xref: /openbmc/qemu/hw/block/onenand.c (revision db0f08df)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-properties.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/error-report.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qom/object.h"
35 
36 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
37 #define PAGE_SHIFT	11
38 
39 /* Fixed */
40 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
41 
42 #define TYPE_ONE_NAND "onenand"
43 OBJECT_DECLARE_SIMPLE_TYPE(OneNANDState, ONE_NAND)
44 
45 struct OneNANDState {
46     SysBusDevice parent_obj;
47 
48     struct {
49         uint16_t man;
50         uint16_t dev;
51         uint16_t ver;
52     } id;
53     int shift;
54     hwaddr base;
55     qemu_irq intr;
56     qemu_irq rdy;
57     BlockBackend *blk;
58     BlockBackend *blk_cur;
59     uint8_t *image;
60     uint8_t *otp;
61     uint8_t *current;
62     MemoryRegion ram;
63     MemoryRegion mapped_ram;
64     uint8_t current_direction;
65     uint8_t *boot[2];
66     uint8_t *data[2][2];
67     MemoryRegion iomem;
68     MemoryRegion container;
69     int cycle;
70     int otpmode;
71 
72     uint16_t addr[8];
73     uint16_t unladdr[8];
74     int bufaddr;
75     int count;
76     uint16_t command;
77     uint16_t config[2];
78     uint16_t status;
79     uint16_t intstatus;
80     uint16_t wpstatus;
81 
82     ECCState ecc;
83 
84     int density_mask;
85     int secs;
86     int secs_cur;
87     int blocks;
88     uint8_t *blockwp;
89 };
90 
91 enum {
92     ONEN_BUF_BLOCK = 0,
93     ONEN_BUF_BLOCK2 = 1,
94     ONEN_BUF_DEST_BLOCK = 2,
95     ONEN_BUF_DEST_PAGE = 3,
96     ONEN_BUF_PAGE = 7,
97 };
98 
99 enum {
100     ONEN_ERR_CMD = 1 << 10,
101     ONEN_ERR_ERASE = 1 << 11,
102     ONEN_ERR_PROG = 1 << 12,
103     ONEN_ERR_LOAD = 1 << 13,
104 };
105 
106 enum {
107     ONEN_INT_RESET = 1 << 4,
108     ONEN_INT_ERASE = 1 << 5,
109     ONEN_INT_PROG = 1 << 6,
110     ONEN_INT_LOAD = 1 << 7,
111     ONEN_INT = 1 << 15,
112 };
113 
114 enum {
115     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
116     ONEN_LOCK_LOCKED = 1 << 1,
117     ONEN_LOCK_UNLOCKED = 1 << 2,
118 };
119 
120 static void onenand_mem_setup(OneNANDState *s)
121 {
122     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
123      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
124      * write boot commands.  Also take note of the BWPS bit.  */
125     memory_region_init(&s->container, OBJECT(s), "onenand",
126                        0x10000 << s->shift);
127     memory_region_add_subregion(&s->container, 0, &s->iomem);
128     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
129                              &s->ram, 0x0200 << s->shift,
130                              0xbe00 << s->shift);
131     memory_region_add_subregion_overlap(&s->container,
132                                         0x0200 << s->shift,
133                                         &s->mapped_ram,
134                                         1);
135 }
136 
137 static void onenand_intr_update(OneNANDState *s)
138 {
139     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
140 }
141 
142 static int onenand_pre_save(void *opaque)
143 {
144     OneNANDState *s = opaque;
145     if (s->current == s->otp) {
146         s->current_direction = 1;
147     } else if (s->current == s->image) {
148         s->current_direction = 2;
149     } else {
150         s->current_direction = 0;
151     }
152 
153     return 0;
154 }
155 
156 static int onenand_post_load(void *opaque, int version_id)
157 {
158     OneNANDState *s = opaque;
159     switch (s->current_direction) {
160     case 0:
161         break;
162     case 1:
163         s->current = s->otp;
164         break;
165     case 2:
166         s->current = s->image;
167         break;
168     default:
169         return -1;
170     }
171     onenand_intr_update(s);
172     return 0;
173 }
174 
175 static const VMStateDescription vmstate_onenand = {
176     .name = "onenand",
177     .version_id = 1,
178     .minimum_version_id = 1,
179     .pre_save = onenand_pre_save,
180     .post_load = onenand_post_load,
181     .fields = (VMStateField[]) {
182         VMSTATE_UINT8(current_direction, OneNANDState),
183         VMSTATE_INT32(cycle, OneNANDState),
184         VMSTATE_INT32(otpmode, OneNANDState),
185         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
186         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
187         VMSTATE_INT32(bufaddr, OneNANDState),
188         VMSTATE_INT32(count, OneNANDState),
189         VMSTATE_UINT16(command, OneNANDState),
190         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
191         VMSTATE_UINT16(status, OneNANDState),
192         VMSTATE_UINT16(intstatus, OneNANDState),
193         VMSTATE_UINT16(wpstatus, OneNANDState),
194         VMSTATE_INT32(secs_cur, OneNANDState),
195         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
196         VMSTATE_UINT8(ecc.cp, OneNANDState),
197         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
198         VMSTATE_UINT16(ecc.count, OneNANDState),
199         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
200             ((64 + 2) << PAGE_SHIFT)),
201         VMSTATE_END_OF_LIST()
202     }
203 };
204 
205 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
206 static void onenand_reset(OneNANDState *s, int cold)
207 {
208     memset(&s->addr, 0, sizeof(s->addr));
209     s->command = 0;
210     s->count = 1;
211     s->bufaddr = 0;
212     s->config[0] = 0x40c0;
213     s->config[1] = 0x0000;
214     onenand_intr_update(s);
215     qemu_irq_raise(s->rdy);
216     s->status = 0x0000;
217     s->intstatus = cold ? 0x8080 : 0x8010;
218     s->unladdr[0] = 0;
219     s->unladdr[1] = 0;
220     s->wpstatus = 0x0002;
221     s->cycle = 0;
222     s->otpmode = 0;
223     s->blk_cur = s->blk;
224     s->current = s->image;
225     s->secs_cur = s->secs;
226 
227     if (cold) {
228         /* Lock the whole flash */
229         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
230 
231         if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
232                                     8 << BDRV_SECTOR_BITS) < 0) {
233             hw_error("%s: Loading the BootRAM failed.\n", __func__);
234         }
235     }
236 }
237 
238 static void onenand_system_reset(DeviceState *dev)
239 {
240     OneNANDState *s = ONE_NAND(dev);
241 
242     onenand_reset(s, 1);
243 }
244 
245 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
246                 void *dest)
247 {
248     assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
249     assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
250     if (s->blk_cur) {
251         return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
252                          secn << BDRV_SECTOR_BITS) < 0;
253     } else if (sec + secn > s->secs_cur) {
254         return 1;
255     }
256 
257     memcpy(dest, s->current + (sec << 9), secn << 9);
258 
259     return 0;
260 }
261 
262 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
263                 void *src)
264 {
265     int result = 0;
266 
267     if (secn > 0) {
268         uint32_t size = secn << BDRV_SECTOR_BITS;
269         uint32_t offset = sec << BDRV_SECTOR_BITS;
270         assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
271         assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
272         const uint8_t *sp = (const uint8_t *)src;
273         uint8_t *dp = 0;
274         if (s->blk_cur) {
275             dp = g_malloc(size);
276             if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
277                 result = 1;
278             }
279         } else {
280             if (sec + secn > s->secs_cur) {
281                 result = 1;
282             } else {
283                 dp = (uint8_t *)s->current + offset;
284             }
285         }
286         if (!result) {
287             uint32_t i;
288             for (i = 0; i < size; i++) {
289                 dp[i] &= sp[i];
290             }
291             if (s->blk_cur) {
292                 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
293             }
294         }
295         if (dp && s->blk_cur) {
296             g_free(dp);
297         }
298     }
299 
300     return result;
301 }
302 
303 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
304                 void *dest)
305 {
306     uint8_t buf[512];
307 
308     if (s->blk_cur) {
309         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
310         if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
311             return 1;
312         }
313         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
314     } else if (sec + secn > s->secs_cur) {
315         return 1;
316     } else {
317         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
318     }
319 
320     return 0;
321 }
322 
323 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
324                 void *src)
325 {
326     int result = 0;
327     if (secn > 0) {
328         const uint8_t *sp = (const uint8_t *)src;
329         uint8_t *dp = 0, *dpp = 0;
330         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
331         assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
332         if (s->blk_cur) {
333             dp = g_malloc(512);
334             if (!dp
335                 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
336                 result = 1;
337             } else {
338                 dpp = dp + ((sec & 31) << 4);
339             }
340         } else {
341             if (sec + secn > s->secs_cur) {
342                 result = 1;
343             } else {
344                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
345             }
346         }
347         if (!result) {
348             uint32_t i;
349             for (i = 0; i < (secn << 4); i++) {
350                 dpp[i] &= sp[i];
351             }
352             if (s->blk_cur) {
353                 result = blk_pwrite(s->blk_cur, offset, dp,
354                                     BDRV_SECTOR_SIZE, 0) < 0;
355             }
356         }
357         g_free(dp);
358     }
359     return result;
360 }
361 
362 static inline int onenand_erase(OneNANDState *s, int sec, int num)
363 {
364     uint8_t *blankbuf, *tmpbuf;
365 
366     blankbuf = g_malloc(512);
367     tmpbuf = g_malloc(512);
368     memset(blankbuf, 0xff, 512);
369     for (; num > 0; num--, sec++) {
370         if (s->blk_cur) {
371             int erasesec = s->secs_cur + (sec >> 5);
372             if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
373                            BDRV_SECTOR_SIZE, 0) < 0) {
374                 goto fail;
375             }
376             if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
377                           BDRV_SECTOR_SIZE) < 0) {
378                 goto fail;
379             }
380             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
381             if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
382                            BDRV_SECTOR_SIZE, 0) < 0) {
383                 goto fail;
384             }
385         } else {
386             if (sec + 1 > s->secs_cur) {
387                 goto fail;
388             }
389             memcpy(s->current + (sec << 9), blankbuf, 512);
390             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
391                    blankbuf, 1 << 4);
392         }
393     }
394 
395     g_free(tmpbuf);
396     g_free(blankbuf);
397     return 0;
398 
399 fail:
400     g_free(tmpbuf);
401     g_free(blankbuf);
402     return 1;
403 }
404 
405 static void onenand_command(OneNANDState *s)
406 {
407     int b;
408     int sec;
409     void *buf;
410 #define SETADDR(block, page)			\
411     sec = (s->addr[page] & 3) +			\
412             ((((s->addr[page] >> 2) & 0x3f) +	\
413               (((s->addr[block] & 0xfff) |	\
414                 (s->addr[block] >> 15 ?		\
415                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
416 #define SETBUF_M()				\
417     buf = (s->bufaddr & 8) ?			\
418             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
419     buf += (s->bufaddr & 3) << 9;
420 #define SETBUF_S()				\
421     buf = (s->bufaddr & 8) ?			\
422             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
423     buf += (s->bufaddr & 3) << 4;
424 
425     switch (s->command) {
426     case 0x00:	/* Load single/multiple sector data unit into buffer */
427         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
428 
429         SETBUF_M()
430         if (onenand_load_main(s, sec, s->count, buf))
431             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
432 
433 #if 0
434         SETBUF_S()
435         if (onenand_load_spare(s, sec, s->count, buf))
436             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
437 #endif
438 
439         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
440          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
441          * then we need two split the read/write into two chunks.
442          */
443         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
444         break;
445     case 0x13:	/* Load single/multiple spare sector into buffer */
446         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
447 
448         SETBUF_S()
449         if (onenand_load_spare(s, sec, s->count, buf))
450             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
451 
452         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
453          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
454          * then we need two split the read/write into two chunks.
455          */
456         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
457         break;
458     case 0x80:	/* Program single/multiple sector data unit from buffer */
459         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
460 
461         SETBUF_M()
462         if (onenand_prog_main(s, sec, s->count, buf))
463             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
464 
465 #if 0
466         SETBUF_S()
467         if (onenand_prog_spare(s, sec, s->count, buf))
468             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
469 #endif
470 
471         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
472          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
473          * then we need two split the read/write into two chunks.
474          */
475         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
476         break;
477     case 0x1a:	/* Program single/multiple spare area sector from buffer */
478         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
479 
480         SETBUF_S()
481         if (onenand_prog_spare(s, sec, s->count, buf))
482             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
483 
484         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
485          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
486          * then we need two split the read/write into two chunks.
487          */
488         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
489         break;
490     case 0x1b:	/* Copy-back program */
491         SETBUF_S()
492 
493         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
494         if (onenand_load_main(s, sec, s->count, buf))
495             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
496 
497         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
498         if (onenand_prog_main(s, sec, s->count, buf))
499             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
500 
501         /* TODO: spare areas */
502 
503         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
504         break;
505 
506     case 0x23:	/* Unlock NAND array block(s) */
507         s->intstatus |= ONEN_INT;
508 
509         /* XXX the previous (?) area should be locked automatically */
510         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
511             if (b >= s->blocks) {
512                 s->status |= ONEN_ERR_CMD;
513                 break;
514             }
515             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
516                 break;
517 
518             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
519         }
520         break;
521     case 0x27:	/* Unlock All NAND array blocks */
522         s->intstatus |= ONEN_INT;
523 
524         for (b = 0; b < s->blocks; b ++) {
525             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
526                 break;
527 
528             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
529         }
530         break;
531 
532     case 0x2a:	/* Lock NAND array block(s) */
533         s->intstatus |= ONEN_INT;
534 
535         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
536             if (b >= s->blocks) {
537                 s->status |= ONEN_ERR_CMD;
538                 break;
539             }
540             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
541                 break;
542 
543             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
544         }
545         break;
546     case 0x2c:	/* Lock-tight NAND array block(s) */
547         s->intstatus |= ONEN_INT;
548 
549         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
550             if (b >= s->blocks) {
551                 s->status |= ONEN_ERR_CMD;
552                 break;
553             }
554             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
555                 continue;
556 
557             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
558         }
559         break;
560 
561     case 0x71:	/* Erase-Verify-Read */
562         s->intstatus |= ONEN_INT;
563         break;
564     case 0x95:	/* Multi-block erase */
565         qemu_irq_pulse(s->intr);
566         /* Fall through.  */
567     case 0x94:	/* Block erase */
568         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
569                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
570                 << (BLOCK_SHIFT - 9);
571         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
572             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
573 
574         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
575         break;
576     case 0xb0:	/* Erase suspend */
577         break;
578     case 0x30:	/* Erase resume */
579         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
580         break;
581 
582     case 0xf0:	/* Reset NAND Flash core */
583         onenand_reset(s, 0);
584         break;
585     case 0xf3:	/* Reset OneNAND */
586         onenand_reset(s, 0);
587         break;
588 
589     case 0x65:	/* OTP Access */
590         s->intstatus |= ONEN_INT;
591         s->blk_cur = NULL;
592         s->current = s->otp;
593         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
594         s->addr[ONEN_BUF_BLOCK] = 0;
595         s->otpmode = 1;
596         break;
597 
598     default:
599         s->status |= ONEN_ERR_CMD;
600         s->intstatus |= ONEN_INT;
601         qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
602                       s->command);
603     }
604 
605     onenand_intr_update(s);
606 }
607 
608 static uint64_t onenand_read(void *opaque, hwaddr addr,
609                              unsigned size)
610 {
611     OneNANDState *s = (OneNANDState *) opaque;
612     int offset = addr >> s->shift;
613 
614     switch (offset) {
615     case 0x0000 ... 0xbffe:
616         return lduw_le_p(s->boot[0] + addr);
617 
618     case 0xf000:	/* Manufacturer ID */
619         return s->id.man;
620     case 0xf001:	/* Device ID */
621         return s->id.dev;
622     case 0xf002:	/* Version ID */
623         return s->id.ver;
624     /* TODO: get the following values from a real chip!  */
625     case 0xf003:	/* Data Buffer size */
626         return 1 << PAGE_SHIFT;
627     case 0xf004:	/* Boot Buffer size */
628         return 0x200;
629     case 0xf005:	/* Amount of buffers */
630         return 1 | (2 << 8);
631     case 0xf006:	/* Technology */
632         return 0;
633 
634     case 0xf100 ... 0xf107:	/* Start addresses */
635         return s->addr[offset - 0xf100];
636 
637     case 0xf200:	/* Start buffer */
638         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
639 
640     case 0xf220:	/* Command */
641         return s->command;
642     case 0xf221:	/* System Configuration 1 */
643         return s->config[0] & 0xffe0;
644     case 0xf222:	/* System Configuration 2 */
645         return s->config[1];
646 
647     case 0xf240:	/* Controller Status */
648         return s->status;
649     case 0xf241:	/* Interrupt */
650         return s->intstatus;
651     case 0xf24c:	/* Unlock Start Block Address */
652         return s->unladdr[0];
653     case 0xf24d:	/* Unlock End Block Address */
654         return s->unladdr[1];
655     case 0xf24e:	/* Write Protection Status */
656         return s->wpstatus;
657 
658     case 0xff00:	/* ECC Status */
659         return 0x00;
660     case 0xff01:	/* ECC Result of main area data */
661     case 0xff02:	/* ECC Result of spare area data */
662     case 0xff03:	/* ECC Result of main area data */
663     case 0xff04:	/* ECC Result of spare area data */
664         qemu_log_mask(LOG_UNIMP,
665                       "onenand: ECC result registers unimplemented\n");
666         return 0x0000;
667     }
668 
669     qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
670                   offset);
671     return 0;
672 }
673 
674 static void onenand_write(void *opaque, hwaddr addr,
675                           uint64_t value, unsigned size)
676 {
677     OneNANDState *s = (OneNANDState *) opaque;
678     int offset = addr >> s->shift;
679     int sec;
680 
681     switch (offset) {
682     case 0x0000 ... 0x01ff:
683     case 0x8000 ... 0x800f:
684         if (s->cycle) {
685             s->cycle = 0;
686 
687             if (value == 0x0000) {
688                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
689                 onenand_load_main(s, sec,
690                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
691                 s->addr[ONEN_BUF_PAGE] += 4;
692                 s->addr[ONEN_BUF_PAGE] &= 0xff;
693             }
694             break;
695         }
696 
697         switch (value) {
698         case 0x00f0:	/* Reset OneNAND */
699             onenand_reset(s, 0);
700             break;
701 
702         case 0x00e0:	/* Load Data into Buffer */
703             s->cycle = 1;
704             break;
705 
706         case 0x0090:	/* Read Identification Data */
707             memset(s->boot[0], 0, 3 << s->shift);
708             s->boot[0][0 << s->shift] = s->id.man & 0xff;
709             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
710             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
711             break;
712 
713         default:
714             qemu_log_mask(LOG_GUEST_ERROR,
715                           "unknown OneNAND boot command %" PRIx64 "\n",
716                           value);
717         }
718         break;
719 
720     case 0xf100 ... 0xf107:	/* Start addresses */
721         s->addr[offset - 0xf100] = value;
722         break;
723 
724     case 0xf200:	/* Start buffer */
725         s->bufaddr = (value >> 8) & 0xf;
726         if (PAGE_SHIFT == 11)
727             s->count = (value & 3) ?: 4;
728         else if (PAGE_SHIFT == 10)
729             s->count = (value & 1) ?: 2;
730         break;
731 
732     case 0xf220:	/* Command */
733         if (s->intstatus & (1 << 15))
734             break;
735         s->command = value;
736         onenand_command(s);
737         break;
738     case 0xf221:	/* System Configuration 1 */
739         s->config[0] = value;
740         onenand_intr_update(s);
741         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
742         break;
743     case 0xf222:	/* System Configuration 2 */
744         s->config[1] = value;
745         break;
746 
747     case 0xf241:	/* Interrupt */
748         s->intstatus &= value;
749         if ((1 << 15) & ~s->intstatus)
750             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
751                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
752         onenand_intr_update(s);
753         break;
754     case 0xf24c:	/* Unlock Start Block Address */
755         s->unladdr[0] = value & (s->blocks - 1);
756         /* For some reason we have to set the end address to by default
757          * be same as start because the software forgets to write anything
758          * in there.  */
759         s->unladdr[1] = value & (s->blocks - 1);
760         break;
761     case 0xf24d:	/* Unlock End Block Address */
762         s->unladdr[1] = value & (s->blocks - 1);
763         break;
764 
765     default:
766         qemu_log_mask(LOG_GUEST_ERROR,
767                       "write to unknown OneNAND register 0x%x\n",
768                       offset);
769     }
770 }
771 
772 static const MemoryRegionOps onenand_ops = {
773     .read = onenand_read,
774     .write = onenand_write,
775     .endianness = DEVICE_NATIVE_ENDIAN,
776 };
777 
778 static void onenand_realize(DeviceState *dev, Error **errp)
779 {
780     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
781     OneNANDState *s = ONE_NAND(dev);
782     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
783     void *ram;
784     Error *local_err = NULL;
785 
786     s->base = (hwaddr)-1;
787     s->rdy = NULL;
788     s->blocks = size >> BLOCK_SHIFT;
789     s->secs = size >> 9;
790     s->blockwp = g_malloc(s->blocks);
791     s->density_mask = (s->id.dev & 0x08)
792         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
793     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
794                           0x10000 << s->shift);
795     if (!s->blk) {
796         s->image = memset(g_malloc(size + (size >> 5)),
797                           0xff, size + (size >> 5));
798     } else {
799         if (blk_is_read_only(s->blk)) {
800             error_setg(errp, "Can't use a read-only drive");
801             return;
802         }
803         blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
804                      BLK_PERM_ALL, &local_err);
805         if (local_err) {
806             error_propagate(errp, local_err);
807             return;
808         }
809         s->blk_cur = s->blk;
810     }
811     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
812                     0xff, (64 + 2) << PAGE_SHIFT);
813     memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
814                            0xc000 << s->shift, &error_fatal);
815     vmstate_register_ram_global(&s->ram);
816     ram = memory_region_get_ram_ptr(&s->ram);
817     s->boot[0] = ram + (0x0000 << s->shift);
818     s->boot[1] = ram + (0x8000 << s->shift);
819     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
820     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
821     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
822     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
823     onenand_mem_setup(s);
824     sysbus_init_irq(sbd, &s->intr);
825     sysbus_init_mmio(sbd, &s->container);
826     vmstate_register(VMSTATE_IF(dev),
827                      ((s->shift & 0x7f) << 24)
828                      | ((s->id.man & 0xff) << 16)
829                      | ((s->id.dev & 0xff) << 8)
830                      | (s->id.ver & 0xff),
831                      &vmstate_onenand, s);
832 }
833 
834 static Property onenand_properties[] = {
835     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
836     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
837     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
838     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
839     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
840     DEFINE_PROP_END_OF_LIST(),
841 };
842 
843 static void onenand_class_init(ObjectClass *klass, void *data)
844 {
845     DeviceClass *dc = DEVICE_CLASS(klass);
846 
847     dc->realize = onenand_realize;
848     dc->reset = onenand_system_reset;
849     device_class_set_props(dc, onenand_properties);
850 }
851 
852 static const TypeInfo onenand_info = {
853     .name          = TYPE_ONE_NAND,
854     .parent        = TYPE_SYS_BUS_DEVICE,
855     .instance_size = sizeof(OneNANDState),
856     .class_init    = onenand_class_init,
857 };
858 
859 static void onenand_register_types(void)
860 {
861     type_register_static(&onenand_info);
862 }
863 
864 void *onenand_raw_otp(DeviceState *onenand_device)
865 {
866     OneNANDState *s = ONE_NAND(onenand_device);
867 
868     return s->otp;
869 }
870 
871 type_init(onenand_register_types)
872