xref: /openbmc/qemu/hw/block/nand.c (revision ce35e229)
1 /*
2  * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3  * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4  * Samsung Electronic.
5  *
6  * Copyright (c) 2006 Openedhand Ltd.
7  * Written by Andrzej Zaborowski <balrog@zabor.org>
8  *
9  * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10  * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11  * from ST Microelectronics.
12  *
13  * This code is licensed under the GNU GPL v2.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18 
19 #ifndef NAND_IO
20 
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/qdev-properties-system.h"
25 #include "hw/block/flash.h"
26 #include "sysemu/block-backend.h"
27 #include "migration/vmstate.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/module.h"
31 #include "qom/object.h"
32 
33 # define NAND_CMD_READ0		0x00
34 # define NAND_CMD_READ1		0x01
35 # define NAND_CMD_READ2		0x50
36 # define NAND_CMD_LPREAD2	0x30
37 # define NAND_CMD_NOSERIALREAD2	0x35
38 # define NAND_CMD_RANDOMREAD1	0x05
39 # define NAND_CMD_RANDOMREAD2	0xe0
40 # define NAND_CMD_READID	0x90
41 # define NAND_CMD_RESET		0xff
42 # define NAND_CMD_PAGEPROGRAM1	0x80
43 # define NAND_CMD_PAGEPROGRAM2	0x10
44 # define NAND_CMD_CACHEPROGRAM2	0x15
45 # define NAND_CMD_BLOCKERASE1	0x60
46 # define NAND_CMD_BLOCKERASE2	0xd0
47 # define NAND_CMD_READSTATUS	0x70
48 # define NAND_CMD_COPYBACKPRG1	0x85
49 
50 # define NAND_IOSTATUS_ERROR	(1 << 0)
51 # define NAND_IOSTATUS_PLANE0	(1 << 1)
52 # define NAND_IOSTATUS_PLANE1	(1 << 2)
53 # define NAND_IOSTATUS_PLANE2	(1 << 3)
54 # define NAND_IOSTATUS_PLANE3	(1 << 4)
55 # define NAND_IOSTATUS_READY    (1 << 6)
56 # define NAND_IOSTATUS_UNPROTCT	(1 << 7)
57 
58 # define MAX_PAGE		0x800
59 # define MAX_OOB		0x40
60 
61 typedef struct NANDFlashState NANDFlashState;
62 struct NANDFlashState {
63     DeviceState parent_obj;
64 
65     uint8_t manf_id, chip_id;
66     uint8_t buswidth; /* in BYTES */
67     int size, pages;
68     int page_shift, oob_shift, erase_shift, addr_shift;
69     uint8_t *storage;
70     BlockBackend *blk;
71     int mem_oob;
72 
73     uint8_t cle, ale, ce, wp, gnd;
74 
75     uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
76     uint8_t *ioaddr;
77     int iolen;
78 
79     uint32_t cmd;
80     uint64_t addr;
81     int addrlen;
82     int status;
83     int offset;
84 
85     void (*blk_write)(NANDFlashState *s);
86     void (*blk_erase)(NANDFlashState *s);
87     void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
88 
89     uint32_t ioaddr_vmstate;
90 };
91 
92 #define TYPE_NAND "nand"
93 
94 OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
95 
96 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
97 {
98     /* Like memcpy() but we logical-AND the data into the destination */
99     int i;
100     for (i = 0; i < n; i++) {
101         dest[i] &= src[i];
102     }
103 }
104 
105 # define NAND_NO_AUTOINCR	0x00000001
106 # define NAND_BUSWIDTH_16	0x00000002
107 # define NAND_NO_PADDING	0x00000004
108 # define NAND_CACHEPRG		0x00000008
109 # define NAND_COPYBACK		0x00000010
110 # define NAND_IS_AND		0x00000020
111 # define NAND_4PAGE_ARRAY	0x00000040
112 # define NAND_NO_READRDY	0x00000100
113 # define NAND_SAMSUNG_LP	(NAND_NO_PADDING | NAND_COPYBACK)
114 
115 # define NAND_IO
116 
117 # define PAGE(addr)		((addr) >> ADDR_SHIFT)
118 # define PAGE_START(page)	(PAGE(page) * (PAGE_SIZE + OOB_SIZE))
119 # define PAGE_MASK		((1 << ADDR_SHIFT) - 1)
120 # define OOB_SHIFT		(PAGE_SHIFT - 5)
121 # define OOB_SIZE		(1 << OOB_SHIFT)
122 # define SECTOR(addr)		((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
123 # define SECTOR_OFFSET(addr)	((addr) & ((511 >> PAGE_SHIFT) << 8))
124 
125 # define PAGE_SIZE		256
126 # define PAGE_SHIFT		8
127 # define PAGE_SECTORS		1
128 # define ADDR_SHIFT		8
129 # include "nand.c"
130 # define PAGE_SIZE		512
131 # define PAGE_SHIFT		9
132 # define PAGE_SECTORS		1
133 # define ADDR_SHIFT		8
134 # include "nand.c"
135 # define PAGE_SIZE		2048
136 # define PAGE_SHIFT		11
137 # define PAGE_SECTORS		4
138 # define ADDR_SHIFT		16
139 # include "nand.c"
140 
141 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
142 static const struct {
143     int size;
144     int width;
145     int page_shift;
146     int erase_shift;
147     uint32_t options;
148 } nand_flash_ids[0x100] = {
149     [0 ... 0xff] = { 0 },
150 
151     [0x6e] = { 1,	8,	8, 4, 0 },
152     [0x64] = { 2,	8,	8, 4, 0 },
153     [0x6b] = { 4,	8,	9, 4, 0 },
154     [0xe8] = { 1,	8,	8, 4, 0 },
155     [0xec] = { 1,	8,	8, 4, 0 },
156     [0xea] = { 2,	8,	8, 4, 0 },
157     [0xd5] = { 4,	8,	9, 4, 0 },
158     [0xe3] = { 4,	8,	9, 4, 0 },
159     [0xe5] = { 4,	8,	9, 4, 0 },
160     [0xd6] = { 8,	8,	9, 4, 0 },
161 
162     [0x39] = { 8,	8,	9, 4, 0 },
163     [0xe6] = { 8,	8,	9, 4, 0 },
164     [0x49] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
165     [0x59] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
166 
167     [0x33] = { 16,	8,	9, 5, 0 },
168     [0x73] = { 16,	8,	9, 5, 0 },
169     [0x43] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
170     [0x53] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
171 
172     [0x35] = { 32,	8,	9, 5, 0 },
173     [0x75] = { 32,	8,	9, 5, 0 },
174     [0x45] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
175     [0x55] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
176 
177     [0x36] = { 64,	8,	9, 5, 0 },
178     [0x76] = { 64,	8,	9, 5, 0 },
179     [0x46] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
180     [0x56] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
181 
182     [0x78] = { 128,	8,	9, 5, 0 },
183     [0x39] = { 128,	8,	9, 5, 0 },
184     [0x79] = { 128,	8,	9, 5, 0 },
185     [0x72] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
186     [0x49] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
187     [0x74] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
188     [0x59] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
189 
190     [0x71] = { 256,	8,	9, 5, 0 },
191 
192     /*
193      * These are the new chips with large page size. The pagesize and the
194      * erasesize is determined from the extended id bytes
195      */
196 # define LP_OPTIONS	(NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
197 # define LP_OPTIONS16	(LP_OPTIONS | NAND_BUSWIDTH_16)
198 
199     /* 512 Megabit */
200     [0xa2] = { 64,	8,	0, 0, LP_OPTIONS },
201     [0xf2] = { 64,	8,	0, 0, LP_OPTIONS },
202     [0xb2] = { 64,	16,	0, 0, LP_OPTIONS16 },
203     [0xc2] = { 64,	16,	0, 0, LP_OPTIONS16 },
204 
205     /* 1 Gigabit */
206     [0xa1] = { 128,	8,	0, 0, LP_OPTIONS },
207     [0xf1] = { 128,	8,	0, 0, LP_OPTIONS },
208     [0xb1] = { 128,	16,	0, 0, LP_OPTIONS16 },
209     [0xc1] = { 128,	16,	0, 0, LP_OPTIONS16 },
210 
211     /* 2 Gigabit */
212     [0xaa] = { 256,	8,	0, 0, LP_OPTIONS },
213     [0xda] = { 256,	8,	0, 0, LP_OPTIONS },
214     [0xba] = { 256,	16,	0, 0, LP_OPTIONS16 },
215     [0xca] = { 256,	16,	0, 0, LP_OPTIONS16 },
216 
217     /* 4 Gigabit */
218     [0xac] = { 512,	8,	0, 0, LP_OPTIONS },
219     [0xdc] = { 512,	8,	0, 0, LP_OPTIONS },
220     [0xbc] = { 512,	16,	0, 0, LP_OPTIONS16 },
221     [0xcc] = { 512,	16,	0, 0, LP_OPTIONS16 },
222 
223     /* 8 Gigabit */
224     [0xa3] = { 1024,	8,	0, 0, LP_OPTIONS },
225     [0xd3] = { 1024,	8,	0, 0, LP_OPTIONS },
226     [0xb3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
227     [0xc3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
228 
229     /* 16 Gigabit */
230     [0xa5] = { 2048,	8,	0, 0, LP_OPTIONS },
231     [0xd5] = { 2048,	8,	0, 0, LP_OPTIONS },
232     [0xb5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
233     [0xc5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
234 };
235 
236 static void nand_reset(DeviceState *dev)
237 {
238     NANDFlashState *s = NAND(dev);
239     s->cmd = NAND_CMD_READ0;
240     s->addr = 0;
241     s->addrlen = 0;
242     s->iolen = 0;
243     s->offset = 0;
244     s->status &= NAND_IOSTATUS_UNPROTCT;
245     s->status |= NAND_IOSTATUS_READY;
246 }
247 
248 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
249 {
250     s->ioaddr[s->iolen++] = value;
251     for (value = s->buswidth; --value;) {
252         s->ioaddr[s->iolen++] = 0;
253     }
254 }
255 
256 static void nand_command(NANDFlashState *s)
257 {
258     unsigned int offset;
259     switch (s->cmd) {
260     case NAND_CMD_READ0:
261         s->iolen = 0;
262         break;
263 
264     case NAND_CMD_READID:
265         s->ioaddr = s->io;
266         s->iolen = 0;
267         nand_pushio_byte(s, s->manf_id);
268         nand_pushio_byte(s, s->chip_id);
269         nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
270         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
271             /* Page Size, Block Size, Spare Size; bit 6 indicates
272              * 8 vs 16 bit width NAND.
273              */
274             nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
275         } else {
276             nand_pushio_byte(s, 0xc0); /* Multi-plane */
277         }
278         break;
279 
280     case NAND_CMD_RANDOMREAD2:
281     case NAND_CMD_NOSERIALREAD2:
282         if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
283             break;
284         offset = s->addr & ((1 << s->addr_shift) - 1);
285         s->blk_load(s, s->addr, offset);
286         if (s->gnd)
287             s->iolen = (1 << s->page_shift) - offset;
288         else
289             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
290         break;
291 
292     case NAND_CMD_RESET:
293         nand_reset(DEVICE(s));
294         break;
295 
296     case NAND_CMD_PAGEPROGRAM1:
297         s->ioaddr = s->io;
298         s->iolen = 0;
299         break;
300 
301     case NAND_CMD_PAGEPROGRAM2:
302         if (s->wp) {
303             s->blk_write(s);
304         }
305         break;
306 
307     case NAND_CMD_BLOCKERASE1:
308         break;
309 
310     case NAND_CMD_BLOCKERASE2:
311         s->addr &= (1ull << s->addrlen * 8) - 1;
312         s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
313                                                                     16 : 8;
314 
315         if (s->wp) {
316             s->blk_erase(s);
317         }
318         break;
319 
320     case NAND_CMD_READSTATUS:
321         s->ioaddr = s->io;
322         s->iolen = 0;
323         nand_pushio_byte(s, s->status);
324         break;
325 
326     default:
327         printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
328     }
329 }
330 
331 static int nand_pre_save(void *opaque)
332 {
333     NANDFlashState *s = NAND(opaque);
334 
335     s->ioaddr_vmstate = s->ioaddr - s->io;
336 
337     return 0;
338 }
339 
340 static int nand_post_load(void *opaque, int version_id)
341 {
342     NANDFlashState *s = NAND(opaque);
343 
344     if (s->ioaddr_vmstate > sizeof(s->io)) {
345         return -EINVAL;
346     }
347     s->ioaddr = s->io + s->ioaddr_vmstate;
348 
349     return 0;
350 }
351 
352 static const VMStateDescription vmstate_nand = {
353     .name = "nand",
354     .version_id = 1,
355     .minimum_version_id = 1,
356     .pre_save = nand_pre_save,
357     .post_load = nand_post_load,
358     .fields = (VMStateField[]) {
359         VMSTATE_UINT8(cle, NANDFlashState),
360         VMSTATE_UINT8(ale, NANDFlashState),
361         VMSTATE_UINT8(ce, NANDFlashState),
362         VMSTATE_UINT8(wp, NANDFlashState),
363         VMSTATE_UINT8(gnd, NANDFlashState),
364         VMSTATE_BUFFER(io, NANDFlashState),
365         VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
366         VMSTATE_INT32(iolen, NANDFlashState),
367         VMSTATE_UINT32(cmd, NANDFlashState),
368         VMSTATE_UINT64(addr, NANDFlashState),
369         VMSTATE_INT32(addrlen, NANDFlashState),
370         VMSTATE_INT32(status, NANDFlashState),
371         VMSTATE_INT32(offset, NANDFlashState),
372         /* XXX: do we want to save s->storage too? */
373         VMSTATE_END_OF_LIST()
374     }
375 };
376 
377 static void nand_realize(DeviceState *dev, Error **errp)
378 {
379     int pagesize;
380     NANDFlashState *s = NAND(dev);
381     int ret;
382 
383 
384     s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
385     s->size = nand_flash_ids[s->chip_id].size << 20;
386     if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
387         s->page_shift = 11;
388         s->erase_shift = 6;
389     } else {
390         s->page_shift = nand_flash_ids[s->chip_id].page_shift;
391         s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
392     }
393 
394     switch (1 << s->page_shift) {
395     case 256:
396         nand_init_256(s);
397         break;
398     case 512:
399         nand_init_512(s);
400         break;
401     case 2048:
402         nand_init_2048(s);
403         break;
404     default:
405         error_setg(errp, "Unsupported NAND block size %#x",
406                    1 << s->page_shift);
407         return;
408     }
409 
410     pagesize = 1 << s->oob_shift;
411     s->mem_oob = 1;
412     if (s->blk) {
413         if (blk_is_read_only(s->blk)) {
414             error_setg(errp, "Can't use a read-only drive");
415             return;
416         }
417         ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
418                            BLK_PERM_ALL, errp);
419         if (ret < 0) {
420             return;
421         }
422         if (blk_getlength(s->blk) >=
423                 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
424             pagesize = 0;
425             s->mem_oob = 0;
426         }
427     } else {
428         pagesize += 1 << s->page_shift;
429     }
430     if (pagesize) {
431         s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
432                         0xff, s->pages * pagesize);
433     }
434     /* Give s->ioaddr a sane value in case we save state before it is used. */
435     s->ioaddr = s->io;
436 }
437 
438 static Property nand_properties[] = {
439     DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
440     DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
441     DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
442     DEFINE_PROP_END_OF_LIST(),
443 };
444 
445 static void nand_class_init(ObjectClass *klass, void *data)
446 {
447     DeviceClass *dc = DEVICE_CLASS(klass);
448 
449     dc->realize = nand_realize;
450     dc->reset = nand_reset;
451     dc->vmsd = &vmstate_nand;
452     device_class_set_props(dc, nand_properties);
453     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
454 }
455 
456 static const TypeInfo nand_info = {
457     .name          = TYPE_NAND,
458     .parent        = TYPE_DEVICE,
459     .instance_size = sizeof(NANDFlashState),
460     .class_init    = nand_class_init,
461 };
462 
463 static void nand_register_types(void)
464 {
465     type_register_static(&nand_info);
466 }
467 
468 /*
469  * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
470  * outputs are R/B and eight I/O pins.
471  *
472  * CE, WP and R/B are active low.
473  */
474 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
475                   uint8_t ce, uint8_t wp, uint8_t gnd)
476 {
477     NANDFlashState *s = NAND(dev);
478 
479     s->cle = cle;
480     s->ale = ale;
481     s->ce = ce;
482     s->wp = wp;
483     s->gnd = gnd;
484     if (wp) {
485         s->status |= NAND_IOSTATUS_UNPROTCT;
486     } else {
487         s->status &= ~NAND_IOSTATUS_UNPROTCT;
488     }
489 }
490 
491 void nand_getpins(DeviceState *dev, int *rb)
492 {
493     *rb = 1;
494 }
495 
496 void nand_setio(DeviceState *dev, uint32_t value)
497 {
498     int i;
499     NANDFlashState *s = NAND(dev);
500 
501     if (!s->ce && s->cle) {
502         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
503             if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
504                 return;
505             if (value == NAND_CMD_RANDOMREAD1) {
506                 s->addr &= ~((1 << s->addr_shift) - 1);
507                 s->addrlen = 0;
508                 return;
509             }
510         }
511         if (value == NAND_CMD_READ0) {
512             s->offset = 0;
513         } else if (value == NAND_CMD_READ1) {
514             s->offset = 0x100;
515             value = NAND_CMD_READ0;
516         } else if (value == NAND_CMD_READ2) {
517             s->offset = 1 << s->page_shift;
518             value = NAND_CMD_READ0;
519         }
520 
521         s->cmd = value;
522 
523         if (s->cmd == NAND_CMD_READSTATUS ||
524                 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
525                 s->cmd == NAND_CMD_BLOCKERASE1 ||
526                 s->cmd == NAND_CMD_BLOCKERASE2 ||
527                 s->cmd == NAND_CMD_NOSERIALREAD2 ||
528                 s->cmd == NAND_CMD_RANDOMREAD2 ||
529                 s->cmd == NAND_CMD_RESET) {
530             nand_command(s);
531         }
532 
533         if (s->cmd != NAND_CMD_RANDOMREAD2) {
534             s->addrlen = 0;
535         }
536     }
537 
538     if (s->ale) {
539         unsigned int shift = s->addrlen * 8;
540         uint64_t mask = ~(0xffull << shift);
541         uint64_t v = (uint64_t)value << shift;
542 
543         s->addr = (s->addr & mask) | v;
544         s->addrlen ++;
545 
546         switch (s->addrlen) {
547         case 1:
548             if (s->cmd == NAND_CMD_READID) {
549                 nand_command(s);
550             }
551             break;
552         case 2: /* fix cache address as a byte address */
553             s->addr <<= (s->buswidth - 1);
554             break;
555         case 3:
556             if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
557                     (s->cmd == NAND_CMD_READ0 ||
558                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
559                 nand_command(s);
560             }
561             break;
562         case 4:
563             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
564                     nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
565                     (s->cmd == NAND_CMD_READ0 ||
566                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
567                 nand_command(s);
568             }
569             break;
570         case 5:
571             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
572                     nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
573                     (s->cmd == NAND_CMD_READ0 ||
574                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
575                 nand_command(s);
576             }
577             break;
578         default:
579             break;
580         }
581     }
582 
583     if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
584         if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
585             for (i = s->buswidth; i--; value >>= 8) {
586                 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
587             }
588         }
589     } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
590         if ((s->addr & ((1 << s->addr_shift) - 1)) <
591                 (1 << s->page_shift) + (1 << s->oob_shift)) {
592             for (i = s->buswidth; i--; s->addr++, value >>= 8) {
593                 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
594                     (uint8_t) (value & 0xff);
595             }
596         }
597     }
598 }
599 
600 uint32_t nand_getio(DeviceState *dev)
601 {
602     int offset;
603     uint32_t x = 0;
604     NANDFlashState *s = NAND(dev);
605 
606     /* Allow sequential reading */
607     if (!s->iolen && s->cmd == NAND_CMD_READ0) {
608         offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
609         s->offset = 0;
610 
611         s->blk_load(s, s->addr, offset);
612         if (s->gnd)
613             s->iolen = (1 << s->page_shift) - offset;
614         else
615             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
616     }
617 
618     if (s->ce || s->iolen <= 0) {
619         return 0;
620     }
621 
622     for (offset = s->buswidth; offset--;) {
623         x |= s->ioaddr[offset] << (offset << 3);
624     }
625     /* after receiving READ STATUS command all subsequent reads will
626      * return the status register value until another command is issued
627      */
628     if (s->cmd != NAND_CMD_READSTATUS) {
629         s->addr   += s->buswidth;
630         s->ioaddr += s->buswidth;
631         s->iolen  -= s->buswidth;
632     }
633     return x;
634 }
635 
636 uint32_t nand_getbuswidth(DeviceState *dev)
637 {
638     NANDFlashState *s = (NANDFlashState *) dev;
639     return s->buswidth << 3;
640 }
641 
642 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
643 {
644     DeviceState *dev;
645 
646     if (nand_flash_ids[chip_id].size == 0) {
647         hw_error("%s: Unsupported NAND chip ID.\n", __func__);
648     }
649     dev = qdev_new(TYPE_NAND);
650     qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
651     qdev_prop_set_uint8(dev, "chip_id", chip_id);
652     if (blk) {
653         qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
654     }
655 
656     qdev_realize(dev, NULL, &error_fatal);
657     return dev;
658 }
659 
660 type_init(nand_register_types)
661 
662 #else
663 
664 /* Program a single page */
665 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
666 {
667     uint64_t off, page, sector, soff;
668     uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
669     if (PAGE(s->addr) >= s->pages)
670         return;
671 
672     if (!s->blk) {
673         mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
674                         s->offset, s->io, s->iolen);
675     } else if (s->mem_oob) {
676         sector = SECTOR(s->addr);
677         off = (s->addr & PAGE_MASK) + s->offset;
678         soff = SECTOR_OFFSET(s->addr);
679         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
680                       PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
681             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
682             return;
683         }
684 
685         mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
686         if (off + s->iolen > PAGE_SIZE) {
687             page = PAGE(s->addr);
688             mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
689                             MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
690         }
691 
692         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
693                        PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
694             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
695         }
696     } else {
697         off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
698         sector = off >> 9;
699         soff = off & 0x1ff;
700         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
701                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
702             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
703             return;
704         }
705 
706         mem_and(iobuf + soff, s->io, s->iolen);
707 
708         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
709                        (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
710             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
711         }
712     }
713     s->offset = 0;
714 }
715 
716 /* Erase a single block */
717 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
718 {
719     uint64_t i, page, addr;
720     uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
721     addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
722 
723     if (PAGE(addr) >= s->pages) {
724         return;
725     }
726 
727     if (!s->blk) {
728         memset(s->storage + PAGE_START(addr),
729                         0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
730     } else if (s->mem_oob) {
731         memset(s->storage + (PAGE(addr) << OOB_SHIFT),
732                         0xff, OOB_SIZE << s->erase_shift);
733         i = SECTOR(addr);
734         page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
735         for (; i < page; i ++)
736             if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
737                            BDRV_SECTOR_SIZE, 0) < 0) {
738                 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
739             }
740     } else {
741         addr = PAGE_START(addr);
742         page = addr >> 9;
743         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
744                       BDRV_SECTOR_SIZE) < 0) {
745             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
746         }
747         memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
748         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
749                        BDRV_SECTOR_SIZE, 0) < 0) {
750             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
751         }
752 
753         memset(iobuf, 0xff, 0x200);
754         i = (addr & ~0x1ff) + 0x200;
755         for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
756                         i < addr; i += 0x200) {
757             if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
758                 printf("%s: write error in sector %" PRIu64 "\n",
759                        __func__, i >> 9);
760             }
761         }
762 
763         page = i >> 9;
764         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
765                       BDRV_SECTOR_SIZE) < 0) {
766             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
767         }
768         memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
769         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
770                        BDRV_SECTOR_SIZE, 0) < 0) {
771             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
772         }
773     }
774 }
775 
776 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
777                 uint64_t addr, int offset)
778 {
779     if (PAGE(addr) >= s->pages) {
780         return;
781     }
782 
783     if (s->blk) {
784         if (s->mem_oob) {
785             if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
786                           PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
787                 printf("%s: read error in sector %" PRIu64 "\n",
788                                 __func__, SECTOR(addr));
789             }
790             memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
791                             s->storage + (PAGE(s->addr) << OOB_SHIFT),
792                             OOB_SIZE);
793             s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
794         } else {
795             if (blk_pread(s->blk, PAGE_START(addr), s->io,
796                           (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
797                 printf("%s: read error in sector %" PRIu64 "\n",
798                                 __func__, PAGE_START(addr) >> 9);
799             }
800             s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
801         }
802     } else {
803         memcpy(s->io, s->storage + PAGE_START(s->addr) +
804                         offset, PAGE_SIZE + OOB_SIZE - offset);
805         s->ioaddr = s->io;
806     }
807 }
808 
809 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
810 {
811     s->oob_shift = PAGE_SHIFT - 5;
812     s->pages = s->size >> PAGE_SHIFT;
813     s->addr_shift = ADDR_SHIFT;
814 
815     s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
816     s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
817     s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
818 }
819 
820 # undef PAGE_SIZE
821 # undef PAGE_SHIFT
822 # undef PAGE_SECTORS
823 # undef ADDR_SHIFT
824 #endif	/* NAND_IO */
825