 166 * wide devices used in x8 mode. 167 */ 168 for (i = 1; i < pfl->max_device_width; i++) { 169 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]); 170 } 171 } 172 /* Replicate responses for each device in bank. */ 173 if (pfl->device_width < pfl->bank_width) { 174 for (i = pfl->device_width; 175 i < pfl->bank_width; i += pfl->device_width) { 176 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp); 177 } 178 } 179 180 return resp; 181 } 182 183 184 185 /* Perform a device id query based on the bank width of the flash. */ 186 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset) 187 { 188 int i; 189 uint32_t resp; 190 hwaddr boff; 191 192 /* Adjust incoming offset to match expected device-width 193 * addressing. Device ID read addresses are always specified in 194 * terms of the maximum supported width of the device. This means 195 * that x8 devices and x8/x16 devices in x8 mode behave 196 * differently. For devices that are not used at their max width, 197 * we will be provided with addresses that use higher address bits 198 * than expected (based on the max width), so we will shift them 199 * lower so that they will match the addresses used when 200 * device_width==max_device_width. 201 */ 202 boff = offset >> (ctz32(pfl->bank_width) + 203 ctz32(pfl->max_device_width) - ctz32(pfl->device_width)); 204 205 /* Mask off upper bits which may be used in to query block 206 * or sector lock status at other addresses. 207 * Offsets 2/3 are block lock status, is not emulated. 208 */ 209 switch (boff & 0xFF) { 210 case 0: 211 resp = pfl->ident0; 212 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret); 213 break; 214 case 1: 215 resp = pfl->ident1; 216 DPRINTF("%s: Device ID Code %04x\n", __func__, ret); 217 break; 218 default: 219 DPRINTF("%s: Read Device Information offset=%x\n", __func__, 220 (unsigned)offset); 221 return 0; 222 break; 223 } 224 /* Replicate responses for each device in bank. */ 225 if (pfl->device_width < pfl->bank_width) { 226 for (i = pfl->device_width; 227 i < pfl->bank_width; i += pfl->device_width) { 228 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp); 229 } 230 } 231 232 return resp; 233 } 234 235 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset, 236 int width, int be) 237 { 238 hwaddr boff; 239 uint32_t ret; 240 uint8_t *p; 241 242 ret = -1; 243 244 #if 0 245 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n", 246 __func__, offset, pfl->cmd, width); 247 #endif 248 switch (pfl->cmd) { 249 default: 250 /* This should never happen : reset state & treat it as a read */ 251 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd); 252 pfl->wcycle = 0; 253 pfl->cmd = 0; 254 /* fall through to read code */ 255 case 0x00: 256 /* Flash area read */ 257 p = pfl->storage; 258 switch (width) { 259 case 1: 260 ret = p[offset]; 261 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n", 262 __func__, offset, ret); 263 break; 264 case 2: 265 if (be) { 266 ret = p[offset] << 8; 267 ret |= p[offset + 1]; 268 } else { 269 ret = p[offset]; 270 ret |= p[offset + 1] << 8; 271 } 272 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n", 273 __func__, offset, ret); 274 break; 275 case 4: 276 if (be) { 277 ret = p[offset] << 24; 278 ret |= p[offset + 1] << 16; 279 ret |= p[offset + 2] << 8; 280 ret |= p[offset + 3]; 281 } else { 282 ret = p[offset]; 283 ret |= p[offset + 1] << 8; 284 ret |= p[offset + 2] << 16; 285 ret |= p[offset + 3] << 24; 286 } 287 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n", 288 __func__, offset, ret); 289 break; 290 default: 291 DPRINTF("BUG in %s\n", __func__); 292 } 293 294 break; 295 case 0x10: /* Single byte program */ 296 case 0x20: /* Block erase */ 297 case 0x28: /* Block erase */ 298 case 0x40: /* single byte program */ 299 case 0x50: /* Clear status register */ 300 case 0x60: /* Block /un)lock */ 301 case 0x70: /* Status Register */ 302 case 0xe8: /* Write block */ 303 /* Status register read. Return status from each device in 304 * bank. 305 */ 306 ret = pfl->status; 307 if (pfl->device_width && width > pfl->device_width) { 308 int shift = pfl->device_width * 8; 309 while (shift + pfl->device_width * 8 <= width * 8) { 310 ret |= pfl->status << shift; 311 shift += pfl->device_width * 8; 312 } 313 } else if (!pfl->device_width && width > 2) { 314 /* Handle 32 bit flash cases where device width is not 315 * set. (Existing behavior before device width added.) 316 */ 317 ret |= pfl->status << 16; 318 } 319 DPRINTF("%s: status %x\n", __func__, ret); 320 break; 321 case 0x90: 322 if (!pfl->device_width) { 323 /* Preserve old behavior if device width not specified */ 324 boff = offset & 0xFF; 325 if (pfl->bank_width == 2) { 326 boff = boff >> 1; 327 } else if (pfl->bank_width == 4) { 328 boff = boff >> 2; 329 } 330 331 switch (boff) { 332 case 0: 333 ret = pfl->ident0 << 8 | pfl->ident1; 334 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret); 335 break; 336 case 1: 337 ret = pfl->ident2 << 8 | pfl->ident3; 338 DPRINTF("%s: Device ID Code %04x\n", __func__, ret); 339 break; 340 default: 341 DPRINTF("%s: Read Device Information boff=%x\n", __func__, 342 (unsigned)boff); 343 ret = 0; 344 break; 345 } 346 } else { 347 /* If we have a read larger than the bank_width, combine multiple 348 * manufacturer/device ID queries into a single response. 349 */ 350 int i; 351 for (i = 0; i < width; i += pfl->bank_width) { 352 ret = deposit32(ret, i * 8, pfl->bank_width * 8, 353 pflash_devid_query(pfl, 354 offset + i * pfl->bank_width)); 355 } 356 } 357 break; 358 case 0x98: /* Query mode */ 359 if (!pfl->device_width) { 360 /* Preserve old behavior if device width not specified */ 361 boff = offset & 0xFF; 362 if (pfl->bank_width == 2) { 363 boff = boff >> 1; 364 } else if (pfl->bank_width == 4) { 365 boff = boff >> 2; 366 } 367 368 if (boff > pfl->cfi_len) { 369 ret = 0; 370 } else { 371 ret = pfl->cfi_table[boff]; 372 } 373 } else { 374 /* If we have a read larger than the bank_width, combine multiple 375 * CFI queries into a single response. 376 */ 377 int i; 378 for (i = 0; i < width; i += pfl->bank_width) { 379 ret = deposit32(ret, i * 8, pfl->bank_width * 8, 380 pflash_cfi_query(pfl, 381 offset + i * pfl->bank_width)); 382 } 383 } 384 385 break; 386 } 387 return ret; 388 } 389 390 /* update flash content on disk */ 391 static void pflash_update(pflash_t *pfl, int offset, 392 int size) 393 { 394 int offset_end; 395 if (pfl->bs) { 396 offset_end = offset + size; 397 /* round to sectors */ 398 offset = offset >> 9; 399 offset_end = (offset_end + 511) >> 9; 400 bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9), 401 offset_end - offset); 402 } 403 } 404 405 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset, 406 uint32_t value, int width, int be) 407 { 408 uint8_t *p = pfl->storage; 409 410 DPRINTF("%s: block write offset " TARGET_FMT_plx 411 " value %x counter %016" PRIx64 "\n", 412 __func__, offset, value, pfl->counter); 413 switch (width) { 414 case 1: 415 p[offset] = value; 416 break; 417 case 2: 418 if (be) { 419 p[offset] = value >> 8; 420 p[offset + 1] = value; 421 } else { 422 p[offset] = value; 423 p[offset + 1] = value >> 8; 424 } 425 break; 426 case 4: 427 if (be) { 428 p[offset] = value >> 24; 429 p[offset + 1] = value >> 16; 430 p[offset + 2] = value >> 8; 431 p[offset + 3] = value; 432 } else { 433 p[offset] = value; 434 p[offset + 1] = value >> 8; 435 p[offset + 2] = value >> 16; 436 p[offset + 3] = value >> 24; 437 } 438 break; 439 } 440 441 } 442 443 static void pflash_write(pflash_t *pfl, hwaddr offset, 444 uint32_t value, int width, int be) 445 { 446 uint8_t *p; 447 uint8_t cmd; 448 449 cmd = value; 450 451 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n", 452 __func__, offset, value, width, pfl->wcycle); 453 454 if (!pfl->wcycle) { 455 /* Set the device in I/O access mode */ 456 memory_region_rom_device_set_romd(&pfl->mem, false); 457 } 458 459 switch (pfl->wcycle) { 460 case 0: 461 /* read mode */ 462 switch (cmd) { 463 case 0x00: /* ??? */ 464 goto reset_flash; 465 case 0x10: /* Single Byte Program */ 466 case 0x40: /* Single Byte Program */ 467 DPRINTF("%s: Single Byte Program\n", __func__); 468 break; 469 case 0x20: /* Block erase */ 470 p = pfl->storage; 471 offset &= ~(pfl->sector_len - 1); 472 473 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n", 474 __func__, offset, (unsigned)pfl->sector_len); 475 476 if (!pfl->ro) { 477 memset(p + offset, 0xff, pfl->sector_len); 478 pflash_update(pfl, offset, pfl->sector_len); 479 } else { 480 pfl->status |= 0x20; /* Block erase error */ 481 } 482 pfl->status |= 0x80; /* Ready! */ 483 break; 484 case 0x50: /* Clear status bits */ 485 DPRINTF("%s: Clear status bits\n", __func__); 486 pfl->status = 0x0; 487 goto reset_flash; 488 case 0x60: /* Block (un)lock */ 489 DPRINTF("%s: Block unlock\n", __func__); 490 break; 491 case 0x70: /* Status Register */ 492 DPRINTF("%s: Read status register\n", __func__); 493 pfl->cmd = cmd; 494 return; 495 case 0x90: /* Read Device ID */ 496 DPRINTF("%s: Read Device information\n", __func__); 497 pfl->cmd = cmd; 498 return; 499 case 0x98: /* CFI query */ 500 DPRINTF("%s: CFI query\n", __func__); 501 break; 502 case 0xe8: /* Write to buffer */ 503 DPRINTF("%s: Write to buffer\n", __func__); 504 pfl->status |= 0x80; /* Ready! */ 505 break; 506 case 0xf0: /* Probe for AMD flash */ 507 DPRINTF("%s: Probe for AMD flash\n", __func__); 508 goto reset_flash; 509 case 0xff: /* Read array mode */ 510 DPRINTF("%s: Read array mode\n", __func__); 511 goto reset_flash; 512 default: 513 goto error_flash; 514 } 515 pfl->wcycle++; 516 pfl->cmd = cmd; 517 break; 518 case 1: 519 switch (pfl->cmd) { 520 case 0x10: /* Single Byte Program */ 521 case 0x40: /* Single Byte Program */ 522 DPRINTF("%s: Single Byte Program\n", __func__); 523 if (!pfl->ro) { 524 pflash_data_write(pfl, offset, value, width, be); 525 pflash_update(pfl, offset, width); 526 } else { 527 pfl->status |= 0x10; /* Programming error */ 528 } 529 pfl->status |= 0x80; /* Ready! */ 530 pfl->wcycle = 0; 531 break; 532 case 0x20: /* Block erase */ 533 case 0x28: 534 if (cmd == 0xd0) { /* confirm */ 535 pfl->wcycle = 0; 536 pfl->status |= 0x80; 537 } else if (cmd == 0xff) { /* read array mode */ 538 goto reset_flash; 539 } else 540 goto error_flash; 541 542 break; 543 case 0xe8: 544 /* Mask writeblock size based on device width, or bank width if 545 * device width not specified. 546 */ 547 if (pfl->device_width) { 548 value = extract32(value, 0, pfl->device_width * 8); 549 } else { 550 value = extract32(value, 0, pfl->bank_width * 8); 551 } 552 DPRINTF("%s: block write of %x bytes\n", __func__, value); 553 pfl->counter = value; 554 pfl->wcycle++; 555 break; 556 case 0x60: 557 if (cmd == 0xd0) { 558 pfl->wcycle = 0; 559 pfl->status |= 0x80; 560 } else if (cmd == 0x01) { 561 pfl->wcycle = 0; 562 pfl->status |= 0x80; 563 } else if (cmd == 0xff) { 564 goto reset_flash; 565 } else { 566 DPRINTF("%s: Unknown (un)locking command\n", __func__); 567 goto reset_flash; 568 } 569 break; 570 case 0x98: 571 if (cmd == 0xff) { 572 goto reset_flash; 573 } else { 574 DPRINTF("%s: leaving query mode\n", __func__); 575 } 576 break; 577 default: 578 goto error_flash; 579 } 580 break; 581 case 2: 582 switch (pfl->cmd) { 583 case 0xe8: /* Block write */ 584 if (!pfl->ro) { 585 pflash_data_write(pfl, offset, value, width, be); 586 } else { 587 pfl->status |= 0x10; /* Programming error */ 588 } 589 590 pfl->status |= 0x80; 591 592 if (!pfl->counter) { 593 hwaddr mask = pfl->writeblock_size - 1; 594 mask = ~mask; 595 596 DPRINTF("%s: block write finished\n", __func__); 597 pfl->wcycle++; 598 if (!pfl->ro) { 599 /* Flush the entire write buffer onto backing storage. */ 600 pflash_update(pfl, offset & mask, pfl->writeblock_size); 601 } else { 602 pfl->status |= 0x10; /* Programming error */ 603 } 604 } 605 606 pfl->counter--; 607 break; 608 default: 609 goto error_flash; 610 } 611 break; 612 case 3: /* Confirm mode */ 613 switch (pfl->cmd) { 614 case 0xe8: /* Block write */ 615 if (cmd == 0xd0) { 616 pfl->wcycle = 0; 617 pfl->status |= 0x80; 618 } else { 619 DPRINTF("%s: unknown command for \"write block\"\n", __func__); 620 PFLASH_BUG("Write block confirm"); 621 goto reset_flash; 622 } 623 break; 624 default: 625 goto error_flash; 626 } 627 break; 628 default: 629 /* Should never happen */ 630 DPRINTF("%s: invalid write state\n", __func__); 631 goto reset_flash; 632 } 633 return; 634 635 error_flash: 636 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence " 637 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)" 638 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value); 639 640 reset_flash: 641 memory_region_rom_device_set_romd(&pfl->mem, true); 642 643 pfl->wcycle = 0; 644 pfl->cmd = 0; 645 } 646 647 648 static uint32_t pflash_readb_be(void *opaque, hwaddr addr) 649 { 650 return pflash_read(opaque, addr, 1, 1); 651 } 652 653 static uint32_t pflash_readb_le(void *opaque, hwaddr addr) 654 { 655 return pflash_read(opaque, addr, 1, 0); 656 } 657 658 static uint32_t pflash_readw_be(void *opaque, hwaddr addr) 659 { 660 pflash_t *pfl = opaque; 661 662 return pflash_read(pfl, addr, 2, 1); 663 } 664 665 static uint32_t pflash_readw_le(void *opaque, hwaddr addr) 666 { 667 pflash_t *pfl = opaque; 668 669 return pflash_read(pfl, addr, 2, 0); 670 } 671 672 static uint32_t pflash_readl_be(void *opaque, hwaddr addr) 673 { 674 pflash_t *pfl = opaque; 675 676 return pflash_read(pfl, addr, 4, 1); 677 } 678 679 static uint32_t pflash_readl_le(void *opaque, hwaddr addr) 680 { 681 pflash_t *pfl = opaque; 682 683 return pflash_read(pfl, addr, 4, 0); 684 } 685 686 static void pflash_writeb_be(void *opaque, hwaddr addr, 687 uint32_t value) 688 { 689 pflash_write(opaque, addr, value, 1, 1); 690 } 691 692 static void pflash_writeb_le(void *opaque, hwaddr addr, 693 uint32_t value) 694 { 695 pflash_write(opaque, addr, value, 1, 0); 696 } 697 698 static void pflash_writew_be(void *opaque, hwaddr addr, 699 uint32_t value) 700 { 701 pflash_t *pfl = opaque; 702 703 pflash_write(pfl, addr, value, 2, 1); 704 } 705 706 static void pflash_writew_le(void *opaque, hwaddr addr, 707 uint32_t value) 708 { 709 pflash_t *pfl = opaque; 710 711 pflash_write(pfl, addr, value, 2, 0); 712 } 713 714 static void pflash_writel_be(void *opaque, hwaddr addr, 715 uint32_t value) 716 { 717 pflash_t *pfl = opaque; 718 719 pflash_write(pfl, addr, value, 4, 1); 720 } 721 722 static void pflash_writel_le(void *opaque, hwaddr addr, 723 uint32_t value) 724 { 725 pflash_t *pfl = opaque; 726 727 pflash_write(pfl, addr, value, 4, 0); 728 } 729 730 static const MemoryRegionOps pflash_cfi01_ops_be = { 731 .old_mmio = { 732 .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, }, 733 .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, }, 734 }, 735 .endianness = DEVICE_NATIVE_ENDIAN, 736 }; 737 738 static const MemoryRegionOps pflash_cfi01_ops_le = { 739 .old_mmio = { 740 .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, }, 741 .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, }, 742 }, 743 .endianness = DEVICE_NATIVE_ENDIAN, 744 }; 745 746 static void pflash_cfi01_realize(DeviceState *dev, Error **errp) 747 { 748 pflash_t *pfl = CFI_PFLASH01(dev); 749 uint64_t total_len; 750 int ret; 751 uint64_t blocks_per_device, device_len; 752 int num_devices; 753 754 total_len = pfl->sector_len * pfl->nb_blocs; 755 756 /* These are only used to expose the parameters of each device 757 * in the cfi_table[]. 758 */ 759 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1; 760 blocks_per_device = pfl->nb_blocs / num_devices; 761 device_len = pfl->sector_len * blocks_per_device; 762 763 /* XXX: to be fixed */ 764 #if 0 765 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) && 766 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024)) 767 return NULL; 768 #endif 769 770 memory_region_init_rom_device( 771 &pfl->mem, OBJECT(dev), 772 pfl->be ? &pflash_cfi01_ops_be : &pflash_cfi01_ops_le, pfl, 773 pfl->name, total_len); 774 vmstate_register_ram(&pfl->mem, DEVICE(pfl)); 775 pfl->storage = memory_region_get_ram_ptr(&pfl->mem); 776 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem); 777 778 if (pfl->bs) { 779 /* read the initial flash content */ 780 ret = bdrv_read(pfl->bs, 0, pfl->storage, total_len >> 9); 781 782 if (ret < 0) { 783 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl)); 784 memory_region_destroy(&pfl->mem); 785 error_setg(errp, "failed to read the initial flash content"); 786 return; 787 } 788 } 789 790 if (pfl->bs) { 791 pfl->ro = bdrv_is_read_only(pfl->bs); 792 } else { 793 pfl->ro = 0; 794 } 795 796 /* Default to devices being used at their maximum device width. This was 797 * assumed before the device_width support was added. 798 */ 799 if (!pfl->max_device_width) { 800 pfl->max_device_width = pfl->device_width; 801 } 802 803 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl); 804 pfl->wcycle = 0; 805 pfl->cmd = 0; 806 pfl->status = 0; 807 /* Hardcoded CFI table */ 808 pfl->cfi_len = 0x52; 809 /* Standard "QRY" string */ 810 pfl->cfi_table[0x10] = 'Q'; 811 pfl->cfi_table[0x11] = 'R'; 812 pfl->cfi_table[0x12] = 'Y'; 813 /* Command set (Intel) */ 814 pfl->cfi_table[0x13] = 0x01; 815 pfl->cfi_table[0x14] = 0x00; 816 /* Primary extended table address (none) */ 817 pfl->cfi_table[0x15] = 0x31; 818 pfl->cfi_table[0x16] = 0x00; 819 /* Alternate command set (none) */ 820 pfl->cfi_table[0x17] = 0x00; 821 pfl->cfi_table[0x18] = 0x00; 822 /* Alternate extended table (none) */ 823 pfl->cfi_table[0x19] = 0x00; 824 pfl->cfi_table[0x1A] = 0x00; 825 /* Vcc min */ 826 pfl->cfi_table[0x1B] = 0x45; 827 /* Vcc max */ 828 pfl->cfi_table[0x1C] = 0x55; 829 /* Vpp min (no Vpp pin) */ 830 pfl->cfi_table[0x1D] = 0x00; 831 /* Vpp max (no Vpp pin) */ 832 pfl->cfi_table[0x1E] = 0x00; 833 /* Reserved */ 834 pfl->cfi_table[0x1F] = 0x07; 835 /* Timeout for min size buffer write */ 836 pfl->cfi_table[0x20] = 0x07; 837 /* Typical timeout for block erase */ 838 pfl->cfi_table[0x21] = 0x0a; 839 /* Typical timeout for full chip erase (4096 ms) */ 840 pfl->cfi_table[0x22] = 0x00; 841 /* Reserved */ 842 pfl->cfi_table[0x23] = 0x04; 843 /* Max timeout for buffer write */ 844 pfl->cfi_table[0x24] = 0x04; 845 /* Max timeout for block erase */ 846 pfl->cfi_table[0x25] = 0x04; 847 /* Max timeout for chip erase */ 848 pfl->cfi_table[0x26] = 0x00; 849 /* Device size */ 850 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */ 851 /* Flash device interface (8 & 16 bits) */ 852 pfl->cfi_table[0x28] = 0x02; 853 pfl->cfi_table[0x29] = 0x00; 854 /* Max number of bytes in multi-bytes write */ 855 if (pfl->bank_width == 1) { 856 pfl->cfi_table[0x2A] = 0x08; 857 } else { 858 pfl->cfi_table[0x2A] = 0x0B; 859 } 860 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A]; 861 862 pfl->cfi_table[0x2B] = 0x00; 863 /* Number of erase block regions (uniform) */ 864 pfl->cfi_table[0x2C] = 0x01; 865 /* Erase block region 1 */ 866 pfl->cfi_table[0x2D] = blocks_per_device - 1; 867 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8; 868 pfl->cfi_table[0x2F] = pfl->sector_len >> 8; 869 pfl->cfi_table[0x30] = pfl->sector_len >> 16; 870 871 /* Extended */ 872 pfl->cfi_table[0x31] = 'P'; 873 pfl->cfi_table[0x32] = 'R'; 874 pfl->cfi_table[0x33] = 'I'; 875 876 pfl->cfi_table[0x34] = '1'; 877 pfl->cfi_table[0x35] = '0'; 878 879 pfl->cfi_table[0x36] = 0x00; 880 pfl->cfi_table[0x37] = 0x00; 881 pfl->cfi_table[0x38] = 0x00; 882 pfl->cfi_table[0x39] = 0x00; 883 884 pfl->cfi_table[0x3a] = 0x00; 885 886 pfl->cfi_table[0x3b] = 0x00; 887 pfl->cfi_table[0x3c] = 0x00; 888 889 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */ 890 } 891 892 static Property pflash_cfi01_properties[] = { 893 DEFINE_PROP_DRIVE("drive", struct pflash_t, bs), 894 /* num-blocks is the number of blocks actually visible to the guest, 895 * ie the total size of the device divided by the sector length. 896 * If we're emulating flash devices wired in parallel the actual 897 * number of blocks per indvidual device will differ. 898 */ 899 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0), 900 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0), 901 /* width here is the overall width of this QEMU device in bytes. 902 * The QEMU device may be emulating a number of flash devices 903 * wired up in parallel; the width of each individual flash 904 * device should be specified via device-width. If the individual 905 * devices have a maximum width which is greater than the width 906 * they are being used for, this maximum width should be set via 907 * max-device-width (which otherwise defaults to device-width). 908 * So for instance a 32-bit wide QEMU flash device made from four 909 * 16-bit flash devices used in 8-bit wide mode would be configured 910 * with width = 4, device-width = 1, max-device-width = 2. 911 * 912 * If device-width is not specified we default to backwards 913 * compatible behaviour which is a bad emulation of two 914 * 16 bit devices making up a 32 bit wide QEMU device. This 915 * is deprecated for new uses of this device. 916 */ 917 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0), 918 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0), 919 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0), 920 DEFINE_PROP_UINT8("big-endian", struct pflash_t, be, 0), 921 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0), 922 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0), 923 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0), 924 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0), 925 DEFINE_PROP_STRING("name", struct pflash_t, name), 926 DEFINE_PROP_END_OF_LIST(), 927 }; 928 929 static void pflash_cfi01_class_init(ObjectClass *klass, void *data) 930 { 931 DeviceClass *dc = DEVICE_CLASS(klass); 932 933 dc->realize = pflash_cfi01_realize; 934 dc->props = pflash_cfi01_properties; 935 dc->vmsd = &vmstate_pflash; 936 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 937 } 938 939 940 static const TypeInfo pflash_cfi01_info = { 941 .name = TYPE_CFI_PFLASH01, 942 .parent = TYPE_SYS_BUS_DEVICE, 943 .instance_size = sizeof(struct pflash_t), 944 .class_init = pflash_cfi01_class_init, 945 }; 946 947 static void pflash_cfi01_register_types(void) 948 { 949 type_register_static(&pflash_cfi01_info); 950 } 951 952 type_init(pflash_cfi01_register_types) 953 954 pflash_t *pflash_cfi01_register(hwaddr base, 955 DeviceState *qdev, const char *name, 956 hwaddr size, 957 BlockDriverState *bs, 958 uint32_t sector_len, int nb_blocs, 959 int bank_width, uint16_t id0, uint16_t id1, 960 uint16_t id2, uint16_t id3, int be) 961 { 962 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01); 963 964 if (bs && qdev_prop_set_drive(dev, "drive", bs)) { 965 abort(); 966 } 967 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs); 968 qdev_prop_set_uint64(dev, "sector-length", sector_len); 969 qdev_prop_set_uint8(dev, "width", bank_width); 970 qdev_prop_set_uint8(dev, "big-endian", !!be); 971 qdev_prop_set_uint16(dev, "id0", id0); 972 qdev_prop_set_uint16(dev, "id1", id1); 973 qdev_prop_set_uint16(dev, "id2", id2); 974 qdev_prop_set_uint16(dev, "id3", id3); 975 qdev_prop_set_string(dev, "name", name); 976 qdev_init_nofail(dev); 977 978 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 979 return CFI_PFLASH01(dev); 980 } 981 982 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl) 983 { 984 return &fl->mem; 985 } 986