xref: /openbmc/qemu/hw/block/onenand.c (revision 80adf54e)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "exec/memory.h"
30 #include "exec/address-spaces.h"
31 #include "hw/sysbus.h"
32 #include "qemu/error-report.h"
33 
34 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35 #define PAGE_SHIFT	11
36 
37 /* Fixed */
38 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
39 
40 #define TYPE_ONE_NAND "onenand"
41 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
42 
43 typedef struct OneNANDState {
44     SysBusDevice parent_obj;
45 
46     struct {
47         uint16_t man;
48         uint16_t dev;
49         uint16_t ver;
50     } id;
51     int shift;
52     hwaddr base;
53     qemu_irq intr;
54     qemu_irq rdy;
55     BlockBackend *blk;
56     BlockBackend *blk_cur;
57     uint8_t *image;
58     uint8_t *otp;
59     uint8_t *current;
60     MemoryRegion ram;
61     MemoryRegion mapped_ram;
62     uint8_t current_direction;
63     uint8_t *boot[2];
64     uint8_t *data[2][2];
65     MemoryRegion iomem;
66     MemoryRegion container;
67     int cycle;
68     int otpmode;
69 
70     uint16_t addr[8];
71     uint16_t unladdr[8];
72     int bufaddr;
73     int count;
74     uint16_t command;
75     uint16_t config[2];
76     uint16_t status;
77     uint16_t intstatus;
78     uint16_t wpstatus;
79 
80     ECCState ecc;
81 
82     int density_mask;
83     int secs;
84     int secs_cur;
85     int blocks;
86     uint8_t *blockwp;
87 } OneNANDState;
88 
89 enum {
90     ONEN_BUF_BLOCK = 0,
91     ONEN_BUF_BLOCK2 = 1,
92     ONEN_BUF_DEST_BLOCK = 2,
93     ONEN_BUF_DEST_PAGE = 3,
94     ONEN_BUF_PAGE = 7,
95 };
96 
97 enum {
98     ONEN_ERR_CMD = 1 << 10,
99     ONEN_ERR_ERASE = 1 << 11,
100     ONEN_ERR_PROG = 1 << 12,
101     ONEN_ERR_LOAD = 1 << 13,
102 };
103 
104 enum {
105     ONEN_INT_RESET = 1 << 4,
106     ONEN_INT_ERASE = 1 << 5,
107     ONEN_INT_PROG = 1 << 6,
108     ONEN_INT_LOAD = 1 << 7,
109     ONEN_INT = 1 << 15,
110 };
111 
112 enum {
113     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
114     ONEN_LOCK_LOCKED = 1 << 1,
115     ONEN_LOCK_UNLOCKED = 1 << 2,
116 };
117 
118 static void onenand_mem_setup(OneNANDState *s)
119 {
120     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
121      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
122      * write boot commands.  Also take note of the BWPS bit.  */
123     memory_region_init(&s->container, OBJECT(s), "onenand",
124                        0x10000 << s->shift);
125     memory_region_add_subregion(&s->container, 0, &s->iomem);
126     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
127                              &s->ram, 0x0200 << s->shift,
128                              0xbe00 << s->shift);
129     memory_region_add_subregion_overlap(&s->container,
130                                         0x0200 << s->shift,
131                                         &s->mapped_ram,
132                                         1);
133 }
134 
135 static void onenand_intr_update(OneNANDState *s)
136 {
137     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
138 }
139 
140 static void onenand_pre_save(void *opaque)
141 {
142     OneNANDState *s = opaque;
143     if (s->current == s->otp) {
144         s->current_direction = 1;
145     } else if (s->current == s->image) {
146         s->current_direction = 2;
147     } else {
148         s->current_direction = 0;
149     }
150 }
151 
152 static int onenand_post_load(void *opaque, int version_id)
153 {
154     OneNANDState *s = opaque;
155     switch (s->current_direction) {
156     case 0:
157         break;
158     case 1:
159         s->current = s->otp;
160         break;
161     case 2:
162         s->current = s->image;
163         break;
164     default:
165         return -1;
166     }
167     onenand_intr_update(s);
168     return 0;
169 }
170 
171 static const VMStateDescription vmstate_onenand = {
172     .name = "onenand",
173     .version_id = 1,
174     .minimum_version_id = 1,
175     .pre_save = onenand_pre_save,
176     .post_load = onenand_post_load,
177     .fields = (VMStateField[]) {
178         VMSTATE_UINT8(current_direction, OneNANDState),
179         VMSTATE_INT32(cycle, OneNANDState),
180         VMSTATE_INT32(otpmode, OneNANDState),
181         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
182         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
183         VMSTATE_INT32(bufaddr, OneNANDState),
184         VMSTATE_INT32(count, OneNANDState),
185         VMSTATE_UINT16(command, OneNANDState),
186         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
187         VMSTATE_UINT16(status, OneNANDState),
188         VMSTATE_UINT16(intstatus, OneNANDState),
189         VMSTATE_UINT16(wpstatus, OneNANDState),
190         VMSTATE_INT32(secs_cur, OneNANDState),
191         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
192         VMSTATE_UINT8(ecc.cp, OneNANDState),
193         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
194         VMSTATE_UINT16(ecc.count, OneNANDState),
195         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
196             ((64 + 2) << PAGE_SHIFT)),
197         VMSTATE_END_OF_LIST()
198     }
199 };
200 
201 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
202 static void onenand_reset(OneNANDState *s, int cold)
203 {
204     memset(&s->addr, 0, sizeof(s->addr));
205     s->command = 0;
206     s->count = 1;
207     s->bufaddr = 0;
208     s->config[0] = 0x40c0;
209     s->config[1] = 0x0000;
210     onenand_intr_update(s);
211     qemu_irq_raise(s->rdy);
212     s->status = 0x0000;
213     s->intstatus = cold ? 0x8080 : 0x8010;
214     s->unladdr[0] = 0;
215     s->unladdr[1] = 0;
216     s->wpstatus = 0x0002;
217     s->cycle = 0;
218     s->otpmode = 0;
219     s->blk_cur = s->blk;
220     s->current = s->image;
221     s->secs_cur = s->secs;
222 
223     if (cold) {
224         /* Lock the whole flash */
225         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
226 
227         if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
228                                     8 << BDRV_SECTOR_BITS) < 0) {
229             hw_error("%s: Loading the BootRAM failed.\n", __func__);
230         }
231     }
232 }
233 
234 static void onenand_system_reset(DeviceState *dev)
235 {
236     OneNANDState *s = ONE_NAND(dev);
237 
238     onenand_reset(s, 1);
239 }
240 
241 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
242                 void *dest)
243 {
244     assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
245     assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
246     if (s->blk_cur) {
247         return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
248                          secn << BDRV_SECTOR_BITS) < 0;
249     } else if (sec + secn > s->secs_cur) {
250         return 1;
251     }
252 
253     memcpy(dest, s->current + (sec << 9), secn << 9);
254 
255     return 0;
256 }
257 
258 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
259                 void *src)
260 {
261     int result = 0;
262 
263     if (secn > 0) {
264         uint32_t size = secn << BDRV_SECTOR_BITS;
265         uint32_t offset = sec << BDRV_SECTOR_BITS;
266         assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
267         assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
268         const uint8_t *sp = (const uint8_t *)src;
269         uint8_t *dp = 0;
270         if (s->blk_cur) {
271             dp = g_malloc(size);
272             if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
273                 result = 1;
274             }
275         } else {
276             if (sec + secn > s->secs_cur) {
277                 result = 1;
278             } else {
279                 dp = (uint8_t *)s->current + offset;
280             }
281         }
282         if (!result) {
283             uint32_t i;
284             for (i = 0; i < size; i++) {
285                 dp[i] &= sp[i];
286             }
287             if (s->blk_cur) {
288                 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
289             }
290         }
291         if (dp && s->blk_cur) {
292             g_free(dp);
293         }
294     }
295 
296     return result;
297 }
298 
299 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
300                 void *dest)
301 {
302     uint8_t buf[512];
303 
304     if (s->blk_cur) {
305         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
306         if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
307             return 1;
308         }
309         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
310     } else if (sec + secn > s->secs_cur) {
311         return 1;
312     } else {
313         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
314     }
315 
316     return 0;
317 }
318 
319 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
320                 void *src)
321 {
322     int result = 0;
323     if (secn > 0) {
324         const uint8_t *sp = (const uint8_t *)src;
325         uint8_t *dp = 0, *dpp = 0;
326         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
327         assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
328         if (s->blk_cur) {
329             dp = g_malloc(512);
330             if (!dp
331                 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
332                 result = 1;
333             } else {
334                 dpp = dp + ((sec & 31) << 4);
335             }
336         } else {
337             if (sec + secn > s->secs_cur) {
338                 result = 1;
339             } else {
340                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
341             }
342         }
343         if (!result) {
344             uint32_t i;
345             for (i = 0; i < (secn << 4); i++) {
346                 dpp[i] &= sp[i];
347             }
348             if (s->blk_cur) {
349                 result = blk_pwrite(s->blk_cur, offset, dp,
350                                     BDRV_SECTOR_SIZE, 0) < 0;
351             }
352         }
353         g_free(dp);
354     }
355     return result;
356 }
357 
358 static inline int onenand_erase(OneNANDState *s, int sec, int num)
359 {
360     uint8_t *blankbuf, *tmpbuf;
361 
362     blankbuf = g_malloc(512);
363     tmpbuf = g_malloc(512);
364     memset(blankbuf, 0xff, 512);
365     for (; num > 0; num--, sec++) {
366         if (s->blk_cur) {
367             int erasesec = s->secs_cur + (sec >> 5);
368             if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
369                            BDRV_SECTOR_SIZE, 0) < 0) {
370                 goto fail;
371             }
372             if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
373                           BDRV_SECTOR_SIZE) < 0) {
374                 goto fail;
375             }
376             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
377             if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
378                            BDRV_SECTOR_SIZE, 0) < 0) {
379                 goto fail;
380             }
381         } else {
382             if (sec + 1 > s->secs_cur) {
383                 goto fail;
384             }
385             memcpy(s->current + (sec << 9), blankbuf, 512);
386             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
387                    blankbuf, 1 << 4);
388         }
389     }
390 
391     g_free(tmpbuf);
392     g_free(blankbuf);
393     return 0;
394 
395 fail:
396     g_free(tmpbuf);
397     g_free(blankbuf);
398     return 1;
399 }
400 
401 static void onenand_command(OneNANDState *s)
402 {
403     int b;
404     int sec;
405     void *buf;
406 #define SETADDR(block, page)			\
407     sec = (s->addr[page] & 3) +			\
408             ((((s->addr[page] >> 2) & 0x3f) +	\
409               (((s->addr[block] & 0xfff) |	\
410                 (s->addr[block] >> 15 ?		\
411                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
412 #define SETBUF_M()				\
413     buf = (s->bufaddr & 8) ?			\
414             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
415     buf += (s->bufaddr & 3) << 9;
416 #define SETBUF_S()				\
417     buf = (s->bufaddr & 8) ?			\
418             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
419     buf += (s->bufaddr & 3) << 4;
420 
421     switch (s->command) {
422     case 0x00:	/* Load single/multiple sector data unit into buffer */
423         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
424 
425         SETBUF_M()
426         if (onenand_load_main(s, sec, s->count, buf))
427             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
428 
429 #if 0
430         SETBUF_S()
431         if (onenand_load_spare(s, sec, s->count, buf))
432             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
433 #endif
434 
435         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
436          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
437          * then we need two split the read/write into two chunks.
438          */
439         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
440         break;
441     case 0x13:	/* Load single/multiple spare sector into buffer */
442         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
443 
444         SETBUF_S()
445         if (onenand_load_spare(s, sec, s->count, buf))
446             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
447 
448         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
449          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
450          * then we need two split the read/write into two chunks.
451          */
452         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
453         break;
454     case 0x80:	/* Program single/multiple sector data unit from buffer */
455         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
456 
457         SETBUF_M()
458         if (onenand_prog_main(s, sec, s->count, buf))
459             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
460 
461 #if 0
462         SETBUF_S()
463         if (onenand_prog_spare(s, sec, s->count, buf))
464             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
465 #endif
466 
467         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
468          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
469          * then we need two split the read/write into two chunks.
470          */
471         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
472         break;
473     case 0x1a:	/* Program single/multiple spare area sector from buffer */
474         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
475 
476         SETBUF_S()
477         if (onenand_prog_spare(s, sec, s->count, buf))
478             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
479 
480         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
481          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
482          * then we need two split the read/write into two chunks.
483          */
484         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
485         break;
486     case 0x1b:	/* Copy-back program */
487         SETBUF_S()
488 
489         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
490         if (onenand_load_main(s, sec, s->count, buf))
491             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
492 
493         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
494         if (onenand_prog_main(s, sec, s->count, buf))
495             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
496 
497         /* TODO: spare areas */
498 
499         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
500         break;
501 
502     case 0x23:	/* Unlock NAND array block(s) */
503         s->intstatus |= ONEN_INT;
504 
505         /* XXX the previous (?) area should be locked automatically */
506         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
507             if (b >= s->blocks) {
508                 s->status |= ONEN_ERR_CMD;
509                 break;
510             }
511             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
512                 break;
513 
514             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
515         }
516         break;
517     case 0x27:	/* Unlock All NAND array blocks */
518         s->intstatus |= ONEN_INT;
519 
520         for (b = 0; b < s->blocks; b ++) {
521             if (b >= s->blocks) {
522                 s->status |= ONEN_ERR_CMD;
523                 break;
524             }
525             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
526                 break;
527 
528             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
529         }
530         break;
531 
532     case 0x2a:	/* Lock NAND array block(s) */
533         s->intstatus |= ONEN_INT;
534 
535         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
536             if (b >= s->blocks) {
537                 s->status |= ONEN_ERR_CMD;
538                 break;
539             }
540             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
541                 break;
542 
543             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
544         }
545         break;
546     case 0x2c:	/* Lock-tight NAND array block(s) */
547         s->intstatus |= ONEN_INT;
548 
549         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
550             if (b >= s->blocks) {
551                 s->status |= ONEN_ERR_CMD;
552                 break;
553             }
554             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
555                 continue;
556 
557             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
558         }
559         break;
560 
561     case 0x71:	/* Erase-Verify-Read */
562         s->intstatus |= ONEN_INT;
563         break;
564     case 0x95:	/* Multi-block erase */
565         qemu_irq_pulse(s->intr);
566         /* Fall through.  */
567     case 0x94:	/* Block erase */
568         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
569                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
570                 << (BLOCK_SHIFT - 9);
571         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
572             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
573 
574         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
575         break;
576     case 0xb0:	/* Erase suspend */
577         break;
578     case 0x30:	/* Erase resume */
579         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
580         break;
581 
582     case 0xf0:	/* Reset NAND Flash core */
583         onenand_reset(s, 0);
584         break;
585     case 0xf3:	/* Reset OneNAND */
586         onenand_reset(s, 0);
587         break;
588 
589     case 0x65:	/* OTP Access */
590         s->intstatus |= ONEN_INT;
591         s->blk_cur = NULL;
592         s->current = s->otp;
593         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
594         s->addr[ONEN_BUF_BLOCK] = 0;
595         s->otpmode = 1;
596         break;
597 
598     default:
599         s->status |= ONEN_ERR_CMD;
600         s->intstatus |= ONEN_INT;
601         fprintf(stderr, "%s: unknown OneNAND command %x\n",
602                         __func__, s->command);
603     }
604 
605     onenand_intr_update(s);
606 }
607 
608 static uint64_t onenand_read(void *opaque, hwaddr addr,
609                              unsigned size)
610 {
611     OneNANDState *s = (OneNANDState *) opaque;
612     int offset = addr >> s->shift;
613 
614     switch (offset) {
615     case 0x0000 ... 0xc000:
616         return lduw_le_p(s->boot[0] + addr);
617 
618     case 0xf000:	/* Manufacturer ID */
619         return s->id.man;
620     case 0xf001:	/* Device ID */
621         return s->id.dev;
622     case 0xf002:	/* Version ID */
623         return s->id.ver;
624     /* TODO: get the following values from a real chip!  */
625     case 0xf003:	/* Data Buffer size */
626         return 1 << PAGE_SHIFT;
627     case 0xf004:	/* Boot Buffer size */
628         return 0x200;
629     case 0xf005:	/* Amount of buffers */
630         return 1 | (2 << 8);
631     case 0xf006:	/* Technology */
632         return 0;
633 
634     case 0xf100 ... 0xf107:	/* Start addresses */
635         return s->addr[offset - 0xf100];
636 
637     case 0xf200:	/* Start buffer */
638         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
639 
640     case 0xf220:	/* Command */
641         return s->command;
642     case 0xf221:	/* System Configuration 1 */
643         return s->config[0] & 0xffe0;
644     case 0xf222:	/* System Configuration 2 */
645         return s->config[1];
646 
647     case 0xf240:	/* Controller Status */
648         return s->status;
649     case 0xf241:	/* Interrupt */
650         return s->intstatus;
651     case 0xf24c:	/* Unlock Start Block Address */
652         return s->unladdr[0];
653     case 0xf24d:	/* Unlock End Block Address */
654         return s->unladdr[1];
655     case 0xf24e:	/* Write Protection Status */
656         return s->wpstatus;
657 
658     case 0xff00:	/* ECC Status */
659         return 0x00;
660     case 0xff01:	/* ECC Result of main area data */
661     case 0xff02:	/* ECC Result of spare area data */
662     case 0xff03:	/* ECC Result of main area data */
663     case 0xff04:	/* ECC Result of spare area data */
664         hw_error("%s: imeplement ECC\n", __FUNCTION__);
665         return 0x0000;
666     }
667 
668     fprintf(stderr, "%s: unknown OneNAND register %x\n",
669                     __FUNCTION__, offset);
670     return 0;
671 }
672 
673 static void onenand_write(void *opaque, hwaddr addr,
674                           uint64_t value, unsigned size)
675 {
676     OneNANDState *s = (OneNANDState *) opaque;
677     int offset = addr >> s->shift;
678     int sec;
679 
680     switch (offset) {
681     case 0x0000 ... 0x01ff:
682     case 0x8000 ... 0x800f:
683         if (s->cycle) {
684             s->cycle = 0;
685 
686             if (value == 0x0000) {
687                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
688                 onenand_load_main(s, sec,
689                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
690                 s->addr[ONEN_BUF_PAGE] += 4;
691                 s->addr[ONEN_BUF_PAGE] &= 0xff;
692             }
693             break;
694         }
695 
696         switch (value) {
697         case 0x00f0:	/* Reset OneNAND */
698             onenand_reset(s, 0);
699             break;
700 
701         case 0x00e0:	/* Load Data into Buffer */
702             s->cycle = 1;
703             break;
704 
705         case 0x0090:	/* Read Identification Data */
706             memset(s->boot[0], 0, 3 << s->shift);
707             s->boot[0][0 << s->shift] = s->id.man & 0xff;
708             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
709             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
710             break;
711 
712         default:
713             fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
714                             __FUNCTION__, value);
715         }
716         break;
717 
718     case 0xf100 ... 0xf107:	/* Start addresses */
719         s->addr[offset - 0xf100] = value;
720         break;
721 
722     case 0xf200:	/* Start buffer */
723         s->bufaddr = (value >> 8) & 0xf;
724         if (PAGE_SHIFT == 11)
725             s->count = (value & 3) ?: 4;
726         else if (PAGE_SHIFT == 10)
727             s->count = (value & 1) ?: 2;
728         break;
729 
730     case 0xf220:	/* Command */
731         if (s->intstatus & (1 << 15))
732             break;
733         s->command = value;
734         onenand_command(s);
735         break;
736     case 0xf221:	/* System Configuration 1 */
737         s->config[0] = value;
738         onenand_intr_update(s);
739         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
740         break;
741     case 0xf222:	/* System Configuration 2 */
742         s->config[1] = value;
743         break;
744 
745     case 0xf241:	/* Interrupt */
746         s->intstatus &= value;
747         if ((1 << 15) & ~s->intstatus)
748             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
749                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
750         onenand_intr_update(s);
751         break;
752     case 0xf24c:	/* Unlock Start Block Address */
753         s->unladdr[0] = value & (s->blocks - 1);
754         /* For some reason we have to set the end address to by default
755          * be same as start because the software forgets to write anything
756          * in there.  */
757         s->unladdr[1] = value & (s->blocks - 1);
758         break;
759     case 0xf24d:	/* Unlock End Block Address */
760         s->unladdr[1] = value & (s->blocks - 1);
761         break;
762 
763     default:
764         fprintf(stderr, "%s: unknown OneNAND register %x\n",
765                         __FUNCTION__, offset);
766     }
767 }
768 
769 static const MemoryRegionOps onenand_ops = {
770     .read = onenand_read,
771     .write = onenand_write,
772     .endianness = DEVICE_NATIVE_ENDIAN,
773 };
774 
775 static int onenand_initfn(SysBusDevice *sbd)
776 {
777     DeviceState *dev = DEVICE(sbd);
778     OneNANDState *s = ONE_NAND(dev);
779     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
780     void *ram;
781     Error *local_err = NULL;
782 
783     s->base = (hwaddr)-1;
784     s->rdy = NULL;
785     s->blocks = size >> BLOCK_SHIFT;
786     s->secs = size >> 9;
787     s->blockwp = g_malloc(s->blocks);
788     s->density_mask = (s->id.dev & 0x08)
789         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
790     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
791                           0x10000 << s->shift);
792     if (!s->blk) {
793         s->image = memset(g_malloc(size + (size >> 5)),
794                           0xff, size + (size >> 5));
795     } else {
796         if (blk_is_read_only(s->blk)) {
797             error_report("Can't use a read-only drive");
798             return -1;
799         }
800         blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
801                      BLK_PERM_ALL, &local_err);
802         if (local_err) {
803             error_report_err(local_err);
804             return -1;
805         }
806         s->blk_cur = s->blk;
807     }
808     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
809                     0xff, (64 + 2) << PAGE_SHIFT);
810     memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
811                            0xc000 << s->shift, &error_fatal);
812     vmstate_register_ram_global(&s->ram);
813     ram = memory_region_get_ram_ptr(&s->ram);
814     s->boot[0] = ram + (0x0000 << s->shift);
815     s->boot[1] = ram + (0x8000 << s->shift);
816     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
817     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
818     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
819     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
820     onenand_mem_setup(s);
821     sysbus_init_irq(sbd, &s->intr);
822     sysbus_init_mmio(sbd, &s->container);
823     vmstate_register(dev,
824                      ((s->shift & 0x7f) << 24)
825                      | ((s->id.man & 0xff) << 16)
826                      | ((s->id.dev & 0xff) << 8)
827                      | (s->id.ver & 0xff),
828                      &vmstate_onenand, s);
829     return 0;
830 }
831 
832 static Property onenand_properties[] = {
833     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
834     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
835     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
836     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
837     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
838     DEFINE_PROP_END_OF_LIST(),
839 };
840 
841 static void onenand_class_init(ObjectClass *klass, void *data)
842 {
843     DeviceClass *dc = DEVICE_CLASS(klass);
844     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
845 
846     k->init = onenand_initfn;
847     dc->reset = onenand_system_reset;
848     dc->props = onenand_properties;
849 }
850 
851 static const TypeInfo onenand_info = {
852     .name          = TYPE_ONE_NAND,
853     .parent        = TYPE_SYS_BUS_DEVICE,
854     .instance_size = sizeof(OneNANDState),
855     .class_init    = onenand_class_init,
856 };
857 
858 static void onenand_register_types(void)
859 {
860     type_register_static(&onenand_info);
861 }
862 
863 void *onenand_raw_otp(DeviceState *onenand_device)
864 {
865     OneNANDState *s = ONE_NAND(onenand_device);
866 
867     return s->otp;
868 }
869 
870 type_init(onenand_register_types)
871