xref: /openbmc/qemu/hw/block/onenand.c (revision 06a47ef5)
1 /*
2  * OneNAND flash memories emulation.
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 or
10  * (at your option) version 3 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-properties.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/error-report.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 
35 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
36 #define PAGE_SHIFT	11
37 
38 /* Fixed */
39 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
40 
41 #define TYPE_ONE_NAND "onenand"
42 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
43 
44 typedef struct OneNANDState {
45     SysBusDevice parent_obj;
46 
47     struct {
48         uint16_t man;
49         uint16_t dev;
50         uint16_t ver;
51     } id;
52     int shift;
53     hwaddr base;
54     qemu_irq intr;
55     qemu_irq rdy;
56     BlockBackend *blk;
57     BlockBackend *blk_cur;
58     uint8_t *image;
59     uint8_t *otp;
60     uint8_t *current;
61     MemoryRegion ram;
62     MemoryRegion mapped_ram;
63     uint8_t current_direction;
64     uint8_t *boot[2];
65     uint8_t *data[2][2];
66     MemoryRegion iomem;
67     MemoryRegion container;
68     int cycle;
69     int otpmode;
70 
71     uint16_t addr[8];
72     uint16_t unladdr[8];
73     int bufaddr;
74     int count;
75     uint16_t command;
76     uint16_t config[2];
77     uint16_t status;
78     uint16_t intstatus;
79     uint16_t wpstatus;
80 
81     ECCState ecc;
82 
83     int density_mask;
84     int secs;
85     int secs_cur;
86     int blocks;
87     uint8_t *blockwp;
88 } OneNANDState;
89 
90 enum {
91     ONEN_BUF_BLOCK = 0,
92     ONEN_BUF_BLOCK2 = 1,
93     ONEN_BUF_DEST_BLOCK = 2,
94     ONEN_BUF_DEST_PAGE = 3,
95     ONEN_BUF_PAGE = 7,
96 };
97 
98 enum {
99     ONEN_ERR_CMD = 1 << 10,
100     ONEN_ERR_ERASE = 1 << 11,
101     ONEN_ERR_PROG = 1 << 12,
102     ONEN_ERR_LOAD = 1 << 13,
103 };
104 
105 enum {
106     ONEN_INT_RESET = 1 << 4,
107     ONEN_INT_ERASE = 1 << 5,
108     ONEN_INT_PROG = 1 << 6,
109     ONEN_INT_LOAD = 1 << 7,
110     ONEN_INT = 1 << 15,
111 };
112 
113 enum {
114     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
115     ONEN_LOCK_LOCKED = 1 << 1,
116     ONEN_LOCK_UNLOCKED = 1 << 2,
117 };
118 
119 static void onenand_mem_setup(OneNANDState *s)
120 {
121     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
122      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
123      * write boot commands.  Also take note of the BWPS bit.  */
124     memory_region_init(&s->container, OBJECT(s), "onenand",
125                        0x10000 << s->shift);
126     memory_region_add_subregion(&s->container, 0, &s->iomem);
127     memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
128                              &s->ram, 0x0200 << s->shift,
129                              0xbe00 << s->shift);
130     memory_region_add_subregion_overlap(&s->container,
131                                         0x0200 << s->shift,
132                                         &s->mapped_ram,
133                                         1);
134 }
135 
136 static void onenand_intr_update(OneNANDState *s)
137 {
138     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
139 }
140 
141 static int onenand_pre_save(void *opaque)
142 {
143     OneNANDState *s = opaque;
144     if (s->current == s->otp) {
145         s->current_direction = 1;
146     } else if (s->current == s->image) {
147         s->current_direction = 2;
148     } else {
149         s->current_direction = 0;
150     }
151 
152     return 0;
153 }
154 
155 static int onenand_post_load(void *opaque, int version_id)
156 {
157     OneNANDState *s = opaque;
158     switch (s->current_direction) {
159     case 0:
160         break;
161     case 1:
162         s->current = s->otp;
163         break;
164     case 2:
165         s->current = s->image;
166         break;
167     default:
168         return -1;
169     }
170     onenand_intr_update(s);
171     return 0;
172 }
173 
174 static const VMStateDescription vmstate_onenand = {
175     .name = "onenand",
176     .version_id = 1,
177     .minimum_version_id = 1,
178     .pre_save = onenand_pre_save,
179     .post_load = onenand_post_load,
180     .fields = (VMStateField[]) {
181         VMSTATE_UINT8(current_direction, OneNANDState),
182         VMSTATE_INT32(cycle, OneNANDState),
183         VMSTATE_INT32(otpmode, OneNANDState),
184         VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
185         VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
186         VMSTATE_INT32(bufaddr, OneNANDState),
187         VMSTATE_INT32(count, OneNANDState),
188         VMSTATE_UINT16(command, OneNANDState),
189         VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
190         VMSTATE_UINT16(status, OneNANDState),
191         VMSTATE_UINT16(intstatus, OneNANDState),
192         VMSTATE_UINT16(wpstatus, OneNANDState),
193         VMSTATE_INT32(secs_cur, OneNANDState),
194         VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
195         VMSTATE_UINT8(ecc.cp, OneNANDState),
196         VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
197         VMSTATE_UINT16(ecc.count, OneNANDState),
198         VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
199             ((64 + 2) << PAGE_SHIFT)),
200         VMSTATE_END_OF_LIST()
201     }
202 };
203 
204 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
205 static void onenand_reset(OneNANDState *s, int cold)
206 {
207     memset(&s->addr, 0, sizeof(s->addr));
208     s->command = 0;
209     s->count = 1;
210     s->bufaddr = 0;
211     s->config[0] = 0x40c0;
212     s->config[1] = 0x0000;
213     onenand_intr_update(s);
214     qemu_irq_raise(s->rdy);
215     s->status = 0x0000;
216     s->intstatus = cold ? 0x8080 : 0x8010;
217     s->unladdr[0] = 0;
218     s->unladdr[1] = 0;
219     s->wpstatus = 0x0002;
220     s->cycle = 0;
221     s->otpmode = 0;
222     s->blk_cur = s->blk;
223     s->current = s->image;
224     s->secs_cur = s->secs;
225 
226     if (cold) {
227         /* Lock the whole flash */
228         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
229 
230         if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
231                                     8 << BDRV_SECTOR_BITS) < 0) {
232             hw_error("%s: Loading the BootRAM failed.\n", __func__);
233         }
234     }
235 }
236 
237 static void onenand_system_reset(DeviceState *dev)
238 {
239     OneNANDState *s = ONE_NAND(dev);
240 
241     onenand_reset(s, 1);
242 }
243 
244 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
245                 void *dest)
246 {
247     assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
248     assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
249     if (s->blk_cur) {
250         return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
251                          secn << BDRV_SECTOR_BITS) < 0;
252     } else if (sec + secn > s->secs_cur) {
253         return 1;
254     }
255 
256     memcpy(dest, s->current + (sec << 9), secn << 9);
257 
258     return 0;
259 }
260 
261 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
262                 void *src)
263 {
264     int result = 0;
265 
266     if (secn > 0) {
267         uint32_t size = secn << BDRV_SECTOR_BITS;
268         uint32_t offset = sec << BDRV_SECTOR_BITS;
269         assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
270         assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
271         const uint8_t *sp = (const uint8_t *)src;
272         uint8_t *dp = 0;
273         if (s->blk_cur) {
274             dp = g_malloc(size);
275             if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
276                 result = 1;
277             }
278         } else {
279             if (sec + secn > s->secs_cur) {
280                 result = 1;
281             } else {
282                 dp = (uint8_t *)s->current + offset;
283             }
284         }
285         if (!result) {
286             uint32_t i;
287             for (i = 0; i < size; i++) {
288                 dp[i] &= sp[i];
289             }
290             if (s->blk_cur) {
291                 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
292             }
293         }
294         if (dp && s->blk_cur) {
295             g_free(dp);
296         }
297     }
298 
299     return result;
300 }
301 
302 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
303                 void *dest)
304 {
305     uint8_t buf[512];
306 
307     if (s->blk_cur) {
308         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
309         if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
310             return 1;
311         }
312         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
313     } else if (sec + secn > s->secs_cur) {
314         return 1;
315     } else {
316         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
317     }
318 
319     return 0;
320 }
321 
322 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
323                 void *src)
324 {
325     int result = 0;
326     if (secn > 0) {
327         const uint8_t *sp = (const uint8_t *)src;
328         uint8_t *dp = 0, *dpp = 0;
329         uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
330         assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
331         if (s->blk_cur) {
332             dp = g_malloc(512);
333             if (!dp
334                 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
335                 result = 1;
336             } else {
337                 dpp = dp + ((sec & 31) << 4);
338             }
339         } else {
340             if (sec + secn > s->secs_cur) {
341                 result = 1;
342             } else {
343                 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
344             }
345         }
346         if (!result) {
347             uint32_t i;
348             for (i = 0; i < (secn << 4); i++) {
349                 dpp[i] &= sp[i];
350             }
351             if (s->blk_cur) {
352                 result = blk_pwrite(s->blk_cur, offset, dp,
353                                     BDRV_SECTOR_SIZE, 0) < 0;
354             }
355         }
356         g_free(dp);
357     }
358     return result;
359 }
360 
361 static inline int onenand_erase(OneNANDState *s, int sec, int num)
362 {
363     uint8_t *blankbuf, *tmpbuf;
364 
365     blankbuf = g_malloc(512);
366     tmpbuf = g_malloc(512);
367     memset(blankbuf, 0xff, 512);
368     for (; num > 0; num--, sec++) {
369         if (s->blk_cur) {
370             int erasesec = s->secs_cur + (sec >> 5);
371             if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
372                            BDRV_SECTOR_SIZE, 0) < 0) {
373                 goto fail;
374             }
375             if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
376                           BDRV_SECTOR_SIZE) < 0) {
377                 goto fail;
378             }
379             memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
380             if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
381                            BDRV_SECTOR_SIZE, 0) < 0) {
382                 goto fail;
383             }
384         } else {
385             if (sec + 1 > s->secs_cur) {
386                 goto fail;
387             }
388             memcpy(s->current + (sec << 9), blankbuf, 512);
389             memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
390                    blankbuf, 1 << 4);
391         }
392     }
393 
394     g_free(tmpbuf);
395     g_free(blankbuf);
396     return 0;
397 
398 fail:
399     g_free(tmpbuf);
400     g_free(blankbuf);
401     return 1;
402 }
403 
404 static void onenand_command(OneNANDState *s)
405 {
406     int b;
407     int sec;
408     void *buf;
409 #define SETADDR(block, page)			\
410     sec = (s->addr[page] & 3) +			\
411             ((((s->addr[page] >> 2) & 0x3f) +	\
412               (((s->addr[block] & 0xfff) |	\
413                 (s->addr[block] >> 15 ?		\
414                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
415 #define SETBUF_M()				\
416     buf = (s->bufaddr & 8) ?			\
417             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
418     buf += (s->bufaddr & 3) << 9;
419 #define SETBUF_S()				\
420     buf = (s->bufaddr & 8) ?			\
421             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
422     buf += (s->bufaddr & 3) << 4;
423 
424     switch (s->command) {
425     case 0x00:	/* Load single/multiple sector data unit into buffer */
426         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
427 
428         SETBUF_M()
429         if (onenand_load_main(s, sec, s->count, buf))
430             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
431 
432 #if 0
433         SETBUF_S()
434         if (onenand_load_spare(s, sec, s->count, buf))
435             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
436 #endif
437 
438         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
439          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
440          * then we need two split the read/write into two chunks.
441          */
442         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
443         break;
444     case 0x13:	/* Load single/multiple spare sector into buffer */
445         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
446 
447         SETBUF_S()
448         if (onenand_load_spare(s, sec, s->count, buf))
449             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
450 
451         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
452          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
453          * then we need two split the read/write into two chunks.
454          */
455         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
456         break;
457     case 0x80:	/* Program single/multiple sector data unit from buffer */
458         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
459 
460         SETBUF_M()
461         if (onenand_prog_main(s, sec, s->count, buf))
462             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
463 
464 #if 0
465         SETBUF_S()
466         if (onenand_prog_spare(s, sec, s->count, buf))
467             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
468 #endif
469 
470         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
471          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
472          * then we need two split the read/write into two chunks.
473          */
474         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
475         break;
476     case 0x1a:	/* Program single/multiple spare area sector from buffer */
477         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
478 
479         SETBUF_S()
480         if (onenand_prog_spare(s, sec, s->count, buf))
481             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
482 
483         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
484          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
485          * then we need two split the read/write into two chunks.
486          */
487         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
488         break;
489     case 0x1b:	/* Copy-back program */
490         SETBUF_S()
491 
492         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
493         if (onenand_load_main(s, sec, s->count, buf))
494             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
495 
496         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
497         if (onenand_prog_main(s, sec, s->count, buf))
498             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
499 
500         /* TODO: spare areas */
501 
502         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
503         break;
504 
505     case 0x23:	/* Unlock NAND array block(s) */
506         s->intstatus |= ONEN_INT;
507 
508         /* XXX the previous (?) area should be locked automatically */
509         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
510             if (b >= s->blocks) {
511                 s->status |= ONEN_ERR_CMD;
512                 break;
513             }
514             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
515                 break;
516 
517             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
518         }
519         break;
520     case 0x27:	/* Unlock All NAND array blocks */
521         s->intstatus |= ONEN_INT;
522 
523         for (b = 0; b < s->blocks; b ++) {
524             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
525                 break;
526 
527             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
528         }
529         break;
530 
531     case 0x2a:	/* Lock NAND array block(s) */
532         s->intstatus |= ONEN_INT;
533 
534         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
535             if (b >= s->blocks) {
536                 s->status |= ONEN_ERR_CMD;
537                 break;
538             }
539             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
540                 break;
541 
542             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
543         }
544         break;
545     case 0x2c:	/* Lock-tight NAND array block(s) */
546         s->intstatus |= ONEN_INT;
547 
548         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
549             if (b >= s->blocks) {
550                 s->status |= ONEN_ERR_CMD;
551                 break;
552             }
553             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
554                 continue;
555 
556             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
557         }
558         break;
559 
560     case 0x71:	/* Erase-Verify-Read */
561         s->intstatus |= ONEN_INT;
562         break;
563     case 0x95:	/* Multi-block erase */
564         qemu_irq_pulse(s->intr);
565         /* Fall through.  */
566     case 0x94:	/* Block erase */
567         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
568                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
569                 << (BLOCK_SHIFT - 9);
570         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
571             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
572 
573         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
574         break;
575     case 0xb0:	/* Erase suspend */
576         break;
577     case 0x30:	/* Erase resume */
578         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
579         break;
580 
581     case 0xf0:	/* Reset NAND Flash core */
582         onenand_reset(s, 0);
583         break;
584     case 0xf3:	/* Reset OneNAND */
585         onenand_reset(s, 0);
586         break;
587 
588     case 0x65:	/* OTP Access */
589         s->intstatus |= ONEN_INT;
590         s->blk_cur = NULL;
591         s->current = s->otp;
592         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
593         s->addr[ONEN_BUF_BLOCK] = 0;
594         s->otpmode = 1;
595         break;
596 
597     default:
598         s->status |= ONEN_ERR_CMD;
599         s->intstatus |= ONEN_INT;
600         qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
601                       s->command);
602     }
603 
604     onenand_intr_update(s);
605 }
606 
607 static uint64_t onenand_read(void *opaque, hwaddr addr,
608                              unsigned size)
609 {
610     OneNANDState *s = (OneNANDState *) opaque;
611     int offset = addr >> s->shift;
612 
613     switch (offset) {
614     case 0x0000 ... 0xbffe:
615         return lduw_le_p(s->boot[0] + addr);
616 
617     case 0xf000:	/* Manufacturer ID */
618         return s->id.man;
619     case 0xf001:	/* Device ID */
620         return s->id.dev;
621     case 0xf002:	/* Version ID */
622         return s->id.ver;
623     /* TODO: get the following values from a real chip!  */
624     case 0xf003:	/* Data Buffer size */
625         return 1 << PAGE_SHIFT;
626     case 0xf004:	/* Boot Buffer size */
627         return 0x200;
628     case 0xf005:	/* Amount of buffers */
629         return 1 | (2 << 8);
630     case 0xf006:	/* Technology */
631         return 0;
632 
633     case 0xf100 ... 0xf107:	/* Start addresses */
634         return s->addr[offset - 0xf100];
635 
636     case 0xf200:	/* Start buffer */
637         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
638 
639     case 0xf220:	/* Command */
640         return s->command;
641     case 0xf221:	/* System Configuration 1 */
642         return s->config[0] & 0xffe0;
643     case 0xf222:	/* System Configuration 2 */
644         return s->config[1];
645 
646     case 0xf240:	/* Controller Status */
647         return s->status;
648     case 0xf241:	/* Interrupt */
649         return s->intstatus;
650     case 0xf24c:	/* Unlock Start Block Address */
651         return s->unladdr[0];
652     case 0xf24d:	/* Unlock End Block Address */
653         return s->unladdr[1];
654     case 0xf24e:	/* Write Protection Status */
655         return s->wpstatus;
656 
657     case 0xff00:	/* ECC Status */
658         return 0x00;
659     case 0xff01:	/* ECC Result of main area data */
660     case 0xff02:	/* ECC Result of spare area data */
661     case 0xff03:	/* ECC Result of main area data */
662     case 0xff04:	/* ECC Result of spare area data */
663         qemu_log_mask(LOG_UNIMP,
664                       "onenand: ECC result registers unimplemented\n");
665         return 0x0000;
666     }
667 
668     qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
669                   offset);
670     return 0;
671 }
672 
673 static void onenand_write(void *opaque, hwaddr addr,
674                           uint64_t value, unsigned size)
675 {
676     OneNANDState *s = (OneNANDState *) opaque;
677     int offset = addr >> s->shift;
678     int sec;
679 
680     switch (offset) {
681     case 0x0000 ... 0x01ff:
682     case 0x8000 ... 0x800f:
683         if (s->cycle) {
684             s->cycle = 0;
685 
686             if (value == 0x0000) {
687                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
688                 onenand_load_main(s, sec,
689                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
690                 s->addr[ONEN_BUF_PAGE] += 4;
691                 s->addr[ONEN_BUF_PAGE] &= 0xff;
692             }
693             break;
694         }
695 
696         switch (value) {
697         case 0x00f0:	/* Reset OneNAND */
698             onenand_reset(s, 0);
699             break;
700 
701         case 0x00e0:	/* Load Data into Buffer */
702             s->cycle = 1;
703             break;
704 
705         case 0x0090:	/* Read Identification Data */
706             memset(s->boot[0], 0, 3 << s->shift);
707             s->boot[0][0 << s->shift] = s->id.man & 0xff;
708             s->boot[0][1 << s->shift] = s->id.dev & 0xff;
709             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
710             break;
711 
712         default:
713             qemu_log_mask(LOG_GUEST_ERROR,
714                           "unknown OneNAND boot command %" PRIx64 "\n",
715                           value);
716         }
717         break;
718 
719     case 0xf100 ... 0xf107:	/* Start addresses */
720         s->addr[offset - 0xf100] = value;
721         break;
722 
723     case 0xf200:	/* Start buffer */
724         s->bufaddr = (value >> 8) & 0xf;
725         if (PAGE_SHIFT == 11)
726             s->count = (value & 3) ?: 4;
727         else if (PAGE_SHIFT == 10)
728             s->count = (value & 1) ?: 2;
729         break;
730 
731     case 0xf220:	/* Command */
732         if (s->intstatus & (1 << 15))
733             break;
734         s->command = value;
735         onenand_command(s);
736         break;
737     case 0xf221:	/* System Configuration 1 */
738         s->config[0] = value;
739         onenand_intr_update(s);
740         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
741         break;
742     case 0xf222:	/* System Configuration 2 */
743         s->config[1] = value;
744         break;
745 
746     case 0xf241:	/* Interrupt */
747         s->intstatus &= value;
748         if ((1 << 15) & ~s->intstatus)
749             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
750                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
751         onenand_intr_update(s);
752         break;
753     case 0xf24c:	/* Unlock Start Block Address */
754         s->unladdr[0] = value & (s->blocks - 1);
755         /* For some reason we have to set the end address to by default
756          * be same as start because the software forgets to write anything
757          * in there.  */
758         s->unladdr[1] = value & (s->blocks - 1);
759         break;
760     case 0xf24d:	/* Unlock End Block Address */
761         s->unladdr[1] = value & (s->blocks - 1);
762         break;
763 
764     default:
765         qemu_log_mask(LOG_GUEST_ERROR,
766                       "write to unknown OneNAND register 0x%x\n",
767                       offset);
768     }
769 }
770 
771 static const MemoryRegionOps onenand_ops = {
772     .read = onenand_read,
773     .write = onenand_write,
774     .endianness = DEVICE_NATIVE_ENDIAN,
775 };
776 
777 static void onenand_realize(DeviceState *dev, Error **errp)
778 {
779     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
780     OneNANDState *s = ONE_NAND(dev);
781     uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
782     void *ram;
783     Error *local_err = NULL;
784 
785     s->base = (hwaddr)-1;
786     s->rdy = NULL;
787     s->blocks = size >> BLOCK_SHIFT;
788     s->secs = size >> 9;
789     s->blockwp = g_malloc(s->blocks);
790     s->density_mask = (s->id.dev & 0x08)
791         ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
792     memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
793                           0x10000 << s->shift);
794     if (!s->blk) {
795         s->image = memset(g_malloc(size + (size >> 5)),
796                           0xff, size + (size >> 5));
797     } else {
798         if (blk_is_read_only(s->blk)) {
799             error_setg(errp, "Can't use a read-only drive");
800             return;
801         }
802         blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
803                      BLK_PERM_ALL, &local_err);
804         if (local_err) {
805             error_propagate(errp, local_err);
806             return;
807         }
808         s->blk_cur = s->blk;
809     }
810     s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
811                     0xff, (64 + 2) << PAGE_SHIFT);
812     memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
813                            0xc000 << s->shift, &error_fatal);
814     vmstate_register_ram_global(&s->ram);
815     ram = memory_region_get_ram_ptr(&s->ram);
816     s->boot[0] = ram + (0x0000 << s->shift);
817     s->boot[1] = ram + (0x8000 << s->shift);
818     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
819     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
820     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
821     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
822     onenand_mem_setup(s);
823     sysbus_init_irq(sbd, &s->intr);
824     sysbus_init_mmio(sbd, &s->container);
825     vmstate_register(VMSTATE_IF(dev),
826                      ((s->shift & 0x7f) << 24)
827                      | ((s->id.man & 0xff) << 16)
828                      | ((s->id.dev & 0xff) << 8)
829                      | (s->id.ver & 0xff),
830                      &vmstate_onenand, s);
831 }
832 
833 static Property onenand_properties[] = {
834     DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
835     DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
836     DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
837     DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
838     DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
839     DEFINE_PROP_END_OF_LIST(),
840 };
841 
842 static void onenand_class_init(ObjectClass *klass, void *data)
843 {
844     DeviceClass *dc = DEVICE_CLASS(klass);
845 
846     dc->realize = onenand_realize;
847     dc->reset = onenand_system_reset;
848     device_class_set_props(dc, onenand_properties);
849 }
850 
851 static const TypeInfo onenand_info = {
852     .name          = TYPE_ONE_NAND,
853     .parent        = TYPE_SYS_BUS_DEVICE,
854     .instance_size = sizeof(OneNANDState),
855     .class_init    = onenand_class_init,
856 };
857 
858 static void onenand_register_types(void)
859 {
860     type_register_static(&onenand_info);
861 }
862 
863 void *onenand_raw_otp(DeviceState *onenand_device)
864 {
865     OneNANDState *s = ONE_NAND(onenand_device);
866 
867     return s->otp;
868 }
869 
870 type_init(onenand_register_types)
871