xref: /openbmc/qemu/hw/block/onenand.c (revision 4921d0a7)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-properties.h"
27 #include "hw/qdev-properties-system.h"
28 #include "sysemu/block-backend.h"
29 #include "exec/memory.h"
30 #include "hw/sysbus.h"
31 #include "migration/vmstate.h"
32 #include "qemu/error-report.h"
33 #include "qemu/log.h"
34 #include "qemu/module.h"
35 #include "qom/object.h"
36 
37 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
38 #define PAGE_SHIFT 11
39 
40 /* Fixed */
41 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
42 
43 #define TYPE_ONE_NAND "onenand"
44 OBJECT_DECLARE_SIMPLE_TYPE(OneNANDState, ONE_NAND)
45 
46 struct OneNANDState {
47     SysBusDevice parent_obj;
48 
49     struct {
50         uint16_t man;
51         uint16_t dev;
52         uint16_t ver;
53     } id;
54     int shift;
55     hwaddr base;
56     qemu_irq intr;
57     qemu_irq rdy;
58     BlockBackend *blk;
59     BlockBackend *blk_cur;
60     uint8_t *image;
61     uint8_t *otp;
62     uint8_t *current;
63     MemoryRegion ram;
64     MemoryRegion mapped_ram;
65     uint8_t current_direction;
66     uint8_t *boot[2];
67     uint8_t *data[2][2];
68     MemoryRegion iomem;
69     MemoryRegion container;
70     int cycle;
71     int otpmode;
72 
73     uint16_t addr[8];
74     uint16_t unladdr[8];
75     int bufaddr;
76     int count;
77     uint16_t command;
78     uint16_t config[2];
79     uint16_t status;
80     uint16_t intstatus;
81     uint16_t wpstatus;
82 
83     ECCState ecc;
84 
85     int density_mask;
86     int secs;
87     int secs_cur;
88     int blocks;
89     uint8_t *blockwp;
90 };
91 
92 enum {
93     ONEN_BUF_BLOCK = 0,
94     ONEN_BUF_BLOCK2 = 1,
95     ONEN_BUF_DEST_BLOCK = 2,
96     ONEN_BUF_DEST_PAGE = 3,
97     ONEN_BUF_PAGE = 7,
98 };
99 
100 enum {
101     ONEN_ERR_CMD = 1 << 10,
102     ONEN_ERR_ERASE = 1 << 11,
103     ONEN_ERR_PROG = 1 << 12,
104     ONEN_ERR_LOAD = 1 << 13,
105 };
106 
107 enum {
108     ONEN_INT_RESET = 1 << 4,
109     ONEN_INT_ERASE = 1 << 5,
110     ONEN_INT_PROG = 1 << 6,
111     ONEN_INT_LOAD = 1 << 7,
112     ONEN_INT = 1 << 15,
113 };
114 
115 enum {
116     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
117     ONEN_LOCK_LOCKED = 1 << 1,
118     ONEN_LOCK_UNLOCKED = 1 << 2,
119 };
120 
121 static void onenand_mem_setup(OneNANDState *s)
122 {
123     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
124      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
125      * write boot commands.  Also take note of the BWPS bit.  */
126     memory_region_init(&s->container, OBJECT(s), "onenand",
127                        0x10000 << s->shift);
128     memory_region_add_subregion(&s->container, 0, &s->iomem);
129     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
130                              &s->ram, 0x0200 << s->shift,
131                              0xbe00 << s->shift);
132     memory_region_add_subregion_overlap(&s->container,
133                                         0x0200 << s->shift,
134                                         &s->mapped_ram,
135                                         1);
136 }
137 
138 static void onenand_intr_update(OneNANDState *s)
139 {
140     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
141 }
142 
143 static int onenand_pre_save(void *opaque)
144 {
145     OneNANDState *s = opaque;
146     if (s->current == s->otp) {
147         s->current_direction = 1;
148     } else if (s->current == s->image) {
149         s->current_direction = 2;
150     } else {
151         s->current_direction = 0;
152     }
153 
154     return 0;
155 }
156 
157 static int onenand_post_load(void *opaque, int version_id)
158 {
159     OneNANDState *s = opaque;
160     switch (s->current_direction) {
161     case 0:
162         break;
163     case 1:
164         s->current = s->otp;
165         break;
166     case 2:
167         s->current = s->image;
168         break;
169     default:
170         return -1;
171     }
172     onenand_intr_update(s);
173     return 0;
174 }
175 
176 static const VMStateDescription vmstate_onenand = {
177     .name = "onenand",
178     .version_id = 1,
179     .minimum_version_id = 1,
180     .pre_save = onenand_pre_save,
181     .post_load = onenand_post_load,
182     .fields = (const VMStateField[]) {
183         VMSTATE_UINT8(current_direction, OneNANDState),
184         VMSTATE_INT32(cycle, OneNANDState),
185         VMSTATE_INT32(otpmode, OneNANDState),
186         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
187         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
188         VMSTATE_INT32(bufaddr, OneNANDState),
189         VMSTATE_INT32(count, OneNANDState),
190         VMSTATE_UINT16(command, OneNANDState),
191         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
192         VMSTATE_UINT16(status, OneNANDState),
193         VMSTATE_UINT16(intstatus, OneNANDState),
194         VMSTATE_UINT16(wpstatus, OneNANDState),
195         VMSTATE_INT32(secs_cur, OneNANDState),
196         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
197         VMSTATE_UINT8(ecc.cp, OneNANDState),
198         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
199         VMSTATE_UINT16(ecc.count, OneNANDState),
200         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
201             ((64 + 2) << PAGE_SHIFT)),
202         VMSTATE_END_OF_LIST()
203     }
204 };
205 
206 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
207 static void onenand_reset(OneNANDState *s, int cold)
208 {
209     memset(&s->addr, 0, sizeof(s->addr));
210     s->command = 0;
211     s->count = 1;
212     s->bufaddr = 0;
213     s->config[0] = 0x40c0;
214     s->config[1] = 0x0000;
215     onenand_intr_update(s);
216     qemu_irq_raise(s->rdy);
217     s->status = 0x0000;
218     s->intstatus = cold ? 0x8080 : 0x8010;
219     s->unladdr[0] = 0;
220     s->unladdr[1] = 0;
221     s->wpstatus = 0x0002;
222     s->cycle = 0;
223     s->otpmode = 0;
224     s->blk_cur = s->blk;
225     s->current = s->image;
226     s->secs_cur = s->secs;
227 
228     if (cold) {
229         /* Lock the whole flash */
230         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
231 
232         if (s->blk_cur && blk_pread(s->blk_cur, 0, 8 << BDRV_SECTOR_BITS,
233                                     s->boot[0], 0) < 0) {
234             hw_error("%s: Loading the BootRAM failed.\n", __func__);
235         }
236     }
237 }
238 
239 static void onenand_system_reset(DeviceState *dev)
240 {
241     OneNANDState *s = ONE_NAND(dev);
242 
243     onenand_reset(s, 1);
244 }
245 
246 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
247                 void *dest)
248 {
249     assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
250     assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
251     if (s->blk_cur) {
252         return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS,
253                          secn << BDRV_SECTOR_BITS, dest, 0) < 0;
254     } else if (sec + secn > s->secs_cur) {
255         return 1;
256     }
257 
258     memcpy(dest, s->current + (sec << 9), secn << 9);
259 
260     return 0;
261 }
262 
263 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
264                 void *src)
265 {
266     int result = 0;
267 
268     if (secn > 0) {
269         uint32_t size = secn << BDRV_SECTOR_BITS;
270         uint32_t offset = sec << BDRV_SECTOR_BITS;
271         assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
272         assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
273         const uint8_t *sp = (const uint8_t *)src;
274         uint8_t *dp = 0;
275         if (s->blk_cur) {
276             dp = g_malloc(size);
277             if (!dp || blk_pread(s->blk_cur, offset, size, dp, 0) < 0) {
278                 result = 1;
279             }
280         } else {
281             if (sec + secn > s->secs_cur) {
282                 result = 1;
283             } else {
284                 dp = (uint8_t *)s->current + offset;
285             }
286         }
287         if (!result) {
288             uint32_t i;
289             for (i = 0; i < size; i++) {
290                 dp[i] &= sp[i];
291             }
292             if (s->blk_cur) {
293                 result = blk_pwrite(s->blk_cur, offset, size, dp, 0) < 0;
294             }
295         }
296         if (dp && s->blk_cur) {
297             g_free(dp);
298         }
299     }
300 
301     return result;
302 }
303 
304 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
305                 void *dest)
306 {
307     uint8_t buf[512];
308 
309     if (s->blk_cur) {
310         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
311         if (blk_pread(s->blk_cur, offset, BDRV_SECTOR_SIZE, buf, 0) < 0) {
312             return 1;
313         }
314         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
315     } else if (sec + secn > s->secs_cur) {
316         return 1;
317     } else {
318         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
319     }
320 
321     return 0;
322 }
323 
324 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
325                 void *src)
326 {
327     int result = 0;
328     if (secn > 0) {
329         const uint8_t *sp = (const uint8_t *)src;
330         uint8_t *dp = 0, *dpp = 0;
331         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
332         assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
333         if (s->blk_cur) {
334             dp = g_malloc(512);
335             if (!dp
336                 || blk_pread(s->blk_cur, offset, BDRV_SECTOR_SIZE, dp, 0) < 0) {
337                 result = 1;
338             } else {
339                 dpp = dp + ((sec & 31) << 4);
340             }
341         } else {
342             if (sec + secn > s->secs_cur) {
343                 result = 1;
344             } else {
345                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
346             }
347         }
348         if (!result) {
349             uint32_t i;
350             for (i = 0; i < (secn << 4); i++) {
351                 dpp[i] &= sp[i];
352             }
353             if (s->blk_cur) {
354                 result = blk_pwrite(s->blk_cur, offset, BDRV_SECTOR_SIZE, dp,
355                                     0) < 0;
356             }
357         }
358         g_free(dp);
359     }
360     return result;
361 }
362 
363 static inline int onenand_erase(OneNANDState *s, int sec, int num)
364 {
365     uint8_t *blankbuf, *tmpbuf;
366 
367     blankbuf = g_malloc(512);
368     tmpbuf = g_malloc(512);
369     memset(blankbuf, 0xff, 512);
370     for (; num > 0; num--, sec++) {
371         if (s->blk_cur) {
372             int erasesec = s->secs_cur + (sec >> 5);
373             if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS,
374                            BDRV_SECTOR_SIZE, blankbuf, 0) < 0) {
375                 goto fail;
376             }
377             if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS,
378                           BDRV_SECTOR_SIZE, tmpbuf, 0) < 0) {
379                 goto fail;
380             }
381             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
382             if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS,
383                            BDRV_SECTOR_SIZE, tmpbuf, 0) < 0) {
384                 goto fail;
385             }
386         } else {
387             if (sec + 1 > s->secs_cur) {
388                 goto fail;
389             }
390             memcpy(s->current + (sec << 9), blankbuf, 512);
391             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
392                    blankbuf, 1 << 4);
393         }
394     }
395 
396     g_free(tmpbuf);
397     g_free(blankbuf);
398     return 0;
399 
400 fail:
401     g_free(tmpbuf);
402     g_free(blankbuf);
403     return 1;
404 }
405 
406 static void onenand_command(OneNANDState *s)
407 {
408     int b;
409     int sec;
410     void *buf;
411 #define SETADDR(block, page)                                \
412     sec = (s->addr[page] & 3) +                             \
413           ((((s->addr[page] >> 2) & 0x3f) +                 \
414             (((s->addr[block] & 0xfff) |                    \
415               (s->addr[block] >> 15 ? s->density_mask : 0)) \
416              << 6))                                         \
417            << (PAGE_SHIFT - 9));
418 #define SETBUF_M()                                                           \
419     buf = (s->bufaddr & 8) ? s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
420     buf += (s->bufaddr & 3) << 9;
421 #define SETBUF_S()                                          \
422     buf = (s->bufaddr & 8) ?                                \
423             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
424     buf += (s->bufaddr & 3) << 4;
425 
426     switch (s->command) {
427     case 0x00:  /* Load single/multiple sector data unit into buffer */
428         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
429 
430         SETBUF_M()
431         if (onenand_load_main(s, sec, s->count, buf))
432             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
433 
434 #if 0
435         SETBUF_S()
436         if (onenand_load_spare(s, sec, s->count, buf))
437             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
438 #endif
439 
440         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
441          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
442          * then we need two split the read/write into two chunks.
443          */
444         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
445         break;
446     case 0x13:  /* Load single/multiple spare sector into buffer */
447         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
448 
449         SETBUF_S()
450         if (onenand_load_spare(s, sec, s->count, buf))
451             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
452 
453         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
454          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
455          * then we need two split the read/write into two chunks.
456          */
457         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
458         break;
459     case 0x80:  /* Program single/multiple sector data unit from buffer */
460         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
461 
462         SETBUF_M()
463         if (onenand_prog_main(s, sec, s->count, buf))
464             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
465 
466 #if 0
467         SETBUF_S()
468         if (onenand_prog_spare(s, sec, s->count, buf))
469             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
470 #endif
471 
472         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
473          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
474          * then we need two split the read/write into two chunks.
475          */
476         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
477         break;
478     case 0x1a:  /* Program single/multiple spare area sector from buffer */
479         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
480 
481         SETBUF_S()
482         if (onenand_prog_spare(s, sec, s->count, buf))
483             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
484 
485         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
486          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
487          * then we need two split the read/write into two chunks.
488          */
489         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
490         break;
491     case 0x1b:  /* Copy-back program */
492         SETBUF_S()
493 
494         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
495         if (onenand_load_main(s, sec, s->count, buf))
496             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
497 
498         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
499         if (onenand_prog_main(s, sec, s->count, buf))
500             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
501 
502         /* TODO: spare areas */
503 
504         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
505         break;
506 
507     case 0x23:  /* Unlock NAND array block(s) */
508         s->intstatus |= ONEN_INT;
509 
510         /* XXX the previous (?) area should be locked automatically */
511         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
512             if (b >= s->blocks) {
513                 s->status |= ONEN_ERR_CMD;
514                 break;
515             }
516             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
517                 break;
518 
519             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
520         }
521         break;
522     case 0x27:  /* Unlock All NAND array blocks */
523         s->intstatus |= ONEN_INT;
524 
525         for (b = 0; b < s->blocks; b ++) {
526             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
527                 break;
528 
529             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
530         }
531         break;
532 
533     case 0x2a:  /* Lock NAND array block(s) */
534         s->intstatus |= ONEN_INT;
535 
536         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
537             if (b >= s->blocks) {
538                 s->status |= ONEN_ERR_CMD;
539                 break;
540             }
541             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
542                 break;
543 
544             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
545         }
546         break;
547     case 0x2c:  /* Lock-tight NAND array block(s) */
548         s->intstatus |= ONEN_INT;
549 
550         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
551             if (b >= s->blocks) {
552                 s->status |= ONEN_ERR_CMD;
553                 break;
554             }
555             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
556                 continue;
557 
558             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
559         }
560         break;
561 
562     case 0x71:  /* Erase-Verify-Read */
563         s->intstatus |= ONEN_INT;
564         break;
565     case 0x95:  /* Multi-block erase */
566         qemu_irq_pulse(s->intr);
567         /* Fall through.  */
568     case 0x94:  /* Block erase */
569         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
570                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
571                 << (BLOCK_SHIFT - 9);
572         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
573             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
574 
575         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
576         break;
577     case 0xb0:  /* Erase suspend */
578         break;
579     case 0x30:  /* Erase resume */
580         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
581         break;
582 
583     case 0xf0:  /* Reset NAND Flash core */
584         onenand_reset(s, 0);
585         break;
586     case 0xf3:  /* Reset OneNAND */
587         onenand_reset(s, 0);
588         break;
589 
590     case 0x65:  /* OTP Access */
591         s->intstatus |= ONEN_INT;
592         s->blk_cur = NULL;
593         s->current = s->otp;
594         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
595         s->addr[ONEN_BUF_BLOCK] = 0;
596         s->otpmode = 1;
597         break;
598 
599     default:
600         s->status |= ONEN_ERR_CMD;
601         s->intstatus |= ONEN_INT;
602         qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
603                       s->command);
604     }
605 
606     onenand_intr_update(s);
607 }
608 
609 static uint64_t onenand_read(void *opaque, hwaddr addr,
610                              unsigned size)
611 {
612     OneNANDState *s = (OneNANDState *) opaque;
613     int offset = addr >> s->shift;
614 
615     switch (offset) {
616     case 0x0000 ... 0xbffe:
617         return lduw_le_p(s->boot[0] + addr);
618 
619     case 0xf000:  /* Manufacturer ID */
620         return s->id.man;
621     case 0xf001:  /* Device ID */
622         return s->id.dev;
623     case 0xf002:  /* Version ID */
624         return s->id.ver;
625     /* TODO: get the following values from a real chip!  */
626     case 0xf003:  /* Data Buffer size */
627         return 1 << PAGE_SHIFT;
628     case 0xf004:  /* Boot Buffer size */
629         return 0x200;
630     case 0xf005:  /* Amount of buffers */
631         return 1 | (2 << 8);
632     case 0xf006:  /* Technology */
633         return 0;
634 
635     case 0xf100 ... 0xf107:  /* Start addresses */
636         return s->addr[offset - 0xf100];
637 
638     case 0xf200:  /* Start buffer */
639         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
640 
641     case 0xf220:  /* Command */
642         return s->command;
643     case 0xf221:  /* System Configuration 1 */
644         return s->config[0] & 0xffe0;
645     case 0xf222:  /* System Configuration 2 */
646         return s->config[1];
647 
648     case 0xf240:  /* Controller Status */
649         return s->status;
650     case 0xf241:  /* Interrupt */
651         return s->intstatus;
652     case 0xf24c:  /* Unlock Start Block Address */
653         return s->unladdr[0];
654     case 0xf24d:  /* Unlock End Block Address */
655         return s->unladdr[1];
656     case 0xf24e:  /* Write Protection Status */
657         return s->wpstatus;
658 
659     case 0xff00:  /* ECC Status */
660         return 0x00;
661     case 0xff01:  /* ECC Result of main area data */
662     case 0xff02:  /* ECC Result of spare area data */
663     case 0xff03:  /* ECC Result of main area data */
664     case 0xff04:  /* ECC Result of spare area data */
665         qemu_log_mask(LOG_UNIMP,
666                       "onenand: ECC result registers unimplemented\n");
667         return 0x0000;
668     }
669 
670     qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
671                   offset);
672     return 0;
673 }
674 
675 static void onenand_write(void *opaque, hwaddr addr,
676                           uint64_t value, unsigned size)
677 {
678     OneNANDState *s = (OneNANDState *) opaque;
679     int offset = addr >> s->shift;
680     int sec;
681 
682     switch (offset) {
683     case 0x0000 ... 0x01ff:
684     case 0x8000 ... 0x800f:
685         if (s->cycle) {
686             s->cycle = 0;
687 
688             if (value == 0x0000) {
689                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
690                 onenand_load_main(s, sec,
691                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
692                 s->addr[ONEN_BUF_PAGE] += 4;
693                 s->addr[ONEN_BUF_PAGE] &= 0xff;
694             }
695             break;
696         }
697 
698         switch (value) {
699         case 0x00f0:  /* Reset OneNAND */
700             onenand_reset(s, 0);
701             break;
702 
703         case 0x00e0:  /* Load Data into Buffer */
704             s->cycle = 1;
705             break;
706 
707         case 0x0090:  /* Read Identification Data */
708             memset(s->boot[0], 0, 3 << s->shift);
709             s->boot[0][0 << s->shift] = s->id.man & 0xff;
710             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
711             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
712             break;
713 
714         default:
715             qemu_log_mask(LOG_GUEST_ERROR,
716                           "unknown OneNAND boot command %" PRIx64 "\n",
717                           value);
718         }
719         break;
720 
721     case 0xf100 ... 0xf107:  /* Start addresses */
722         s->addr[offset - 0xf100] = value;
723         break;
724 
725     case 0xf200:  /* Start buffer */
726         s->bufaddr = (value >> 8) & 0xf;
727         if (PAGE_SHIFT == 11)
728             s->count = (value & 3) ?: 4;
729         else if (PAGE_SHIFT == 10)
730             s->count = (value & 1) ?: 2;
731         break;
732 
733     case 0xf220:  /* Command */
734         if (s->intstatus & (1 << 15))
735             break;
736         s->command = value;
737         onenand_command(s);
738         break;
739     case 0xf221:  /* System Configuration 1 */
740         s->config[0] = value;
741         onenand_intr_update(s);
742         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
743         break;
744     case 0xf222:  /* System Configuration 2 */
745         s->config[1] = value;
746         break;
747 
748     case 0xf241:  /* Interrupt */
749         s->intstatus &= value;
750         if ((1 << 15) & ~s->intstatus)
751             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
752                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
753         onenand_intr_update(s);
754         break;
755     case 0xf24c:  /* Unlock Start Block Address */
756         s->unladdr[0] = value & (s->blocks - 1);
757         /* For some reason we have to set the end address to by default
758          * be same as start because the software forgets to write anything
759          * in there.  */
760         s->unladdr[1] = value & (s->blocks - 1);
761         break;
762     case 0xf24d:  /* Unlock End Block Address */
763         s->unladdr[1] = value & (s->blocks - 1);
764         break;
765 
766     default:
767         qemu_log_mask(LOG_GUEST_ERROR,
768                       "write to unknown OneNAND register 0x%x\n",
769                       offset);
770     }
771 }
772 
773 static const MemoryRegionOps onenand_ops = {
774     .read = onenand_read,
775     .write = onenand_write,
776     .endianness = DEVICE_NATIVE_ENDIAN,
777 };
778 
779 static void onenand_realize(DeviceState *dev, Error **errp)
780 {
781     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
782     OneNANDState *s = ONE_NAND(dev);
783     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
784     void *ram;
785     Error *local_err = NULL;
786 
787     s->base = (hwaddr)-1;
788     s->rdy = NULL;
789     s->blocks = size >> BLOCK_SHIFT;
790     s->secs = size >> 9;
791     s->blockwp = g_malloc(s->blocks);
792     s->density_mask = (s->id.dev & 0x08)
793         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
794     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
795                           0x10000 << s->shift);
796     if (!s->blk) {
797         s->image = memset(g_malloc(size + (size >> 5)),
798                           0xff, size + (size >> 5));
799     } else {
800         if (!blk_supports_write_perm(s->blk)) {
801             error_setg(errp, "Can't use a read-only drive");
802             return;
803         }
804         blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
805                      BLK_PERM_ALL, &local_err);
806         if (local_err) {
807             error_propagate(errp, local_err);
808             return;
809         }
810         s->blk_cur = s->blk;
811     }
812     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
813                     0xff, (64 + 2) << PAGE_SHIFT);
814     memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
815                            0xc000 << s->shift, &error_fatal);
816     vmstate_register_ram_global(&s->ram);
817     ram = memory_region_get_ram_ptr(&s->ram);
818     s->boot[0] = ram + (0x0000 << s->shift);
819     s->boot[1] = ram + (0x8000 << s->shift);
820     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
821     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
822     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
823     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
824     onenand_mem_setup(s);
825     sysbus_init_irq(sbd, &s->intr);
826     sysbus_init_mmio(sbd, &s->container);
827     vmstate_register(VMSTATE_IF(dev),
828                      ((s->shift & 0x7f) << 24)
829                      | ((s->id.man & 0xff) << 16)
830                      | ((s->id.dev & 0xff) << 8)
831                      | (s->id.ver & 0xff),
832                      &vmstate_onenand, s);
833 }
834 
835 static Property onenand_properties[] = {
836     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
837     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
838     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
839     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
840     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
841     DEFINE_PROP_END_OF_LIST(),
842 };
843 
844 static void onenand_class_init(ObjectClass *klass, void *data)
845 {
846     DeviceClass *dc = DEVICE_CLASS(klass);
847 
848     dc->realize = onenand_realize;
849     dc->reset = onenand_system_reset;
850     device_class_set_props(dc, onenand_properties);
851 }
852 
853 static const TypeInfo onenand_info = {
854     .name          = TYPE_ONE_NAND,
855     .parent        = TYPE_SYS_BUS_DEVICE,
856     .instance_size = sizeof(OneNANDState),
857     .class_init    = onenand_class_init,
858 };
859 
860 static void onenand_register_types(void)
861 {
862     type_register_static(&onenand_info);
863 }
864 
865 void *onenand_raw_otp(DeviceState *onenand_device)
866 {
867     OneNANDState *s = ONE_NAND(onenand_device);
868 
869     return s->otp;
870 }
871 
872 type_init(onenand_register_types)
873