1 /* 2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash 3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from 4 * Samsung Electronic. 5 * 6 * Copyright (c) 2006 Openedhand Ltd. 7 * Written by Andrzej Zaborowski <balrog@zabor.org> 8 * 9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16" 10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet 11 * from ST Microelectronics. 12 * 13 * This code is licensed under the GNU GPL v2. 14 * 15 * Contributions after 2012-01-13 are licensed under the terms of the 16 * GNU GPL, version 2 or (at your option) any later version. 17 */ 18 19 #ifndef NAND_IO 20 21 # include "hw/hw.h" 22 # include "hw/block/flash.h" 23 # include "sysemu/blockdev.h" 24 #include "hw/qdev.h" 25 #include "qemu/error-report.h" 26 27 # define NAND_CMD_READ0 0x00 28 # define NAND_CMD_READ1 0x01 29 # define NAND_CMD_READ2 0x50 30 # define NAND_CMD_LPREAD2 0x30 31 # define NAND_CMD_NOSERIALREAD2 0x35 32 # define NAND_CMD_RANDOMREAD1 0x05 33 # define NAND_CMD_RANDOMREAD2 0xe0 34 # define NAND_CMD_READID 0x90 35 # define NAND_CMD_RESET 0xff 36 # define NAND_CMD_PAGEPROGRAM1 0x80 37 # define NAND_CMD_PAGEPROGRAM2 0x10 38 # define NAND_CMD_CACHEPROGRAM2 0x15 39 # define NAND_CMD_BLOCKERASE1 0x60 40 # define NAND_CMD_BLOCKERASE2 0xd0 41 # define NAND_CMD_READSTATUS 0x70 42 # define NAND_CMD_COPYBACKPRG1 0x85 43 44 # define NAND_IOSTATUS_ERROR (1 << 0) 45 # define NAND_IOSTATUS_PLANE0 (1 << 1) 46 # define NAND_IOSTATUS_PLANE1 (1 << 2) 47 # define NAND_IOSTATUS_PLANE2 (1 << 3) 48 # define NAND_IOSTATUS_PLANE3 (1 << 4) 49 # define NAND_IOSTATUS_READY (1 << 6) 50 # define NAND_IOSTATUS_UNPROTCT (1 << 7) 51 52 # define MAX_PAGE 0x800 53 # define MAX_OOB 0x40 54 55 typedef struct NANDFlashState NANDFlashState; 56 struct NANDFlashState { 57 DeviceState parent_obj; 58 59 uint8_t manf_id, chip_id; 60 uint8_t buswidth; /* in BYTES */ 61 int size, pages; 62 int page_shift, oob_shift, erase_shift, addr_shift; 63 uint8_t *storage; 64 BlockDriverState *bdrv; 65 int mem_oob; 66 67 uint8_t cle, ale, ce, wp, gnd; 68 69 uint8_t io[MAX_PAGE + MAX_OOB + 0x400]; 70 uint8_t *ioaddr; 71 int iolen; 72 73 uint32_t cmd; 74 uint64_t addr; 75 int addrlen; 76 int status; 77 int offset; 78 79 void (*blk_write)(NANDFlashState *s); 80 void (*blk_erase)(NANDFlashState *s); 81 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset); 82 83 uint32_t ioaddr_vmstate; 84 }; 85 86 #define TYPE_NAND "nand" 87 88 #define NAND(obj) \ 89 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND) 90 91 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n) 92 { 93 /* Like memcpy() but we logical-AND the data into the destination */ 94 int i; 95 for (i = 0; i < n; i++) { 96 dest[i] &= src[i]; 97 } 98 } 99 100 # define NAND_NO_AUTOINCR 0x00000001 101 # define NAND_BUSWIDTH_16 0x00000002 102 # define NAND_NO_PADDING 0x00000004 103 # define NAND_CACHEPRG 0x00000008 104 # define NAND_COPYBACK 0x00000010 105 # define NAND_IS_AND 0x00000020 106 # define NAND_4PAGE_ARRAY 0x00000040 107 # define NAND_NO_READRDY 0x00000100 108 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK) 109 110 # define NAND_IO 111 112 # define PAGE(addr) ((addr) >> ADDR_SHIFT) 113 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE)) 114 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1) 115 # define OOB_SHIFT (PAGE_SHIFT - 5) 116 # define OOB_SIZE (1 << OOB_SHIFT) 117 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT)) 118 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8)) 119 120 # define PAGE_SIZE 256 121 # define PAGE_SHIFT 8 122 # define PAGE_SECTORS 1 123 # define ADDR_SHIFT 8 124 # include "nand.c" 125 # define PAGE_SIZE 512 126 # define PAGE_SHIFT 9 127 # define PAGE_SECTORS 1 128 # define ADDR_SHIFT 8 129 # include "nand.c" 130 # define PAGE_SIZE 2048 131 # define PAGE_SHIFT 11 132 # define PAGE_SECTORS 4 133 # define ADDR_SHIFT 16 134 # include "nand.c" 135 136 /* Information based on Linux drivers/mtd/nand/nand_ids.c */ 137 static const struct { 138 int size; 139 int width; 140 int page_shift; 141 int erase_shift; 142 uint32_t options; 143 } nand_flash_ids[0x100] = { 144 [0 ... 0xff] = { 0 }, 145 146 [0x6e] = { 1, 8, 8, 4, 0 }, 147 [0x64] = { 2, 8, 8, 4, 0 }, 148 [0x6b] = { 4, 8, 9, 4, 0 }, 149 [0xe8] = { 1, 8, 8, 4, 0 }, 150 [0xec] = { 1, 8, 8, 4, 0 }, 151 [0xea] = { 2, 8, 8, 4, 0 }, 152 [0xd5] = { 4, 8, 9, 4, 0 }, 153 [0xe3] = { 4, 8, 9, 4, 0 }, 154 [0xe5] = { 4, 8, 9, 4, 0 }, 155 [0xd6] = { 8, 8, 9, 4, 0 }, 156 157 [0x39] = { 8, 8, 9, 4, 0 }, 158 [0xe6] = { 8, 8, 9, 4, 0 }, 159 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 }, 160 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 }, 161 162 [0x33] = { 16, 8, 9, 5, 0 }, 163 [0x73] = { 16, 8, 9, 5, 0 }, 164 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, 165 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, 166 167 [0x35] = { 32, 8, 9, 5, 0 }, 168 [0x75] = { 32, 8, 9, 5, 0 }, 169 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, 170 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, 171 172 [0x36] = { 64, 8, 9, 5, 0 }, 173 [0x76] = { 64, 8, 9, 5, 0 }, 174 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, 175 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, 176 177 [0x78] = { 128, 8, 9, 5, 0 }, 178 [0x39] = { 128, 8, 9, 5, 0 }, 179 [0x79] = { 128, 8, 9, 5, 0 }, 180 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 181 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 182 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 183 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 184 185 [0x71] = { 256, 8, 9, 5, 0 }, 186 187 /* 188 * These are the new chips with large page size. The pagesize and the 189 * erasesize is determined from the extended id bytes 190 */ 191 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR) 192 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) 193 194 /* 512 Megabit */ 195 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS }, 196 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS }, 197 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 }, 198 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 }, 199 200 /* 1 Gigabit */ 201 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS }, 202 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS }, 203 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 }, 204 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 }, 205 206 /* 2 Gigabit */ 207 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS }, 208 [0xda] = { 256, 8, 0, 0, LP_OPTIONS }, 209 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 }, 210 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 }, 211 212 /* 4 Gigabit */ 213 [0xac] = { 512, 8, 0, 0, LP_OPTIONS }, 214 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS }, 215 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 }, 216 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 }, 217 218 /* 8 Gigabit */ 219 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS }, 220 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS }, 221 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, 222 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, 223 224 /* 16 Gigabit */ 225 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS }, 226 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS }, 227 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, 228 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, 229 }; 230 231 static void nand_reset(DeviceState *dev) 232 { 233 NANDFlashState *s = NAND(dev); 234 s->cmd = NAND_CMD_READ0; 235 s->addr = 0; 236 s->addrlen = 0; 237 s->iolen = 0; 238 s->offset = 0; 239 s->status &= NAND_IOSTATUS_UNPROTCT; 240 s->status |= NAND_IOSTATUS_READY; 241 } 242 243 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value) 244 { 245 s->ioaddr[s->iolen++] = value; 246 for (value = s->buswidth; --value;) { 247 s->ioaddr[s->iolen++] = 0; 248 } 249 } 250 251 static void nand_command(NANDFlashState *s) 252 { 253 unsigned int offset; 254 switch (s->cmd) { 255 case NAND_CMD_READ0: 256 s->iolen = 0; 257 break; 258 259 case NAND_CMD_READID: 260 s->ioaddr = s->io; 261 s->iolen = 0; 262 nand_pushio_byte(s, s->manf_id); 263 nand_pushio_byte(s, s->chip_id); 264 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */ 265 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { 266 /* Page Size, Block Size, Spare Size; bit 6 indicates 267 * 8 vs 16 bit width NAND. 268 */ 269 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15); 270 } else { 271 nand_pushio_byte(s, 0xc0); /* Multi-plane */ 272 } 273 break; 274 275 case NAND_CMD_RANDOMREAD2: 276 case NAND_CMD_NOSERIALREAD2: 277 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)) 278 break; 279 offset = s->addr & ((1 << s->addr_shift) - 1); 280 s->blk_load(s, s->addr, offset); 281 if (s->gnd) 282 s->iolen = (1 << s->page_shift) - offset; 283 else 284 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; 285 break; 286 287 case NAND_CMD_RESET: 288 nand_reset(DEVICE(s)); 289 break; 290 291 case NAND_CMD_PAGEPROGRAM1: 292 s->ioaddr = s->io; 293 s->iolen = 0; 294 break; 295 296 case NAND_CMD_PAGEPROGRAM2: 297 if (s->wp) { 298 s->blk_write(s); 299 } 300 break; 301 302 case NAND_CMD_BLOCKERASE1: 303 break; 304 305 case NAND_CMD_BLOCKERASE2: 306 s->addr &= (1ull << s->addrlen * 8) - 1; 307 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ? 308 16 : 8; 309 310 if (s->wp) { 311 s->blk_erase(s); 312 } 313 break; 314 315 case NAND_CMD_READSTATUS: 316 s->ioaddr = s->io; 317 s->iolen = 0; 318 nand_pushio_byte(s, s->status); 319 break; 320 321 default: 322 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd); 323 } 324 } 325 326 static void nand_pre_save(void *opaque) 327 { 328 NANDFlashState *s = NAND(opaque); 329 330 s->ioaddr_vmstate = s->ioaddr - s->io; 331 } 332 333 static int nand_post_load(void *opaque, int version_id) 334 { 335 NANDFlashState *s = NAND(opaque); 336 337 if (s->ioaddr_vmstate > sizeof(s->io)) { 338 return -EINVAL; 339 } 340 s->ioaddr = s->io + s->ioaddr_vmstate; 341 342 return 0; 343 } 344 345 static const VMStateDescription vmstate_nand = { 346 .name = "nand", 347 .version_id = 1, 348 .minimum_version_id = 1, 349 .pre_save = nand_pre_save, 350 .post_load = nand_post_load, 351 .fields = (VMStateField[]) { 352 VMSTATE_UINT8(cle, NANDFlashState), 353 VMSTATE_UINT8(ale, NANDFlashState), 354 VMSTATE_UINT8(ce, NANDFlashState), 355 VMSTATE_UINT8(wp, NANDFlashState), 356 VMSTATE_UINT8(gnd, NANDFlashState), 357 VMSTATE_BUFFER(io, NANDFlashState), 358 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState), 359 VMSTATE_INT32(iolen, NANDFlashState), 360 VMSTATE_UINT32(cmd, NANDFlashState), 361 VMSTATE_UINT64(addr, NANDFlashState), 362 VMSTATE_INT32(addrlen, NANDFlashState), 363 VMSTATE_INT32(status, NANDFlashState), 364 VMSTATE_INT32(offset, NANDFlashState), 365 /* XXX: do we want to save s->storage too? */ 366 VMSTATE_END_OF_LIST() 367 } 368 }; 369 370 static void nand_realize(DeviceState *dev, Error **errp) 371 { 372 int pagesize; 373 NANDFlashState *s = NAND(dev); 374 375 s->buswidth = nand_flash_ids[s->chip_id].width >> 3; 376 s->size = nand_flash_ids[s->chip_id].size << 20; 377 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { 378 s->page_shift = 11; 379 s->erase_shift = 6; 380 } else { 381 s->page_shift = nand_flash_ids[s->chip_id].page_shift; 382 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift; 383 } 384 385 switch (1 << s->page_shift) { 386 case 256: 387 nand_init_256(s); 388 break; 389 case 512: 390 nand_init_512(s); 391 break; 392 case 2048: 393 nand_init_2048(s); 394 break; 395 default: 396 error_setg(errp, "Unsupported NAND block size %#x\n", 397 1 << s->page_shift); 398 return; 399 } 400 401 pagesize = 1 << s->oob_shift; 402 s->mem_oob = 1; 403 if (s->bdrv) { 404 if (bdrv_is_read_only(s->bdrv)) { 405 error_setg(errp, "Can't use a read-only drive"); 406 return; 407 } 408 if (bdrv_getlength(s->bdrv) >= 409 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) { 410 pagesize = 0; 411 s->mem_oob = 0; 412 } 413 } else { 414 pagesize += 1 << s->page_shift; 415 } 416 if (pagesize) { 417 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize), 418 0xff, s->pages * pagesize); 419 } 420 /* Give s->ioaddr a sane value in case we save state before it is used. */ 421 s->ioaddr = s->io; 422 } 423 424 static Property nand_properties[] = { 425 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0), 426 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0), 427 DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv), 428 DEFINE_PROP_END_OF_LIST(), 429 }; 430 431 static void nand_class_init(ObjectClass *klass, void *data) 432 { 433 DeviceClass *dc = DEVICE_CLASS(klass); 434 435 dc->realize = nand_realize; 436 dc->reset = nand_reset; 437 dc->vmsd = &vmstate_nand; 438 dc->props = nand_properties; 439 } 440 441 static const TypeInfo nand_info = { 442 .name = TYPE_NAND, 443 .parent = TYPE_DEVICE, 444 .instance_size = sizeof(NANDFlashState), 445 .class_init = nand_class_init, 446 }; 447 448 static void nand_register_types(void) 449 { 450 type_register_static(&nand_info); 451 } 452 453 /* 454 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip 455 * outputs are R/B and eight I/O pins. 456 * 457 * CE, WP and R/B are active low. 458 */ 459 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale, 460 uint8_t ce, uint8_t wp, uint8_t gnd) 461 { 462 NANDFlashState *s = NAND(dev); 463 464 s->cle = cle; 465 s->ale = ale; 466 s->ce = ce; 467 s->wp = wp; 468 s->gnd = gnd; 469 if (wp) { 470 s->status |= NAND_IOSTATUS_UNPROTCT; 471 } else { 472 s->status &= ~NAND_IOSTATUS_UNPROTCT; 473 } 474 } 475 476 void nand_getpins(DeviceState *dev, int *rb) 477 { 478 *rb = 1; 479 } 480 481 void nand_setio(DeviceState *dev, uint32_t value) 482 { 483 int i; 484 NANDFlashState *s = NAND(dev); 485 486 if (!s->ce && s->cle) { 487 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { 488 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) 489 return; 490 if (value == NAND_CMD_RANDOMREAD1) { 491 s->addr &= ~((1 << s->addr_shift) - 1); 492 s->addrlen = 0; 493 return; 494 } 495 } 496 if (value == NAND_CMD_READ0) { 497 s->offset = 0; 498 } else if (value == NAND_CMD_READ1) { 499 s->offset = 0x100; 500 value = NAND_CMD_READ0; 501 } else if (value == NAND_CMD_READ2) { 502 s->offset = 1 << s->page_shift; 503 value = NAND_CMD_READ0; 504 } 505 506 s->cmd = value; 507 508 if (s->cmd == NAND_CMD_READSTATUS || 509 s->cmd == NAND_CMD_PAGEPROGRAM2 || 510 s->cmd == NAND_CMD_BLOCKERASE1 || 511 s->cmd == NAND_CMD_BLOCKERASE2 || 512 s->cmd == NAND_CMD_NOSERIALREAD2 || 513 s->cmd == NAND_CMD_RANDOMREAD2 || 514 s->cmd == NAND_CMD_RESET) { 515 nand_command(s); 516 } 517 518 if (s->cmd != NAND_CMD_RANDOMREAD2) { 519 s->addrlen = 0; 520 } 521 } 522 523 if (s->ale) { 524 unsigned int shift = s->addrlen * 8; 525 unsigned int mask = ~(0xff << shift); 526 unsigned int v = value << shift; 527 528 s->addr = (s->addr & mask) | v; 529 s->addrlen ++; 530 531 switch (s->addrlen) { 532 case 1: 533 if (s->cmd == NAND_CMD_READID) { 534 nand_command(s); 535 } 536 break; 537 case 2: /* fix cache address as a byte address */ 538 s->addr <<= (s->buswidth - 1); 539 break; 540 case 3: 541 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && 542 (s->cmd == NAND_CMD_READ0 || 543 s->cmd == NAND_CMD_PAGEPROGRAM1)) { 544 nand_command(s); 545 } 546 break; 547 case 4: 548 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && 549 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */ 550 (s->cmd == NAND_CMD_READ0 || 551 s->cmd == NAND_CMD_PAGEPROGRAM1)) { 552 nand_command(s); 553 } 554 break; 555 case 5: 556 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && 557 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */ 558 (s->cmd == NAND_CMD_READ0 || 559 s->cmd == NAND_CMD_PAGEPROGRAM1)) { 560 nand_command(s); 561 } 562 break; 563 default: 564 break; 565 } 566 } 567 568 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) { 569 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) { 570 for (i = s->buswidth; i--; value >>= 8) { 571 s->io[s->iolen ++] = (uint8_t) (value & 0xff); 572 } 573 } 574 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) { 575 if ((s->addr & ((1 << s->addr_shift) - 1)) < 576 (1 << s->page_shift) + (1 << s->oob_shift)) { 577 for (i = s->buswidth; i--; s->addr++, value >>= 8) { 578 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = 579 (uint8_t) (value & 0xff); 580 } 581 } 582 } 583 } 584 585 uint32_t nand_getio(DeviceState *dev) 586 { 587 int offset; 588 uint32_t x = 0; 589 NANDFlashState *s = NAND(dev); 590 591 /* Allow sequential reading */ 592 if (!s->iolen && s->cmd == NAND_CMD_READ0) { 593 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset; 594 s->offset = 0; 595 596 s->blk_load(s, s->addr, offset); 597 if (s->gnd) 598 s->iolen = (1 << s->page_shift) - offset; 599 else 600 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; 601 } 602 603 if (s->ce || s->iolen <= 0) { 604 return 0; 605 } 606 607 for (offset = s->buswidth; offset--;) { 608 x |= s->ioaddr[offset] << (offset << 3); 609 } 610 /* after receiving READ STATUS command all subsequent reads will 611 * return the status register value until another command is issued 612 */ 613 if (s->cmd != NAND_CMD_READSTATUS) { 614 s->addr += s->buswidth; 615 s->ioaddr += s->buswidth; 616 s->iolen -= s->buswidth; 617 } 618 return x; 619 } 620 621 uint32_t nand_getbuswidth(DeviceState *dev) 622 { 623 NANDFlashState *s = (NANDFlashState *) dev; 624 return s->buswidth << 3; 625 } 626 627 DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id) 628 { 629 DeviceState *dev; 630 631 if (nand_flash_ids[chip_id].size == 0) { 632 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__); 633 } 634 dev = DEVICE(object_new(TYPE_NAND)); 635 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id); 636 qdev_prop_set_uint8(dev, "chip_id", chip_id); 637 if (bdrv) { 638 qdev_prop_set_drive_nofail(dev, "drive", bdrv); 639 } 640 641 qdev_init_nofail(dev); 642 return dev; 643 } 644 645 type_init(nand_register_types) 646 647 #else 648 649 /* Program a single page */ 650 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s) 651 { 652 uint64_t off, page, sector, soff; 653 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200]; 654 if (PAGE(s->addr) >= s->pages) 655 return; 656 657 if (!s->bdrv) { 658 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) + 659 s->offset, s->io, s->iolen); 660 } else if (s->mem_oob) { 661 sector = SECTOR(s->addr); 662 off = (s->addr & PAGE_MASK) + s->offset; 663 soff = SECTOR_OFFSET(s->addr); 664 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) { 665 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); 666 return; 667 } 668 669 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off)); 670 if (off + s->iolen > PAGE_SIZE) { 671 page = PAGE(s->addr); 672 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off, 673 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE)); 674 } 675 676 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) { 677 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); 678 } 679 } else { 680 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset; 681 sector = off >> 9; 682 soff = off & 0x1ff; 683 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) { 684 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); 685 return; 686 } 687 688 mem_and(iobuf + soff, s->io, s->iolen); 689 690 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) { 691 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); 692 } 693 } 694 s->offset = 0; 695 } 696 697 /* Erase a single block */ 698 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s) 699 { 700 uint64_t i, page, addr; 701 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, }; 702 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1); 703 704 if (PAGE(addr) >= s->pages) { 705 return; 706 } 707 708 if (!s->bdrv) { 709 memset(s->storage + PAGE_START(addr), 710 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift); 711 } else if (s->mem_oob) { 712 memset(s->storage + (PAGE(addr) << OOB_SHIFT), 713 0xff, OOB_SIZE << s->erase_shift); 714 i = SECTOR(addr); 715 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift)); 716 for (; i < page; i ++) 717 if (bdrv_write(s->bdrv, i, iobuf, 1) < 0) { 718 printf("%s: write error in sector %" PRIu64 "\n", __func__, i); 719 } 720 } else { 721 addr = PAGE_START(addr); 722 page = addr >> 9; 723 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) { 724 printf("%s: read error in sector %" PRIu64 "\n", __func__, page); 725 } 726 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1); 727 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) { 728 printf("%s: write error in sector %" PRIu64 "\n", __func__, page); 729 } 730 731 memset(iobuf, 0xff, 0x200); 732 i = (addr & ~0x1ff) + 0x200; 733 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200; 734 i < addr; i += 0x200) { 735 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) < 0) { 736 printf("%s: write error in sector %" PRIu64 "\n", 737 __func__, i >> 9); 738 } 739 } 740 741 page = i >> 9; 742 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) { 743 printf("%s: read error in sector %" PRIu64 "\n", __func__, page); 744 } 745 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1); 746 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) { 747 printf("%s: write error in sector %" PRIu64 "\n", __func__, page); 748 } 749 } 750 } 751 752 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s, 753 uint64_t addr, int offset) 754 { 755 if (PAGE(addr) >= s->pages) { 756 return; 757 } 758 759 if (s->bdrv) { 760 if (s->mem_oob) { 761 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) < 0) { 762 printf("%s: read error in sector %" PRIu64 "\n", 763 __func__, SECTOR(addr)); 764 } 765 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE, 766 s->storage + (PAGE(s->addr) << OOB_SHIFT), 767 OOB_SIZE); 768 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset; 769 } else { 770 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9, 771 s->io, (PAGE_SECTORS + 2)) < 0) { 772 printf("%s: read error in sector %" PRIu64 "\n", 773 __func__, PAGE_START(addr) >> 9); 774 } 775 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset; 776 } 777 } else { 778 memcpy(s->io, s->storage + PAGE_START(s->addr) + 779 offset, PAGE_SIZE + OOB_SIZE - offset); 780 s->ioaddr = s->io; 781 } 782 } 783 784 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s) 785 { 786 s->oob_shift = PAGE_SHIFT - 5; 787 s->pages = s->size >> PAGE_SHIFT; 788 s->addr_shift = ADDR_SHIFT; 789 790 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE); 791 s->blk_write = glue(nand_blk_write_, PAGE_SIZE); 792 s->blk_load = glue(nand_blk_load_, PAGE_SIZE); 793 } 794 795 # undef PAGE_SIZE 796 # undef PAGE_SHIFT 797 # undef PAGE_SECTORS 798 # undef ADDR_SHIFT 799 #endif /* NAND_IO */ 800