xref: /openbmc/qemu/hw/block/onenand.c (revision 9c4218e9)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "exec/memory.h"
29 #include "exec/address-spaces.h"
30 #include "hw/sysbus.h"
31 #include "qemu/error-report.h"
32 
33 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
34 #define PAGE_SHIFT	11
35 
36 /* Fixed */
37 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
38 
39 #define TYPE_ONE_NAND "onenand"
40 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
41 
42 typedef struct OneNANDState {
43     SysBusDevice parent_obj;
44 
45     struct {
46         uint16_t man;
47         uint16_t dev;
48         uint16_t ver;
49     } id;
50     int shift;
51     hwaddr base;
52     qemu_irq intr;
53     qemu_irq rdy;
54     BlockBackend *blk;
55     BlockBackend *blk_cur;
56     uint8_t *image;
57     uint8_t *otp;
58     uint8_t *current;
59     MemoryRegion ram;
60     MemoryRegion mapped_ram;
61     uint8_t current_direction;
62     uint8_t *boot[2];
63     uint8_t *data[2][2];
64     MemoryRegion iomem;
65     MemoryRegion container;
66     int cycle;
67     int otpmode;
68 
69     uint16_t addr[8];
70     uint16_t unladdr[8];
71     int bufaddr;
72     int count;
73     uint16_t command;
74     uint16_t config[2];
75     uint16_t status;
76     uint16_t intstatus;
77     uint16_t wpstatus;
78 
79     ECCState ecc;
80 
81     int density_mask;
82     int secs;
83     int secs_cur;
84     int blocks;
85     uint8_t *blockwp;
86 } OneNANDState;
87 
88 enum {
89     ONEN_BUF_BLOCK = 0,
90     ONEN_BUF_BLOCK2 = 1,
91     ONEN_BUF_DEST_BLOCK = 2,
92     ONEN_BUF_DEST_PAGE = 3,
93     ONEN_BUF_PAGE = 7,
94 };
95 
96 enum {
97     ONEN_ERR_CMD = 1 << 10,
98     ONEN_ERR_ERASE = 1 << 11,
99     ONEN_ERR_PROG = 1 << 12,
100     ONEN_ERR_LOAD = 1 << 13,
101 };
102 
103 enum {
104     ONEN_INT_RESET = 1 << 4,
105     ONEN_INT_ERASE = 1 << 5,
106     ONEN_INT_PROG = 1 << 6,
107     ONEN_INT_LOAD = 1 << 7,
108     ONEN_INT = 1 << 15,
109 };
110 
111 enum {
112     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
113     ONEN_LOCK_LOCKED = 1 << 1,
114     ONEN_LOCK_UNLOCKED = 1 << 2,
115 };
116 
117 static void onenand_mem_setup(OneNANDState *s)
118 {
119     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
120      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
121      * write boot commands.  Also take note of the BWPS bit.  */
122     memory_region_init(&s->container, OBJECT(s), "onenand",
123                        0x10000 << s->shift);
124     memory_region_add_subregion(&s->container, 0, &s->iomem);
125     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
126                              &s->ram, 0x0200 << s->shift,
127                              0xbe00 << s->shift);
128     memory_region_add_subregion_overlap(&s->container,
129                                         0x0200 << s->shift,
130                                         &s->mapped_ram,
131                                         1);
132 }
133 
134 static void onenand_intr_update(OneNANDState *s)
135 {
136     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
137 }
138 
139 static void onenand_pre_save(void *opaque)
140 {
141     OneNANDState *s = opaque;
142     if (s->current == s->otp) {
143         s->current_direction = 1;
144     } else if (s->current == s->image) {
145         s->current_direction = 2;
146     } else {
147         s->current_direction = 0;
148     }
149 }
150 
151 static int onenand_post_load(void *opaque, int version_id)
152 {
153     OneNANDState *s = opaque;
154     switch (s->current_direction) {
155     case 0:
156         break;
157     case 1:
158         s->current = s->otp;
159         break;
160     case 2:
161         s->current = s->image;
162         break;
163     default:
164         return -1;
165     }
166     onenand_intr_update(s);
167     return 0;
168 }
169 
170 static const VMStateDescription vmstate_onenand = {
171     .name = "onenand",
172     .version_id = 1,
173     .minimum_version_id = 1,
174     .pre_save = onenand_pre_save,
175     .post_load = onenand_post_load,
176     .fields = (VMStateField[]) {
177         VMSTATE_UINT8(current_direction, OneNANDState),
178         VMSTATE_INT32(cycle, OneNANDState),
179         VMSTATE_INT32(otpmode, OneNANDState),
180         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
181         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
182         VMSTATE_INT32(bufaddr, OneNANDState),
183         VMSTATE_INT32(count, OneNANDState),
184         VMSTATE_UINT16(command, OneNANDState),
185         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
186         VMSTATE_UINT16(status, OneNANDState),
187         VMSTATE_UINT16(intstatus, OneNANDState),
188         VMSTATE_UINT16(wpstatus, OneNANDState),
189         VMSTATE_INT32(secs_cur, OneNANDState),
190         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
191         VMSTATE_UINT8(ecc.cp, OneNANDState),
192         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
193         VMSTATE_UINT16(ecc.count, OneNANDState),
194         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
195             ((64 + 2) << PAGE_SHIFT)),
196         VMSTATE_END_OF_LIST()
197     }
198 };
199 
200 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
201 static void onenand_reset(OneNANDState *s, int cold)
202 {
203     memset(&s->addr, 0, sizeof(s->addr));
204     s->command = 0;
205     s->count = 1;
206     s->bufaddr = 0;
207     s->config[0] = 0x40c0;
208     s->config[1] = 0x0000;
209     onenand_intr_update(s);
210     qemu_irq_raise(s->rdy);
211     s->status = 0x0000;
212     s->intstatus = cold ? 0x8080 : 0x8010;
213     s->unladdr[0] = 0;
214     s->unladdr[1] = 0;
215     s->wpstatus = 0x0002;
216     s->cycle = 0;
217     s->otpmode = 0;
218     s->blk_cur = s->blk;
219     s->current = s->image;
220     s->secs_cur = s->secs;
221 
222     if (cold) {
223         /* Lock the whole flash */
224         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
225 
226         if (s->blk_cur && blk_read(s->blk_cur, 0, s->boot[0], 8) < 0) {
227             hw_error("%s: Loading the BootRAM failed.\n", __func__);
228         }
229     }
230 }
231 
232 static void onenand_system_reset(DeviceState *dev)
233 {
234     OneNANDState *s = ONE_NAND(dev);
235 
236     onenand_reset(s, 1);
237 }
238 
239 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
240                 void *dest)
241 {
242     if (s->blk_cur) {
243         return blk_read(s->blk_cur, sec, dest, secn) < 0;
244     } else if (sec + secn > s->secs_cur) {
245         return 1;
246     }
247 
248     memcpy(dest, s->current + (sec << 9), secn << 9);
249 
250     return 0;
251 }
252 
253 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
254                 void *src)
255 {
256     int result = 0;
257 
258     if (secn > 0) {
259         uint32_t size = (uint32_t)secn * 512;
260         const uint8_t *sp = (const uint8_t *)src;
261         uint8_t *dp = 0;
262         if (s->blk_cur) {
263             dp = g_malloc(size);
264             if (!dp || blk_read(s->blk_cur, sec, dp, secn) < 0) {
265                 result = 1;
266             }
267         } else {
268             if (sec + secn > s->secs_cur) {
269                 result = 1;
270             } else {
271                 dp = (uint8_t *)s->current + (sec << 9);
272             }
273         }
274         if (!result) {
275             uint32_t i;
276             for (i = 0; i < size; i++) {
277                 dp[i] &= sp[i];
278             }
279             if (s->blk_cur) {
280                 result = blk_write(s->blk_cur, sec, dp, secn) < 0;
281             }
282         }
283         if (dp && s->blk_cur) {
284             g_free(dp);
285         }
286     }
287 
288     return result;
289 }
290 
291 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
292                 void *dest)
293 {
294     uint8_t buf[512];
295 
296     if (s->blk_cur) {
297         if (blk_read(s->blk_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) {
298             return 1;
299         }
300         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
301     } else if (sec + secn > s->secs_cur) {
302         return 1;
303     } else {
304         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
305     }
306 
307     return 0;
308 }
309 
310 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
311                 void *src)
312 {
313     int result = 0;
314     if (secn > 0) {
315         const uint8_t *sp = (const uint8_t *)src;
316         uint8_t *dp = 0, *dpp = 0;
317         if (s->blk_cur) {
318             dp = g_malloc(512);
319             if (!dp
320                 || blk_read(s->blk_cur, s->secs_cur + (sec >> 5), dp, 1) < 0) {
321                 result = 1;
322             } else {
323                 dpp = dp + ((sec & 31) << 4);
324             }
325         } else {
326             if (sec + secn > s->secs_cur) {
327                 result = 1;
328             } else {
329                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
330             }
331         }
332         if (!result) {
333             uint32_t i;
334             for (i = 0; i < (secn << 4); i++) {
335                 dpp[i] &= sp[i];
336             }
337             if (s->blk_cur) {
338                 result = blk_write(s->blk_cur, s->secs_cur + (sec >> 5),
339                                    dp, 1) < 0;
340             }
341         }
342         g_free(dp);
343     }
344     return result;
345 }
346 
347 static inline int onenand_erase(OneNANDState *s, int sec, int num)
348 {
349     uint8_t *blankbuf, *tmpbuf;
350 
351     blankbuf = g_malloc(512);
352     tmpbuf = g_malloc(512);
353     memset(blankbuf, 0xff, 512);
354     for (; num > 0; num--, sec++) {
355         if (s->blk_cur) {
356             int erasesec = s->secs_cur + (sec >> 5);
357             if (blk_write(s->blk_cur, sec, blankbuf, 1) < 0) {
358                 goto fail;
359             }
360             if (blk_read(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
361                 goto fail;
362             }
363             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
364             if (blk_write(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
365                 goto fail;
366             }
367         } else {
368             if (sec + 1 > s->secs_cur) {
369                 goto fail;
370             }
371             memcpy(s->current + (sec << 9), blankbuf, 512);
372             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
373                    blankbuf, 1 << 4);
374         }
375     }
376 
377     g_free(tmpbuf);
378     g_free(blankbuf);
379     return 0;
380 
381 fail:
382     g_free(tmpbuf);
383     g_free(blankbuf);
384     return 1;
385 }
386 
387 static void onenand_command(OneNANDState *s)
388 {
389     int b;
390     int sec;
391     void *buf;
392 #define SETADDR(block, page)			\
393     sec = (s->addr[page] & 3) +			\
394             ((((s->addr[page] >> 2) & 0x3f) +	\
395               (((s->addr[block] & 0xfff) |	\
396                 (s->addr[block] >> 15 ?		\
397                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
398 #define SETBUF_M()				\
399     buf = (s->bufaddr & 8) ?			\
400             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
401     buf += (s->bufaddr & 3) << 9;
402 #define SETBUF_S()				\
403     buf = (s->bufaddr & 8) ?			\
404             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
405     buf += (s->bufaddr & 3) << 4;
406 
407     switch (s->command) {
408     case 0x00:	/* Load single/multiple sector data unit into buffer */
409         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
410 
411         SETBUF_M()
412         if (onenand_load_main(s, sec, s->count, buf))
413             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
414 
415 #if 0
416         SETBUF_S()
417         if (onenand_load_spare(s, sec, s->count, buf))
418             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
419 #endif
420 
421         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
422          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
423          * then we need two split the read/write into two chunks.
424          */
425         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
426         break;
427     case 0x13:	/* Load single/multiple spare sector into buffer */
428         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
429 
430         SETBUF_S()
431         if (onenand_load_spare(s, sec, s->count, buf))
432             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
433 
434         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
435          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
436          * then we need two split the read/write into two chunks.
437          */
438         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
439         break;
440     case 0x80:	/* Program single/multiple sector data unit from buffer */
441         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
442 
443         SETBUF_M()
444         if (onenand_prog_main(s, sec, s->count, buf))
445             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
446 
447 #if 0
448         SETBUF_S()
449         if (onenand_prog_spare(s, sec, s->count, buf))
450             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
451 #endif
452 
453         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
454          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
455          * then we need two split the read/write into two chunks.
456          */
457         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
458         break;
459     case 0x1a:	/* Program single/multiple spare area sector from buffer */
460         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
461 
462         SETBUF_S()
463         if (onenand_prog_spare(s, sec, s->count, buf))
464             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
465 
466         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
467          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
468          * then we need two split the read/write into two chunks.
469          */
470         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
471         break;
472     case 0x1b:	/* Copy-back program */
473         SETBUF_S()
474 
475         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
476         if (onenand_load_main(s, sec, s->count, buf))
477             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
478 
479         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
480         if (onenand_prog_main(s, sec, s->count, buf))
481             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
482 
483         /* TODO: spare areas */
484 
485         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
486         break;
487 
488     case 0x23:	/* Unlock NAND array block(s) */
489         s->intstatus |= ONEN_INT;
490 
491         /* XXX the previous (?) area should be locked automatically */
492         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
493             if (b >= s->blocks) {
494                 s->status |= ONEN_ERR_CMD;
495                 break;
496             }
497             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
498                 break;
499 
500             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
501         }
502         break;
503     case 0x27:	/* Unlock All NAND array blocks */
504         s->intstatus |= ONEN_INT;
505 
506         for (b = 0; b < s->blocks; b ++) {
507             if (b >= s->blocks) {
508                 s->status |= ONEN_ERR_CMD;
509                 break;
510             }
511             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
512                 break;
513 
514             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
515         }
516         break;
517 
518     case 0x2a:	/* Lock NAND array block(s) */
519         s->intstatus |= ONEN_INT;
520 
521         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
522             if (b >= s->blocks) {
523                 s->status |= ONEN_ERR_CMD;
524                 break;
525             }
526             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
527                 break;
528 
529             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
530         }
531         break;
532     case 0x2c:	/* Lock-tight NAND array block(s) */
533         s->intstatus |= ONEN_INT;
534 
535         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
536             if (b >= s->blocks) {
537                 s->status |= ONEN_ERR_CMD;
538                 break;
539             }
540             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
541                 continue;
542 
543             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
544         }
545         break;
546 
547     case 0x71:	/* Erase-Verify-Read */
548         s->intstatus |= ONEN_INT;
549         break;
550     case 0x95:	/* Multi-block erase */
551         qemu_irq_pulse(s->intr);
552         /* Fall through.  */
553     case 0x94:	/* Block erase */
554         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
555                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
556                 << (BLOCK_SHIFT - 9);
557         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
558             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
559 
560         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
561         break;
562     case 0xb0:	/* Erase suspend */
563         break;
564     case 0x30:	/* Erase resume */
565         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
566         break;
567 
568     case 0xf0:	/* Reset NAND Flash core */
569         onenand_reset(s, 0);
570         break;
571     case 0xf3:	/* Reset OneNAND */
572         onenand_reset(s, 0);
573         break;
574 
575     case 0x65:	/* OTP Access */
576         s->intstatus |= ONEN_INT;
577         s->blk_cur = NULL;
578         s->current = s->otp;
579         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
580         s->addr[ONEN_BUF_BLOCK] = 0;
581         s->otpmode = 1;
582         break;
583 
584     default:
585         s->status |= ONEN_ERR_CMD;
586         s->intstatus |= ONEN_INT;
587         fprintf(stderr, "%s: unknown OneNAND command %x\n",
588                         __func__, s->command);
589     }
590 
591     onenand_intr_update(s);
592 }
593 
594 static uint64_t onenand_read(void *opaque, hwaddr addr,
595                              unsigned size)
596 {
597     OneNANDState *s = (OneNANDState *) opaque;
598     int offset = addr >> s->shift;
599 
600     switch (offset) {
601     case 0x0000 ... 0xc000:
602         return lduw_le_p(s->boot[0] + addr);
603 
604     case 0xf000:	/* Manufacturer ID */
605         return s->id.man;
606     case 0xf001:	/* Device ID */
607         return s->id.dev;
608     case 0xf002:	/* Version ID */
609         return s->id.ver;
610     /* TODO: get the following values from a real chip!  */
611     case 0xf003:	/* Data Buffer size */
612         return 1 << PAGE_SHIFT;
613     case 0xf004:	/* Boot Buffer size */
614         return 0x200;
615     case 0xf005:	/* Amount of buffers */
616         return 1 | (2 << 8);
617     case 0xf006:	/* Technology */
618         return 0;
619 
620     case 0xf100 ... 0xf107:	/* Start addresses */
621         return s->addr[offset - 0xf100];
622 
623     case 0xf200:	/* Start buffer */
624         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
625 
626     case 0xf220:	/* Command */
627         return s->command;
628     case 0xf221:	/* System Configuration 1 */
629         return s->config[0] & 0xffe0;
630     case 0xf222:	/* System Configuration 2 */
631         return s->config[1];
632 
633     case 0xf240:	/* Controller Status */
634         return s->status;
635     case 0xf241:	/* Interrupt */
636         return s->intstatus;
637     case 0xf24c:	/* Unlock Start Block Address */
638         return s->unladdr[0];
639     case 0xf24d:	/* Unlock End Block Address */
640         return s->unladdr[1];
641     case 0xf24e:	/* Write Protection Status */
642         return s->wpstatus;
643 
644     case 0xff00:	/* ECC Status */
645         return 0x00;
646     case 0xff01:	/* ECC Result of main area data */
647     case 0xff02:	/* ECC Result of spare area data */
648     case 0xff03:	/* ECC Result of main area data */
649     case 0xff04:	/* ECC Result of spare area data */
650         hw_error("%s: imeplement ECC\n", __FUNCTION__);
651         return 0x0000;
652     }
653 
654     fprintf(stderr, "%s: unknown OneNAND register %x\n",
655                     __FUNCTION__, offset);
656     return 0;
657 }
658 
659 static void onenand_write(void *opaque, hwaddr addr,
660                           uint64_t value, unsigned size)
661 {
662     OneNANDState *s = (OneNANDState *) opaque;
663     int offset = addr >> s->shift;
664     int sec;
665 
666     switch (offset) {
667     case 0x0000 ... 0x01ff:
668     case 0x8000 ... 0x800f:
669         if (s->cycle) {
670             s->cycle = 0;
671 
672             if (value == 0x0000) {
673                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
674                 onenand_load_main(s, sec,
675                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
676                 s->addr[ONEN_BUF_PAGE] += 4;
677                 s->addr[ONEN_BUF_PAGE] &= 0xff;
678             }
679             break;
680         }
681 
682         switch (value) {
683         case 0x00f0:	/* Reset OneNAND */
684             onenand_reset(s, 0);
685             break;
686 
687         case 0x00e0:	/* Load Data into Buffer */
688             s->cycle = 1;
689             break;
690 
691         case 0x0090:	/* Read Identification Data */
692             memset(s->boot[0], 0, 3 << s->shift);
693             s->boot[0][0 << s->shift] = s->id.man & 0xff;
694             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
695             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
696             break;
697 
698         default:
699             fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
700                             __FUNCTION__, value);
701         }
702         break;
703 
704     case 0xf100 ... 0xf107:	/* Start addresses */
705         s->addr[offset - 0xf100] = value;
706         break;
707 
708     case 0xf200:	/* Start buffer */
709         s->bufaddr = (value >> 8) & 0xf;
710         if (PAGE_SHIFT == 11)
711             s->count = (value & 3) ?: 4;
712         else if (PAGE_SHIFT == 10)
713             s->count = (value & 1) ?: 2;
714         break;
715 
716     case 0xf220:	/* Command */
717         if (s->intstatus & (1 << 15))
718             break;
719         s->command = value;
720         onenand_command(s);
721         break;
722     case 0xf221:	/* System Configuration 1 */
723         s->config[0] = value;
724         onenand_intr_update(s);
725         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
726         break;
727     case 0xf222:	/* System Configuration 2 */
728         s->config[1] = value;
729         break;
730 
731     case 0xf241:	/* Interrupt */
732         s->intstatus &= value;
733         if ((1 << 15) & ~s->intstatus)
734             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
735                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
736         onenand_intr_update(s);
737         break;
738     case 0xf24c:	/* Unlock Start Block Address */
739         s->unladdr[0] = value & (s->blocks - 1);
740         /* For some reason we have to set the end address to by default
741          * be same as start because the software forgets to write anything
742          * in there.  */
743         s->unladdr[1] = value & (s->blocks - 1);
744         break;
745     case 0xf24d:	/* Unlock End Block Address */
746         s->unladdr[1] = value & (s->blocks - 1);
747         break;
748 
749     default:
750         fprintf(stderr, "%s: unknown OneNAND register %x\n",
751                         __FUNCTION__, offset);
752     }
753 }
754 
755 static const MemoryRegionOps onenand_ops = {
756     .read = onenand_read,
757     .write = onenand_write,
758     .endianness = DEVICE_NATIVE_ENDIAN,
759 };
760 
761 static int onenand_initfn(SysBusDevice *sbd)
762 {
763     DeviceState *dev = DEVICE(sbd);
764     OneNANDState *s = ONE_NAND(dev);
765     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
766     void *ram;
767 
768     s->base = (hwaddr)-1;
769     s->rdy = NULL;
770     s->blocks = size >> BLOCK_SHIFT;
771     s->secs = size >> 9;
772     s->blockwp = g_malloc(s->blocks);
773     s->density_mask = (s->id.dev & 0x08)
774         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
775     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
776                           0x10000 << s->shift);
777     if (!s->blk) {
778         s->image = memset(g_malloc(size + (size >> 5)),
779                           0xff, size + (size >> 5));
780     } else {
781         if (blk_is_read_only(s->blk)) {
782             error_report("Can't use a read-only drive");
783             return -1;
784         }
785         s->blk_cur = s->blk;
786     }
787     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
788                     0xff, (64 + 2) << PAGE_SHIFT);
789     memory_region_init_ram(&s->ram, OBJECT(s), "onenand.ram",
790                            0xc000 << s->shift, &error_fatal);
791     vmstate_register_ram_global(&s->ram);
792     ram = memory_region_get_ram_ptr(&s->ram);
793     s->boot[0] = ram + (0x0000 << s->shift);
794     s->boot[1] = ram + (0x8000 << s->shift);
795     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
796     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
797     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
798     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
799     onenand_mem_setup(s);
800     sysbus_init_irq(sbd, &s->intr);
801     sysbus_init_mmio(sbd, &s->container);
802     vmstate_register(dev,
803                      ((s->shift & 0x7f) << 24)
804                      | ((s->id.man & 0xff) << 16)
805                      | ((s->id.dev & 0xff) << 8)
806                      | (s->id.ver & 0xff),
807                      &vmstate_onenand, s);
808     return 0;
809 }
810 
811 static Property onenand_properties[] = {
812     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
813     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
814     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
815     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
816     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
817     DEFINE_PROP_END_OF_LIST(),
818 };
819 
820 static void onenand_class_init(ObjectClass *klass, void *data)
821 {
822     DeviceClass *dc = DEVICE_CLASS(klass);
823     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
824 
825     k->init = onenand_initfn;
826     dc->reset = onenand_system_reset;
827     dc->props = onenand_properties;
828 }
829 
830 static const TypeInfo onenand_info = {
831     .name          = TYPE_ONE_NAND,
832     .parent        = TYPE_SYS_BUS_DEVICE,
833     .instance_size = sizeof(OneNANDState),
834     .class_init    = onenand_class_init,
835 };
836 
837 static void onenand_register_types(void)
838 {
839     type_register_static(&onenand_info);
840 }
841 
842 void *onenand_raw_otp(DeviceState *onenand_device)
843 {
844     OneNANDState *s = ONE_NAND(onenand_device);
845 
846     return s->otp;
847 }
848 
849 type_init(onenand_register_types)
850