xref: /openbmc/qemu/hw/block/nand.c (revision c39f95dc)
1 /*
2  * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3  * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4  * Samsung Electronic.
5  *
6  * Copyright (c) 2006 Openedhand Ltd.
7  * Written by Andrzej Zaborowski <balrog@zabor.org>
8  *
9  * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10  * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11  * from ST Microelectronics.
12  *
13  * This code is licensed under the GNU GPL v2.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18 
19 #ifndef NAND_IO
20 
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/block/flash.h"
24 #include "sysemu/block-backend.h"
25 #include "hw/qdev.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 
29 # define NAND_CMD_READ0		0x00
30 # define NAND_CMD_READ1		0x01
31 # define NAND_CMD_READ2		0x50
32 # define NAND_CMD_LPREAD2	0x30
33 # define NAND_CMD_NOSERIALREAD2	0x35
34 # define NAND_CMD_RANDOMREAD1	0x05
35 # define NAND_CMD_RANDOMREAD2	0xe0
36 # define NAND_CMD_READID	0x90
37 # define NAND_CMD_RESET		0xff
38 # define NAND_CMD_PAGEPROGRAM1	0x80
39 # define NAND_CMD_PAGEPROGRAM2	0x10
40 # define NAND_CMD_CACHEPROGRAM2	0x15
41 # define NAND_CMD_BLOCKERASE1	0x60
42 # define NAND_CMD_BLOCKERASE2	0xd0
43 # define NAND_CMD_READSTATUS	0x70
44 # define NAND_CMD_COPYBACKPRG1	0x85
45 
46 # define NAND_IOSTATUS_ERROR	(1 << 0)
47 # define NAND_IOSTATUS_PLANE0	(1 << 1)
48 # define NAND_IOSTATUS_PLANE1	(1 << 2)
49 # define NAND_IOSTATUS_PLANE2	(1 << 3)
50 # define NAND_IOSTATUS_PLANE3	(1 << 4)
51 # define NAND_IOSTATUS_READY    (1 << 6)
52 # define NAND_IOSTATUS_UNPROTCT	(1 << 7)
53 
54 # define MAX_PAGE		0x800
55 # define MAX_OOB		0x40
56 
57 typedef struct NANDFlashState NANDFlashState;
58 struct NANDFlashState {
59     DeviceState parent_obj;
60 
61     uint8_t manf_id, chip_id;
62     uint8_t buswidth; /* in BYTES */
63     int size, pages;
64     int page_shift, oob_shift, erase_shift, addr_shift;
65     uint8_t *storage;
66     BlockBackend *blk;
67     int mem_oob;
68 
69     uint8_t cle, ale, ce, wp, gnd;
70 
71     uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
72     uint8_t *ioaddr;
73     int iolen;
74 
75     uint32_t cmd;
76     uint64_t addr;
77     int addrlen;
78     int status;
79     int offset;
80 
81     void (*blk_write)(NANDFlashState *s);
82     void (*blk_erase)(NANDFlashState *s);
83     void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
84 
85     uint32_t ioaddr_vmstate;
86 };
87 
88 #define TYPE_NAND "nand"
89 
90 #define NAND(obj) \
91     OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
92 
93 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
94 {
95     /* Like memcpy() but we logical-AND the data into the destination */
96     int i;
97     for (i = 0; i < n; i++) {
98         dest[i] &= src[i];
99     }
100 }
101 
102 # define NAND_NO_AUTOINCR	0x00000001
103 # define NAND_BUSWIDTH_16	0x00000002
104 # define NAND_NO_PADDING	0x00000004
105 # define NAND_CACHEPRG		0x00000008
106 # define NAND_COPYBACK		0x00000010
107 # define NAND_IS_AND		0x00000020
108 # define NAND_4PAGE_ARRAY	0x00000040
109 # define NAND_NO_READRDY	0x00000100
110 # define NAND_SAMSUNG_LP	(NAND_NO_PADDING | NAND_COPYBACK)
111 
112 # define NAND_IO
113 
114 # define PAGE(addr)		((addr) >> ADDR_SHIFT)
115 # define PAGE_START(page)	(PAGE(page) * (PAGE_SIZE + OOB_SIZE))
116 # define PAGE_MASK		((1 << ADDR_SHIFT) - 1)
117 # define OOB_SHIFT		(PAGE_SHIFT - 5)
118 # define OOB_SIZE		(1 << OOB_SHIFT)
119 # define SECTOR(addr)		((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
120 # define SECTOR_OFFSET(addr)	((addr) & ((511 >> PAGE_SHIFT) << 8))
121 
122 # define PAGE_SIZE		256
123 # define PAGE_SHIFT		8
124 # define PAGE_SECTORS		1
125 # define ADDR_SHIFT		8
126 # include "nand.c"
127 # define PAGE_SIZE		512
128 # define PAGE_SHIFT		9
129 # define PAGE_SECTORS		1
130 # define ADDR_SHIFT		8
131 # include "nand.c"
132 # define PAGE_SIZE		2048
133 # define PAGE_SHIFT		11
134 # define PAGE_SECTORS		4
135 # define ADDR_SHIFT		16
136 # include "nand.c"
137 
138 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
139 static const struct {
140     int size;
141     int width;
142     int page_shift;
143     int erase_shift;
144     uint32_t options;
145 } nand_flash_ids[0x100] = {
146     [0 ... 0xff] = { 0 },
147 
148     [0x6e] = { 1,	8,	8, 4, 0 },
149     [0x64] = { 2,	8,	8, 4, 0 },
150     [0x6b] = { 4,	8,	9, 4, 0 },
151     [0xe8] = { 1,	8,	8, 4, 0 },
152     [0xec] = { 1,	8,	8, 4, 0 },
153     [0xea] = { 2,	8,	8, 4, 0 },
154     [0xd5] = { 4,	8,	9, 4, 0 },
155     [0xe3] = { 4,	8,	9, 4, 0 },
156     [0xe5] = { 4,	8,	9, 4, 0 },
157     [0xd6] = { 8,	8,	9, 4, 0 },
158 
159     [0x39] = { 8,	8,	9, 4, 0 },
160     [0xe6] = { 8,	8,	9, 4, 0 },
161     [0x49] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
162     [0x59] = { 8,	16,	9, 4, NAND_BUSWIDTH_16 },
163 
164     [0x33] = { 16,	8,	9, 5, 0 },
165     [0x73] = { 16,	8,	9, 5, 0 },
166     [0x43] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
167     [0x53] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
168 
169     [0x35] = { 32,	8,	9, 5, 0 },
170     [0x75] = { 32,	8,	9, 5, 0 },
171     [0x45] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
172     [0x55] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
173 
174     [0x36] = { 64,	8,	9, 5, 0 },
175     [0x76] = { 64,	8,	9, 5, 0 },
176     [0x46] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
177     [0x56] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
178 
179     [0x78] = { 128,	8,	9, 5, 0 },
180     [0x39] = { 128,	8,	9, 5, 0 },
181     [0x79] = { 128,	8,	9, 5, 0 },
182     [0x72] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
183     [0x49] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
184     [0x74] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
185     [0x59] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
186 
187     [0x71] = { 256,	8,	9, 5, 0 },
188 
189     /*
190      * These are the new chips with large page size. The pagesize and the
191      * erasesize is determined from the extended id bytes
192      */
193 # define LP_OPTIONS	(NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
194 # define LP_OPTIONS16	(LP_OPTIONS | NAND_BUSWIDTH_16)
195 
196     /* 512 Megabit */
197     [0xa2] = { 64,	8,	0, 0, LP_OPTIONS },
198     [0xf2] = { 64,	8,	0, 0, LP_OPTIONS },
199     [0xb2] = { 64,	16,	0, 0, LP_OPTIONS16 },
200     [0xc2] = { 64,	16,	0, 0, LP_OPTIONS16 },
201 
202     /* 1 Gigabit */
203     [0xa1] = { 128,	8,	0, 0, LP_OPTIONS },
204     [0xf1] = { 128,	8,	0, 0, LP_OPTIONS },
205     [0xb1] = { 128,	16,	0, 0, LP_OPTIONS16 },
206     [0xc1] = { 128,	16,	0, 0, LP_OPTIONS16 },
207 
208     /* 2 Gigabit */
209     [0xaa] = { 256,	8,	0, 0, LP_OPTIONS },
210     [0xda] = { 256,	8,	0, 0, LP_OPTIONS },
211     [0xba] = { 256,	16,	0, 0, LP_OPTIONS16 },
212     [0xca] = { 256,	16,	0, 0, LP_OPTIONS16 },
213 
214     /* 4 Gigabit */
215     [0xac] = { 512,	8,	0, 0, LP_OPTIONS },
216     [0xdc] = { 512,	8,	0, 0, LP_OPTIONS },
217     [0xbc] = { 512,	16,	0, 0, LP_OPTIONS16 },
218     [0xcc] = { 512,	16,	0, 0, LP_OPTIONS16 },
219 
220     /* 8 Gigabit */
221     [0xa3] = { 1024,	8,	0, 0, LP_OPTIONS },
222     [0xd3] = { 1024,	8,	0, 0, LP_OPTIONS },
223     [0xb3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
224     [0xc3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
225 
226     /* 16 Gigabit */
227     [0xa5] = { 2048,	8,	0, 0, LP_OPTIONS },
228     [0xd5] = { 2048,	8,	0, 0, LP_OPTIONS },
229     [0xb5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
230     [0xc5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
231 };
232 
233 static void nand_reset(DeviceState *dev)
234 {
235     NANDFlashState *s = NAND(dev);
236     s->cmd = NAND_CMD_READ0;
237     s->addr = 0;
238     s->addrlen = 0;
239     s->iolen = 0;
240     s->offset = 0;
241     s->status &= NAND_IOSTATUS_UNPROTCT;
242     s->status |= NAND_IOSTATUS_READY;
243 }
244 
245 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
246 {
247     s->ioaddr[s->iolen++] = value;
248     for (value = s->buswidth; --value;) {
249         s->ioaddr[s->iolen++] = 0;
250     }
251 }
252 
253 static void nand_command(NANDFlashState *s)
254 {
255     unsigned int offset;
256     switch (s->cmd) {
257     case NAND_CMD_READ0:
258         s->iolen = 0;
259         break;
260 
261     case NAND_CMD_READID:
262         s->ioaddr = s->io;
263         s->iolen = 0;
264         nand_pushio_byte(s, s->manf_id);
265         nand_pushio_byte(s, s->chip_id);
266         nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
267         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
268             /* Page Size, Block Size, Spare Size; bit 6 indicates
269              * 8 vs 16 bit width NAND.
270              */
271             nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
272         } else {
273             nand_pushio_byte(s, 0xc0); /* Multi-plane */
274         }
275         break;
276 
277     case NAND_CMD_RANDOMREAD2:
278     case NAND_CMD_NOSERIALREAD2:
279         if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
280             break;
281         offset = s->addr & ((1 << s->addr_shift) - 1);
282         s->blk_load(s, s->addr, offset);
283         if (s->gnd)
284             s->iolen = (1 << s->page_shift) - offset;
285         else
286             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
287         break;
288 
289     case NAND_CMD_RESET:
290         nand_reset(DEVICE(s));
291         break;
292 
293     case NAND_CMD_PAGEPROGRAM1:
294         s->ioaddr = s->io;
295         s->iolen = 0;
296         break;
297 
298     case NAND_CMD_PAGEPROGRAM2:
299         if (s->wp) {
300             s->blk_write(s);
301         }
302         break;
303 
304     case NAND_CMD_BLOCKERASE1:
305         break;
306 
307     case NAND_CMD_BLOCKERASE2:
308         s->addr &= (1ull << s->addrlen * 8) - 1;
309         s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
310                                                                     16 : 8;
311 
312         if (s->wp) {
313             s->blk_erase(s);
314         }
315         break;
316 
317     case NAND_CMD_READSTATUS:
318         s->ioaddr = s->io;
319         s->iolen = 0;
320         nand_pushio_byte(s, s->status);
321         break;
322 
323     default:
324         printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
325     }
326 }
327 
328 static int nand_pre_save(void *opaque)
329 {
330     NANDFlashState *s = NAND(opaque);
331 
332     s->ioaddr_vmstate = s->ioaddr - s->io;
333 
334     return 0;
335 }
336 
337 static int nand_post_load(void *opaque, int version_id)
338 {
339     NANDFlashState *s = NAND(opaque);
340 
341     if (s->ioaddr_vmstate > sizeof(s->io)) {
342         return -EINVAL;
343     }
344     s->ioaddr = s->io + s->ioaddr_vmstate;
345 
346     return 0;
347 }
348 
349 static const VMStateDescription vmstate_nand = {
350     .name = "nand",
351     .version_id = 1,
352     .minimum_version_id = 1,
353     .pre_save = nand_pre_save,
354     .post_load = nand_post_load,
355     .fields = (VMStateField[]) {
356         VMSTATE_UINT8(cle, NANDFlashState),
357         VMSTATE_UINT8(ale, NANDFlashState),
358         VMSTATE_UINT8(ce, NANDFlashState),
359         VMSTATE_UINT8(wp, NANDFlashState),
360         VMSTATE_UINT8(gnd, NANDFlashState),
361         VMSTATE_BUFFER(io, NANDFlashState),
362         VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
363         VMSTATE_INT32(iolen, NANDFlashState),
364         VMSTATE_UINT32(cmd, NANDFlashState),
365         VMSTATE_UINT64(addr, NANDFlashState),
366         VMSTATE_INT32(addrlen, NANDFlashState),
367         VMSTATE_INT32(status, NANDFlashState),
368         VMSTATE_INT32(offset, NANDFlashState),
369         /* XXX: do we want to save s->storage too? */
370         VMSTATE_END_OF_LIST()
371     }
372 };
373 
374 static void nand_realize(DeviceState *dev, Error **errp)
375 {
376     int pagesize;
377     NANDFlashState *s = NAND(dev);
378     int ret;
379 
380 
381     s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
382     s->size = nand_flash_ids[s->chip_id].size << 20;
383     if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
384         s->page_shift = 11;
385         s->erase_shift = 6;
386     } else {
387         s->page_shift = nand_flash_ids[s->chip_id].page_shift;
388         s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
389     }
390 
391     switch (1 << s->page_shift) {
392     case 256:
393         nand_init_256(s);
394         break;
395     case 512:
396         nand_init_512(s);
397         break;
398     case 2048:
399         nand_init_2048(s);
400         break;
401     default:
402         error_setg(errp, "Unsupported NAND block size %#x",
403                    1 << s->page_shift);
404         return;
405     }
406 
407     pagesize = 1 << s->oob_shift;
408     s->mem_oob = 1;
409     if (s->blk) {
410         if (blk_is_read_only(s->blk)) {
411             error_setg(errp, "Can't use a read-only drive");
412             return;
413         }
414         ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
415                            BLK_PERM_ALL, errp);
416         if (ret < 0) {
417             return;
418         }
419         if (blk_getlength(s->blk) >=
420                 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
421             pagesize = 0;
422             s->mem_oob = 0;
423         }
424     } else {
425         pagesize += 1 << s->page_shift;
426     }
427     if (pagesize) {
428         s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
429                         0xff, s->pages * pagesize);
430     }
431     /* Give s->ioaddr a sane value in case we save state before it is used. */
432     s->ioaddr = s->io;
433 }
434 
435 static Property nand_properties[] = {
436     DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
437     DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
438     DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
439     DEFINE_PROP_END_OF_LIST(),
440 };
441 
442 static void nand_class_init(ObjectClass *klass, void *data)
443 {
444     DeviceClass *dc = DEVICE_CLASS(klass);
445 
446     dc->realize = nand_realize;
447     dc->reset = nand_reset;
448     dc->vmsd = &vmstate_nand;
449     dc->props = nand_properties;
450 }
451 
452 static const TypeInfo nand_info = {
453     .name          = TYPE_NAND,
454     .parent        = TYPE_DEVICE,
455     .instance_size = sizeof(NANDFlashState),
456     .class_init    = nand_class_init,
457 };
458 
459 static void nand_register_types(void)
460 {
461     type_register_static(&nand_info);
462 }
463 
464 /*
465  * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
466  * outputs are R/B and eight I/O pins.
467  *
468  * CE, WP and R/B are active low.
469  */
470 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
471                   uint8_t ce, uint8_t wp, uint8_t gnd)
472 {
473     NANDFlashState *s = NAND(dev);
474 
475     s->cle = cle;
476     s->ale = ale;
477     s->ce = ce;
478     s->wp = wp;
479     s->gnd = gnd;
480     if (wp) {
481         s->status |= NAND_IOSTATUS_UNPROTCT;
482     } else {
483         s->status &= ~NAND_IOSTATUS_UNPROTCT;
484     }
485 }
486 
487 void nand_getpins(DeviceState *dev, int *rb)
488 {
489     *rb = 1;
490 }
491 
492 void nand_setio(DeviceState *dev, uint32_t value)
493 {
494     int i;
495     NANDFlashState *s = NAND(dev);
496 
497     if (!s->ce && s->cle) {
498         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
499             if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
500                 return;
501             if (value == NAND_CMD_RANDOMREAD1) {
502                 s->addr &= ~((1 << s->addr_shift) - 1);
503                 s->addrlen = 0;
504                 return;
505             }
506         }
507         if (value == NAND_CMD_READ0) {
508             s->offset = 0;
509         } else if (value == NAND_CMD_READ1) {
510             s->offset = 0x100;
511             value = NAND_CMD_READ0;
512         } else if (value == NAND_CMD_READ2) {
513             s->offset = 1 << s->page_shift;
514             value = NAND_CMD_READ0;
515         }
516 
517         s->cmd = value;
518 
519         if (s->cmd == NAND_CMD_READSTATUS ||
520                 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
521                 s->cmd == NAND_CMD_BLOCKERASE1 ||
522                 s->cmd == NAND_CMD_BLOCKERASE2 ||
523                 s->cmd == NAND_CMD_NOSERIALREAD2 ||
524                 s->cmd == NAND_CMD_RANDOMREAD2 ||
525                 s->cmd == NAND_CMD_RESET) {
526             nand_command(s);
527         }
528 
529         if (s->cmd != NAND_CMD_RANDOMREAD2) {
530             s->addrlen = 0;
531         }
532     }
533 
534     if (s->ale) {
535         unsigned int shift = s->addrlen * 8;
536         uint64_t mask = ~(0xffull << shift);
537         uint64_t v = (uint64_t)value << shift;
538 
539         s->addr = (s->addr & mask) | v;
540         s->addrlen ++;
541 
542         switch (s->addrlen) {
543         case 1:
544             if (s->cmd == NAND_CMD_READID) {
545                 nand_command(s);
546             }
547             break;
548         case 2: /* fix cache address as a byte address */
549             s->addr <<= (s->buswidth - 1);
550             break;
551         case 3:
552             if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
553                     (s->cmd == NAND_CMD_READ0 ||
554                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
555                 nand_command(s);
556             }
557             break;
558         case 4:
559             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
560                     nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
561                     (s->cmd == NAND_CMD_READ0 ||
562                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
563                 nand_command(s);
564             }
565             break;
566         case 5:
567             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
568                     nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
569                     (s->cmd == NAND_CMD_READ0 ||
570                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
571                 nand_command(s);
572             }
573             break;
574         default:
575             break;
576         }
577     }
578 
579     if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
580         if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
581             for (i = s->buswidth; i--; value >>= 8) {
582                 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
583             }
584         }
585     } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
586         if ((s->addr & ((1 << s->addr_shift) - 1)) <
587                 (1 << s->page_shift) + (1 << s->oob_shift)) {
588             for (i = s->buswidth; i--; s->addr++, value >>= 8) {
589                 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
590                     (uint8_t) (value & 0xff);
591             }
592         }
593     }
594 }
595 
596 uint32_t nand_getio(DeviceState *dev)
597 {
598     int offset;
599     uint32_t x = 0;
600     NANDFlashState *s = NAND(dev);
601 
602     /* Allow sequential reading */
603     if (!s->iolen && s->cmd == NAND_CMD_READ0) {
604         offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
605         s->offset = 0;
606 
607         s->blk_load(s, s->addr, offset);
608         if (s->gnd)
609             s->iolen = (1 << s->page_shift) - offset;
610         else
611             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
612     }
613 
614     if (s->ce || s->iolen <= 0) {
615         return 0;
616     }
617 
618     for (offset = s->buswidth; offset--;) {
619         x |= s->ioaddr[offset] << (offset << 3);
620     }
621     /* after receiving READ STATUS command all subsequent reads will
622      * return the status register value until another command is issued
623      */
624     if (s->cmd != NAND_CMD_READSTATUS) {
625         s->addr   += s->buswidth;
626         s->ioaddr += s->buswidth;
627         s->iolen  -= s->buswidth;
628     }
629     return x;
630 }
631 
632 uint32_t nand_getbuswidth(DeviceState *dev)
633 {
634     NANDFlashState *s = (NANDFlashState *) dev;
635     return s->buswidth << 3;
636 }
637 
638 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
639 {
640     DeviceState *dev;
641 
642     if (nand_flash_ids[chip_id].size == 0) {
643         hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
644     }
645     dev = DEVICE(object_new(TYPE_NAND));
646     qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
647     qdev_prop_set_uint8(dev, "chip_id", chip_id);
648     if (blk) {
649         qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
650     }
651 
652     qdev_init_nofail(dev);
653     return dev;
654 }
655 
656 type_init(nand_register_types)
657 
658 #else
659 
660 /* Program a single page */
661 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
662 {
663     uint64_t off, page, sector, soff;
664     uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
665     if (PAGE(s->addr) >= s->pages)
666         return;
667 
668     if (!s->blk) {
669         mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
670                         s->offset, s->io, s->iolen);
671     } else if (s->mem_oob) {
672         sector = SECTOR(s->addr);
673         off = (s->addr & PAGE_MASK) + s->offset;
674         soff = SECTOR_OFFSET(s->addr);
675         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
676                       PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
677             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
678             return;
679         }
680 
681         mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
682         if (off + s->iolen > PAGE_SIZE) {
683             page = PAGE(s->addr);
684             mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
685                             MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
686         }
687 
688         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
689                        PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
690             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
691         }
692     } else {
693         off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
694         sector = off >> 9;
695         soff = off & 0x1ff;
696         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
697                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
698             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
699             return;
700         }
701 
702         mem_and(iobuf + soff, s->io, s->iolen);
703 
704         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
705                        (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
706             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
707         }
708     }
709     s->offset = 0;
710 }
711 
712 /* Erase a single block */
713 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
714 {
715     uint64_t i, page, addr;
716     uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
717     addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
718 
719     if (PAGE(addr) >= s->pages) {
720         return;
721     }
722 
723     if (!s->blk) {
724         memset(s->storage + PAGE_START(addr),
725                         0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
726     } else if (s->mem_oob) {
727         memset(s->storage + (PAGE(addr) << OOB_SHIFT),
728                         0xff, OOB_SIZE << s->erase_shift);
729         i = SECTOR(addr);
730         page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
731         for (; i < page; i ++)
732             if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
733                            BDRV_SECTOR_SIZE, 0) < 0) {
734                 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
735             }
736     } else {
737         addr = PAGE_START(addr);
738         page = addr >> 9;
739         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
740                       BDRV_SECTOR_SIZE) < 0) {
741             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
742         }
743         memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
744         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
745                        BDRV_SECTOR_SIZE, 0) < 0) {
746             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
747         }
748 
749         memset(iobuf, 0xff, 0x200);
750         i = (addr & ~0x1ff) + 0x200;
751         for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
752                         i < addr; i += 0x200) {
753             if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
754                 printf("%s: write error in sector %" PRIu64 "\n",
755                        __func__, i >> 9);
756             }
757         }
758 
759         page = i >> 9;
760         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
761                       BDRV_SECTOR_SIZE) < 0) {
762             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
763         }
764         memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
765         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
766                        BDRV_SECTOR_SIZE, 0) < 0) {
767             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
768         }
769     }
770 }
771 
772 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
773                 uint64_t addr, int offset)
774 {
775     if (PAGE(addr) >= s->pages) {
776         return;
777     }
778 
779     if (s->blk) {
780         if (s->mem_oob) {
781             if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
782                           PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
783                 printf("%s: read error in sector %" PRIu64 "\n",
784                                 __func__, SECTOR(addr));
785             }
786             memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
787                             s->storage + (PAGE(s->addr) << OOB_SHIFT),
788                             OOB_SIZE);
789             s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
790         } else {
791             if (blk_pread(s->blk, PAGE_START(addr), s->io,
792                           (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
793                 printf("%s: read error in sector %" PRIu64 "\n",
794                                 __func__, PAGE_START(addr) >> 9);
795             }
796             s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
797         }
798     } else {
799         memcpy(s->io, s->storage + PAGE_START(s->addr) +
800                         offset, PAGE_SIZE + OOB_SIZE - offset);
801         s->ioaddr = s->io;
802     }
803 }
804 
805 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
806 {
807     s->oob_shift = PAGE_SHIFT - 5;
808     s->pages = s->size >> PAGE_SHIFT;
809     s->addr_shift = ADDR_SHIFT;
810 
811     s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
812     s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
813     s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
814 }
815 
816 # undef PAGE_SIZE
817 # undef PAGE_SHIFT
818 # undef PAGE_SECTORS
819 # undef ADDR_SHIFT
820 #endif	/* NAND_IO */
821