xref: /openbmc/qemu/hw/block/onenand.c (revision 99d46107)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "qemu/error-report.h"
31 #include "qemu/log.h"
32 
33 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
34 #define PAGE_SHIFT	11
35 
36 /* Fixed */
37 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
38 
39 #define TYPE_ONE_NAND "onenand"
40 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
41 
42 typedef struct OneNANDState {
43     SysBusDevice parent_obj;
44 
45     struct {
46         uint16_t man;
47         uint16_t dev;
48         uint16_t ver;
49     } id;
50     int shift;
51     hwaddr base;
52     qemu_irq intr;
53     qemu_irq rdy;
54     BlockBackend *blk;
55     BlockBackend *blk_cur;
56     uint8_t *image;
57     uint8_t *otp;
58     uint8_t *current;
59     MemoryRegion ram;
60     MemoryRegion mapped_ram;
61     uint8_t current_direction;
62     uint8_t *boot[2];
63     uint8_t *data[2][2];
64     MemoryRegion iomem;
65     MemoryRegion container;
66     int cycle;
67     int otpmode;
68 
69     uint16_t addr[8];
70     uint16_t unladdr[8];
71     int bufaddr;
72     int count;
73     uint16_t command;
74     uint16_t config[2];
75     uint16_t status;
76     uint16_t intstatus;
77     uint16_t wpstatus;
78 
79     ECCState ecc;
80 
81     int density_mask;
82     int secs;
83     int secs_cur;
84     int blocks;
85     uint8_t *blockwp;
86 } OneNANDState;
87 
88 enum {
89     ONEN_BUF_BLOCK = 0,
90     ONEN_BUF_BLOCK2 = 1,
91     ONEN_BUF_DEST_BLOCK = 2,
92     ONEN_BUF_DEST_PAGE = 3,
93     ONEN_BUF_PAGE = 7,
94 };
95 
96 enum {
97     ONEN_ERR_CMD = 1 << 10,
98     ONEN_ERR_ERASE = 1 << 11,
99     ONEN_ERR_PROG = 1 << 12,
100     ONEN_ERR_LOAD = 1 << 13,
101 };
102 
103 enum {
104     ONEN_INT_RESET = 1 << 4,
105     ONEN_INT_ERASE = 1 << 5,
106     ONEN_INT_PROG = 1 << 6,
107     ONEN_INT_LOAD = 1 << 7,
108     ONEN_INT = 1 << 15,
109 };
110 
111 enum {
112     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
113     ONEN_LOCK_LOCKED = 1 << 1,
114     ONEN_LOCK_UNLOCKED = 1 << 2,
115 };
116 
117 static void onenand_mem_setup(OneNANDState *s)
118 {
119     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
120      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
121      * write boot commands.  Also take note of the BWPS bit.  */
122     memory_region_init(&s->container, OBJECT(s), "onenand",
123                        0x10000 << s->shift);
124     memory_region_add_subregion(&s->container, 0, &s->iomem);
125     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
126                              &s->ram, 0x0200 << s->shift,
127                              0xbe00 << s->shift);
128     memory_region_add_subregion_overlap(&s->container,
129                                         0x0200 << s->shift,
130                                         &s->mapped_ram,
131                                         1);
132 }
133 
134 static void onenand_intr_update(OneNANDState *s)
135 {
136     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
137 }
138 
139 static int onenand_pre_save(void *opaque)
140 {
141     OneNANDState *s = opaque;
142     if (s->current == s->otp) {
143         s->current_direction = 1;
144     } else if (s->current == s->image) {
145         s->current_direction = 2;
146     } else {
147         s->current_direction = 0;
148     }
149 
150     return 0;
151 }
152 
153 static int onenand_post_load(void *opaque, int version_id)
154 {
155     OneNANDState *s = opaque;
156     switch (s->current_direction) {
157     case 0:
158         break;
159     case 1:
160         s->current = s->otp;
161         break;
162     case 2:
163         s->current = s->image;
164         break;
165     default:
166         return -1;
167     }
168     onenand_intr_update(s);
169     return 0;
170 }
171 
172 static const VMStateDescription vmstate_onenand = {
173     .name = "onenand",
174     .version_id = 1,
175     .minimum_version_id = 1,
176     .pre_save = onenand_pre_save,
177     .post_load = onenand_post_load,
178     .fields = (VMStateField[]) {
179         VMSTATE_UINT8(current_direction, OneNANDState),
180         VMSTATE_INT32(cycle, OneNANDState),
181         VMSTATE_INT32(otpmode, OneNANDState),
182         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
183         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
184         VMSTATE_INT32(bufaddr, OneNANDState),
185         VMSTATE_INT32(count, OneNANDState),
186         VMSTATE_UINT16(command, OneNANDState),
187         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
188         VMSTATE_UINT16(status, OneNANDState),
189         VMSTATE_UINT16(intstatus, OneNANDState),
190         VMSTATE_UINT16(wpstatus, OneNANDState),
191         VMSTATE_INT32(secs_cur, OneNANDState),
192         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
193         VMSTATE_UINT8(ecc.cp, OneNANDState),
194         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
195         VMSTATE_UINT16(ecc.count, OneNANDState),
196         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
197             ((64 + 2) << PAGE_SHIFT)),
198         VMSTATE_END_OF_LIST()
199     }
200 };
201 
202 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
203 static void onenand_reset(OneNANDState *s, int cold)
204 {
205     memset(&s->addr, 0, sizeof(s->addr));
206     s->command = 0;
207     s->count = 1;
208     s->bufaddr = 0;
209     s->config[0] = 0x40c0;
210     s->config[1] = 0x0000;
211     onenand_intr_update(s);
212     qemu_irq_raise(s->rdy);
213     s->status = 0x0000;
214     s->intstatus = cold ? 0x8080 : 0x8010;
215     s->unladdr[0] = 0;
216     s->unladdr[1] = 0;
217     s->wpstatus = 0x0002;
218     s->cycle = 0;
219     s->otpmode = 0;
220     s->blk_cur = s->blk;
221     s->current = s->image;
222     s->secs_cur = s->secs;
223 
224     if (cold) {
225         /* Lock the whole flash */
226         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
227 
228         if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
229                                     8 << BDRV_SECTOR_BITS) < 0) {
230             hw_error("%s: Loading the BootRAM failed.\n", __func__);
231         }
232     }
233 }
234 
235 static void onenand_system_reset(DeviceState *dev)
236 {
237     OneNANDState *s = ONE_NAND(dev);
238 
239     onenand_reset(s, 1);
240 }
241 
242 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
243                 void *dest)
244 {
245     assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
246     assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
247     if (s->blk_cur) {
248         return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
249                          secn << BDRV_SECTOR_BITS) < 0;
250     } else if (sec + secn > s->secs_cur) {
251         return 1;
252     }
253 
254     memcpy(dest, s->current + (sec << 9), secn << 9);
255 
256     return 0;
257 }
258 
259 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
260                 void *src)
261 {
262     int result = 0;
263 
264     if (secn > 0) {
265         uint32_t size = secn << BDRV_SECTOR_BITS;
266         uint32_t offset = sec << BDRV_SECTOR_BITS;
267         assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
268         assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
269         const uint8_t *sp = (const uint8_t *)src;
270         uint8_t *dp = 0;
271         if (s->blk_cur) {
272             dp = g_malloc(size);
273             if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
274                 result = 1;
275             }
276         } else {
277             if (sec + secn > s->secs_cur) {
278                 result = 1;
279             } else {
280                 dp = (uint8_t *)s->current + offset;
281             }
282         }
283         if (!result) {
284             uint32_t i;
285             for (i = 0; i < size; i++) {
286                 dp[i] &= sp[i];
287             }
288             if (s->blk_cur) {
289                 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
290             }
291         }
292         if (dp && s->blk_cur) {
293             g_free(dp);
294         }
295     }
296 
297     return result;
298 }
299 
300 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
301                 void *dest)
302 {
303     uint8_t buf[512];
304 
305     if (s->blk_cur) {
306         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
307         if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
308             return 1;
309         }
310         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
311     } else if (sec + secn > s->secs_cur) {
312         return 1;
313     } else {
314         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
315     }
316 
317     return 0;
318 }
319 
320 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
321                 void *src)
322 {
323     int result = 0;
324     if (secn > 0) {
325         const uint8_t *sp = (const uint8_t *)src;
326         uint8_t *dp = 0, *dpp = 0;
327         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
328         assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
329         if (s->blk_cur) {
330             dp = g_malloc(512);
331             if (!dp
332                 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
333                 result = 1;
334             } else {
335                 dpp = dp + ((sec & 31) << 4);
336             }
337         } else {
338             if (sec + secn > s->secs_cur) {
339                 result = 1;
340             } else {
341                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
342             }
343         }
344         if (!result) {
345             uint32_t i;
346             for (i = 0; i < (secn << 4); i++) {
347                 dpp[i] &= sp[i];
348             }
349             if (s->blk_cur) {
350                 result = blk_pwrite(s->blk_cur, offset, dp,
351                                     BDRV_SECTOR_SIZE, 0) < 0;
352             }
353         }
354         g_free(dp);
355     }
356     return result;
357 }
358 
359 static inline int onenand_erase(OneNANDState *s, int sec, int num)
360 {
361     uint8_t *blankbuf, *tmpbuf;
362 
363     blankbuf = g_malloc(512);
364     tmpbuf = g_malloc(512);
365     memset(blankbuf, 0xff, 512);
366     for (; num > 0; num--, sec++) {
367         if (s->blk_cur) {
368             int erasesec = s->secs_cur + (sec >> 5);
369             if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
370                            BDRV_SECTOR_SIZE, 0) < 0) {
371                 goto fail;
372             }
373             if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
374                           BDRV_SECTOR_SIZE) < 0) {
375                 goto fail;
376             }
377             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
378             if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
379                            BDRV_SECTOR_SIZE, 0) < 0) {
380                 goto fail;
381             }
382         } else {
383             if (sec + 1 > s->secs_cur) {
384                 goto fail;
385             }
386             memcpy(s->current + (sec << 9), blankbuf, 512);
387             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
388                    blankbuf, 1 << 4);
389         }
390     }
391 
392     g_free(tmpbuf);
393     g_free(blankbuf);
394     return 0;
395 
396 fail:
397     g_free(tmpbuf);
398     g_free(blankbuf);
399     return 1;
400 }
401 
402 static void onenand_command(OneNANDState *s)
403 {
404     int b;
405     int sec;
406     void *buf;
407 #define SETADDR(block, page)			\
408     sec = (s->addr[page] & 3) +			\
409             ((((s->addr[page] >> 2) & 0x3f) +	\
410               (((s->addr[block] & 0xfff) |	\
411                 (s->addr[block] >> 15 ?		\
412                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
413 #define SETBUF_M()				\
414     buf = (s->bufaddr & 8) ?			\
415             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
416     buf += (s->bufaddr & 3) << 9;
417 #define SETBUF_S()				\
418     buf = (s->bufaddr & 8) ?			\
419             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
420     buf += (s->bufaddr & 3) << 4;
421 
422     switch (s->command) {
423     case 0x00:	/* Load single/multiple sector data unit into buffer */
424         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
425 
426         SETBUF_M()
427         if (onenand_load_main(s, sec, s->count, buf))
428             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
429 
430 #if 0
431         SETBUF_S()
432         if (onenand_load_spare(s, sec, s->count, buf))
433             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
434 #endif
435 
436         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
437          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
438          * then we need two split the read/write into two chunks.
439          */
440         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
441         break;
442     case 0x13:	/* Load single/multiple spare sector into buffer */
443         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
444 
445         SETBUF_S()
446         if (onenand_load_spare(s, sec, s->count, buf))
447             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
448 
449         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
450          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
451          * then we need two split the read/write into two chunks.
452          */
453         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
454         break;
455     case 0x80:	/* Program single/multiple sector data unit from buffer */
456         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
457 
458         SETBUF_M()
459         if (onenand_prog_main(s, sec, s->count, buf))
460             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
461 
462 #if 0
463         SETBUF_S()
464         if (onenand_prog_spare(s, sec, s->count, buf))
465             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
466 #endif
467 
468         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
469          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
470          * then we need two split the read/write into two chunks.
471          */
472         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
473         break;
474     case 0x1a:	/* Program single/multiple spare area sector from buffer */
475         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
476 
477         SETBUF_S()
478         if (onenand_prog_spare(s, sec, s->count, buf))
479             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
480 
481         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
482          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
483          * then we need two split the read/write into two chunks.
484          */
485         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
486         break;
487     case 0x1b:	/* Copy-back program */
488         SETBUF_S()
489 
490         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
491         if (onenand_load_main(s, sec, s->count, buf))
492             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
493 
494         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
495         if (onenand_prog_main(s, sec, s->count, buf))
496             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
497 
498         /* TODO: spare areas */
499 
500         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
501         break;
502 
503     case 0x23:	/* Unlock NAND array block(s) */
504         s->intstatus |= ONEN_INT;
505 
506         /* XXX the previous (?) area should be locked automatically */
507         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
508             if (b >= s->blocks) {
509                 s->status |= ONEN_ERR_CMD;
510                 break;
511             }
512             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
513                 break;
514 
515             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
516         }
517         break;
518     case 0x27:	/* Unlock All NAND array blocks */
519         s->intstatus |= ONEN_INT;
520 
521         for (b = 0; b < s->blocks; b ++) {
522             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
523                 break;
524 
525             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
526         }
527         break;
528 
529     case 0x2a:	/* Lock NAND array block(s) */
530         s->intstatus |= ONEN_INT;
531 
532         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
533             if (b >= s->blocks) {
534                 s->status |= ONEN_ERR_CMD;
535                 break;
536             }
537             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
538                 break;
539 
540             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
541         }
542         break;
543     case 0x2c:	/* Lock-tight NAND array block(s) */
544         s->intstatus |= ONEN_INT;
545 
546         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
547             if (b >= s->blocks) {
548                 s->status |= ONEN_ERR_CMD;
549                 break;
550             }
551             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
552                 continue;
553 
554             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
555         }
556         break;
557 
558     case 0x71:	/* Erase-Verify-Read */
559         s->intstatus |= ONEN_INT;
560         break;
561     case 0x95:	/* Multi-block erase */
562         qemu_irq_pulse(s->intr);
563         /* Fall through.  */
564     case 0x94:	/* Block erase */
565         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
566                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
567                 << (BLOCK_SHIFT - 9);
568         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
569             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
570 
571         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
572         break;
573     case 0xb0:	/* Erase suspend */
574         break;
575     case 0x30:	/* Erase resume */
576         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
577         break;
578 
579     case 0xf0:	/* Reset NAND Flash core */
580         onenand_reset(s, 0);
581         break;
582     case 0xf3:	/* Reset OneNAND */
583         onenand_reset(s, 0);
584         break;
585 
586     case 0x65:	/* OTP Access */
587         s->intstatus |= ONEN_INT;
588         s->blk_cur = NULL;
589         s->current = s->otp;
590         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
591         s->addr[ONEN_BUF_BLOCK] = 0;
592         s->otpmode = 1;
593         break;
594 
595     default:
596         s->status |= ONEN_ERR_CMD;
597         s->intstatus |= ONEN_INT;
598         qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
599                       s->command);
600     }
601 
602     onenand_intr_update(s);
603 }
604 
605 static uint64_t onenand_read(void *opaque, hwaddr addr,
606                              unsigned size)
607 {
608     OneNANDState *s = (OneNANDState *) opaque;
609     int offset = addr >> s->shift;
610 
611     switch (offset) {
612     case 0x0000 ... 0xbffe:
613         return lduw_le_p(s->boot[0] + addr);
614 
615     case 0xf000:	/* Manufacturer ID */
616         return s->id.man;
617     case 0xf001:	/* Device ID */
618         return s->id.dev;
619     case 0xf002:	/* Version ID */
620         return s->id.ver;
621     /* TODO: get the following values from a real chip!  */
622     case 0xf003:	/* Data Buffer size */
623         return 1 << PAGE_SHIFT;
624     case 0xf004:	/* Boot Buffer size */
625         return 0x200;
626     case 0xf005:	/* Amount of buffers */
627         return 1 | (2 << 8);
628     case 0xf006:	/* Technology */
629         return 0;
630 
631     case 0xf100 ... 0xf107:	/* Start addresses */
632         return s->addr[offset - 0xf100];
633 
634     case 0xf200:	/* Start buffer */
635         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
636 
637     case 0xf220:	/* Command */
638         return s->command;
639     case 0xf221:	/* System Configuration 1 */
640         return s->config[0] & 0xffe0;
641     case 0xf222:	/* System Configuration 2 */
642         return s->config[1];
643 
644     case 0xf240:	/* Controller Status */
645         return s->status;
646     case 0xf241:	/* Interrupt */
647         return s->intstatus;
648     case 0xf24c:	/* Unlock Start Block Address */
649         return s->unladdr[0];
650     case 0xf24d:	/* Unlock End Block Address */
651         return s->unladdr[1];
652     case 0xf24e:	/* Write Protection Status */
653         return s->wpstatus;
654 
655     case 0xff00:	/* ECC Status */
656         return 0x00;
657     case 0xff01:	/* ECC Result of main area data */
658     case 0xff02:	/* ECC Result of spare area data */
659     case 0xff03:	/* ECC Result of main area data */
660     case 0xff04:	/* ECC Result of spare area data */
661         qemu_log_mask(LOG_UNIMP,
662                       "onenand: ECC result registers unimplemented\n");
663         return 0x0000;
664     }
665 
666     qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
667                   offset);
668     return 0;
669 }
670 
671 static void onenand_write(void *opaque, hwaddr addr,
672                           uint64_t value, unsigned size)
673 {
674     OneNANDState *s = (OneNANDState *) opaque;
675     int offset = addr >> s->shift;
676     int sec;
677 
678     switch (offset) {
679     case 0x0000 ... 0x01ff:
680     case 0x8000 ... 0x800f:
681         if (s->cycle) {
682             s->cycle = 0;
683 
684             if (value == 0x0000) {
685                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
686                 onenand_load_main(s, sec,
687                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
688                 s->addr[ONEN_BUF_PAGE] += 4;
689                 s->addr[ONEN_BUF_PAGE] &= 0xff;
690             }
691             break;
692         }
693 
694         switch (value) {
695         case 0x00f0:	/* Reset OneNAND */
696             onenand_reset(s, 0);
697             break;
698 
699         case 0x00e0:	/* Load Data into Buffer */
700             s->cycle = 1;
701             break;
702 
703         case 0x0090:	/* Read Identification Data */
704             memset(s->boot[0], 0, 3 << s->shift);
705             s->boot[0][0 << s->shift] = s->id.man & 0xff;
706             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
707             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
708             break;
709 
710         default:
711             qemu_log_mask(LOG_GUEST_ERROR,
712                           "unknown OneNAND boot command %" PRIx64 "\n",
713                           value);
714         }
715         break;
716 
717     case 0xf100 ... 0xf107:	/* Start addresses */
718         s->addr[offset - 0xf100] = value;
719         break;
720 
721     case 0xf200:	/* Start buffer */
722         s->bufaddr = (value >> 8) & 0xf;
723         if (PAGE_SHIFT == 11)
724             s->count = (value & 3) ?: 4;
725         else if (PAGE_SHIFT == 10)
726             s->count = (value & 1) ?: 2;
727         break;
728 
729     case 0xf220:	/* Command */
730         if (s->intstatus & (1 << 15))
731             break;
732         s->command = value;
733         onenand_command(s);
734         break;
735     case 0xf221:	/* System Configuration 1 */
736         s->config[0] = value;
737         onenand_intr_update(s);
738         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
739         break;
740     case 0xf222:	/* System Configuration 2 */
741         s->config[1] = value;
742         break;
743 
744     case 0xf241:	/* Interrupt */
745         s->intstatus &= value;
746         if ((1 << 15) & ~s->intstatus)
747             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
748                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
749         onenand_intr_update(s);
750         break;
751     case 0xf24c:	/* Unlock Start Block Address */
752         s->unladdr[0] = value & (s->blocks - 1);
753         /* For some reason we have to set the end address to by default
754          * be same as start because the software forgets to write anything
755          * in there.  */
756         s->unladdr[1] = value & (s->blocks - 1);
757         break;
758     case 0xf24d:	/* Unlock End Block Address */
759         s->unladdr[1] = value & (s->blocks - 1);
760         break;
761 
762     default:
763         qemu_log_mask(LOG_GUEST_ERROR,
764                       "write to unknown OneNAND register 0x%x\n",
765                       offset);
766     }
767 }
768 
769 static const MemoryRegionOps onenand_ops = {
770     .read = onenand_read,
771     .write = onenand_write,
772     .endianness = DEVICE_NATIVE_ENDIAN,
773 };
774 
775 static void onenand_realize(DeviceState *dev, Error **errp)
776 {
777     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
778     OneNANDState *s = ONE_NAND(dev);
779     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
780     void *ram;
781     Error *local_err = NULL;
782 
783     s->base = (hwaddr)-1;
784     s->rdy = NULL;
785     s->blocks = size >> BLOCK_SHIFT;
786     s->secs = size >> 9;
787     s->blockwp = g_malloc(s->blocks);
788     s->density_mask = (s->id.dev & 0x08)
789         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
790     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
791                           0x10000 << s->shift);
792     if (!s->blk) {
793         s->image = memset(g_malloc(size + (size >> 5)),
794                           0xff, size + (size >> 5));
795     } else {
796         if (blk_is_read_only(s->blk)) {
797             error_setg(errp, "Can't use a read-only drive");
798             return;
799         }
800         blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
801                      BLK_PERM_ALL, &local_err);
802         if (local_err) {
803             error_propagate(errp, local_err);
804             return;
805         }
806         s->blk_cur = s->blk;
807     }
808     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
809                     0xff, (64 + 2) << PAGE_SHIFT);
810     memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
811                            0xc000 << s->shift, &error_fatal);
812     vmstate_register_ram_global(&s->ram);
813     ram = memory_region_get_ram_ptr(&s->ram);
814     s->boot[0] = ram + (0x0000 << s->shift);
815     s->boot[1] = ram + (0x8000 << s->shift);
816     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
817     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
818     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
819     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
820     onenand_mem_setup(s);
821     sysbus_init_irq(sbd, &s->intr);
822     sysbus_init_mmio(sbd, &s->container);
823     vmstate_register(dev,
824                      ((s->shift & 0x7f) << 24)
825                      | ((s->id.man & 0xff) << 16)
826                      | ((s->id.dev & 0xff) << 8)
827                      | (s->id.ver & 0xff),
828                      &vmstate_onenand, s);
829 }
830 
831 static Property onenand_properties[] = {
832     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
833     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
834     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
835     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
836     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
837     DEFINE_PROP_END_OF_LIST(),
838 };
839 
840 static void onenand_class_init(ObjectClass *klass, void *data)
841 {
842     DeviceClass *dc = DEVICE_CLASS(klass);
843 
844     dc->realize = onenand_realize;
845     dc->reset = onenand_system_reset;
846     dc->props = onenand_properties;
847 }
848 
849 static const TypeInfo onenand_info = {
850     .name          = TYPE_ONE_NAND,
851     .parent        = TYPE_SYS_BUS_DEVICE,
852     .instance_size = sizeof(OneNANDState),
853     .class_init    = onenand_class_init,
854 };
855 
856 static void onenand_register_types(void)
857 {
858     type_register_static(&onenand_info);
859 }
860 
861 void *onenand_raw_otp(DeviceState *onenand_device)
862 {
863     OneNANDState *s = ONE_NAND(onenand_device);
864 
865     return s->otp;
866 }
867 
868 type_init(onenand_register_types)
869