xref: /openbmc/qemu/hw/block/nand.c (revision 83734919c408ba02adb6ea616d68cd1a72837fbe)
1 /*
2  * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3  * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4  * Samsung Electronic.
5  *
6  * Copyright (c) 2006 Openedhand Ltd.
7  * Written by Andrzej Zaborowski <balrog@zabor.org>
8  *
9  * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10  * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11  * from ST Microelectronics.
12  *
13  * This code is licensed under the GNU GPL v2.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18 
19 #ifndef NAND_IO
20 
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/block/flash.h"
25 #include "sysemu/block-backend.h"
26 #include "migration/vmstate.h"
27 #include "qapi/error.h"
28 #include "qemu/error-report.h"
29 #include "qemu/module.h"
30 #include "qom/object.h"
31 
32 # define NAND_CMD_READ0		0x00
33 # define NAND_CMD_READ1		0x01
34 # define NAND_CMD_READ2		0x50
35 # define NAND_CMD_LPREAD2	0x30
36 # define NAND_CMD_NOSERIALREAD2	0x35
37 # define NAND_CMD_RANDOMREAD1	0x05
38 # define NAND_CMD_RANDOMREAD2	0xe0
39 # define NAND_CMD_READID	0x90
40 # define NAND_CMD_RESET		0xff
41 # define NAND_CMD_PAGEPROGRAM1	0x80
42 # define NAND_CMD_PAGEPROGRAM2	0x10
43 # define NAND_CMD_CACHEPROGRAM2	0x15
44 # define NAND_CMD_BLOCKERASE1	0x60
45 # define NAND_CMD_BLOCKERASE2	0xd0
46 # define NAND_CMD_READSTATUS	0x70
47 # define NAND_CMD_COPYBACKPRG1	0x85
48 
49 # define NAND_IOSTATUS_ERROR	(1 << 0)
50 # define NAND_IOSTATUS_PLANE0	(1 << 1)
51 # define NAND_IOSTATUS_PLANE1	(1 << 2)
52 # define NAND_IOSTATUS_PLANE2	(1 << 3)
53 # define NAND_IOSTATUS_PLANE3	(1 << 4)
54 # define NAND_IOSTATUS_READY    (1 << 6)
55 # define NAND_IOSTATUS_UNPROTCT	(1 << 7)
56 
57 # define MAX_PAGE		0x800
58 # define MAX_OOB		0x40
59 
60 typedef struct NANDFlashState NANDFlashState;
61 struct NANDFlashState {
62     DeviceState parent_obj;
63 
64     uint8_t manf_id, chip_id;
65     uint8_t buswidth; /* in BYTES */
66     int size, pages;
67     int page_shift, oob_shift, erase_shift, addr_shift;
68     uint8_t *storage;
69     BlockBackend *blk;
70     int mem_oob;
71 
72     uint8_t cle, ale, ce, wp, gnd;
73 
74     uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
75     uint8_t *ioaddr;
76     int iolen;
77 
78     uint32_t cmd;
79     uint64_t addr;
80     int addrlen;
81     int status;
82     int offset;
83 
84     void (*blk_write)(NANDFlashState *s);
85     void (*blk_erase)(NANDFlashState *s);
86     void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
87 
88     uint32_t ioaddr_vmstate;
89 };
90 
91 #define TYPE_NAND "nand"
92 
93 OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
94 
95 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
96 {
97     /* Like memcpy() but we logical-AND the data into the destination */
98     int i;
99     for (i = 0; i < n; i++) {
100         dest[i] &= src[i];
101     }
102 }
103 
104 # define NAND_NO_AUTOINCR	0x00000001
105 # define NAND_BUSWIDTH_16	0x00000002
106 # define NAND_NO_PADDING	0x00000004
107 # define NAND_CACHEPRG		0x00000008
108 # define NAND_COPYBACK		0x00000010
109 # define NAND_IS_AND		0x00000020
110 # define NAND_4PAGE_ARRAY	0x00000040
111 # define NAND_NO_READRDY	0x00000100
112 # define NAND_SAMSUNG_LP	(NAND_NO_PADDING | NAND_COPYBACK)
113 
114 # define NAND_IO
115 
116 # define PAGE(addr)		((addr) >> ADDR_SHIFT)
117 # define PAGE_START(page)	(PAGE(page) * (PAGE_SIZE + OOB_SIZE))
118 # define PAGE_MASK		((1 << ADDR_SHIFT) - 1)
119 # define OOB_SHIFT		(PAGE_SHIFT - 5)
120 # define OOB_SIZE		(1 << OOB_SHIFT)
121 # define SECTOR(addr)		((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
122 # define SECTOR_OFFSET(addr)	((addr) & ((511 >> PAGE_SHIFT) << 8))
123 
124 # define PAGE_SIZE		256
125 # define PAGE_SHIFT		8
126 # define PAGE_SECTORS		1
127 # define ADDR_SHIFT		8
128 # include "nand.c"
129 # define PAGE_SIZE		512
130 # define PAGE_SHIFT		9
131 # define PAGE_SECTORS		1
132 # define ADDR_SHIFT		8
133 # include "nand.c"
134 # define PAGE_SIZE		2048
135 # define PAGE_SHIFT		11
136 # define PAGE_SECTORS		4
137 # define ADDR_SHIFT		16
138 # include "nand.c"
139 
140 /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */
141 static const struct {
142     int size;
143     int width;
144     int page_shift;
145     int erase_shift;
146     uint32_t options;
147 } nand_flash_ids[0x100] = {
148     [0 ... 0xff] = { 0 },
149 
150     [0x6b] = { 4,	8,	9, 4, 0 },
151     [0xe3] = { 4,	8,	9, 4, 0 },
152     [0xe5] = { 4,	8,	9, 4, 0 },
153     [0xd6] = { 8,	8,	9, 4, 0 },
154     [0xe6] = { 8,	8,	9, 4, 0 },
155 
156     [0x33] = { 16,	8,	9, 5, 0 },
157     [0x73] = { 16,	8,	9, 5, 0 },
158     [0x43] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
159     [0x53] = { 16,	16,	9, 5, NAND_BUSWIDTH_16 },
160 
161     [0x35] = { 32,	8,	9, 5, 0 },
162     [0x75] = { 32,	8,	9, 5, 0 },
163     [0x45] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
164     [0x55] = { 32,	16,	9, 5, NAND_BUSWIDTH_16 },
165 
166     [0x36] = { 64,	8,	9, 5, 0 },
167     [0x76] = { 64,	8,	9, 5, 0 },
168     [0x46] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
169     [0x56] = { 64,	16,	9, 5, NAND_BUSWIDTH_16 },
170 
171     [0x78] = { 128,	8,	9, 5, 0 },
172     [0x39] = { 128,	8,	9, 5, 0 },
173     [0x79] = { 128,	8,	9, 5, 0 },
174     [0x72] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
175     [0x49] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
176     [0x74] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
177     [0x59] = { 128,	16,	9, 5, NAND_BUSWIDTH_16 },
178 
179     [0x71] = { 256,	8,	9, 5, 0 },
180 
181     /*
182      * These are the new chips with large page size. The pagesize and the
183      * erasesize is determined from the extended id bytes
184      */
185 # define LP_OPTIONS	(NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
186 # define LP_OPTIONS16	(LP_OPTIONS | NAND_BUSWIDTH_16)
187 
188     /* 512 Megabit */
189     [0xa2] = { 64,	8,	0, 0, LP_OPTIONS },
190     [0xf2] = { 64,	8,	0, 0, LP_OPTIONS },
191     [0xb2] = { 64,	16,	0, 0, LP_OPTIONS16 },
192     [0xc2] = { 64,	16,	0, 0, LP_OPTIONS16 },
193 
194     /* 1 Gigabit */
195     [0xa1] = { 128,	8,	0, 0, LP_OPTIONS },
196     [0xf1] = { 128,	8,	0, 0, LP_OPTIONS },
197     [0xb1] = { 128,	16,	0, 0, LP_OPTIONS16 },
198     [0xc1] = { 128,	16,	0, 0, LP_OPTIONS16 },
199 
200     /* 2 Gigabit */
201     [0xaa] = { 256,	8,	0, 0, LP_OPTIONS },
202     [0xda] = { 256,	8,	0, 0, LP_OPTIONS },
203     [0xba] = { 256,	16,	0, 0, LP_OPTIONS16 },
204     [0xca] = { 256,	16,	0, 0, LP_OPTIONS16 },
205 
206     /* 4 Gigabit */
207     [0xac] = { 512,	8,	0, 0, LP_OPTIONS },
208     [0xdc] = { 512,	8,	0, 0, LP_OPTIONS },
209     [0xbc] = { 512,	16,	0, 0, LP_OPTIONS16 },
210     [0xcc] = { 512,	16,	0, 0, LP_OPTIONS16 },
211 
212     /* 8 Gigabit */
213     [0xa3] = { 1024,	8,	0, 0, LP_OPTIONS },
214     [0xd3] = { 1024,	8,	0, 0, LP_OPTIONS },
215     [0xb3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
216     [0xc3] = { 1024,	16,	0, 0, LP_OPTIONS16 },
217 
218     /* 16 Gigabit */
219     [0xa5] = { 2048,	8,	0, 0, LP_OPTIONS },
220     [0xd5] = { 2048,	8,	0, 0, LP_OPTIONS },
221     [0xb5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
222     [0xc5] = { 2048,	16,	0, 0, LP_OPTIONS16 },
223 };
224 
225 static void nand_reset(DeviceState *dev)
226 {
227     NANDFlashState *s = NAND(dev);
228     s->cmd = NAND_CMD_READ0;
229     s->addr = 0;
230     s->addrlen = 0;
231     s->iolen = 0;
232     s->offset = 0;
233     s->status &= NAND_IOSTATUS_UNPROTCT;
234     s->status |= NAND_IOSTATUS_READY;
235 }
236 
237 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
238 {
239     s->ioaddr[s->iolen++] = value;
240     for (value = s->buswidth; --value;) {
241         s->ioaddr[s->iolen++] = 0;
242     }
243 }
244 
245 static void nand_command(NANDFlashState *s)
246 {
247     unsigned int offset;
248     switch (s->cmd) {
249     case NAND_CMD_READ0:
250         s->iolen = 0;
251         break;
252 
253     case NAND_CMD_READID:
254         s->ioaddr = s->io;
255         s->iolen = 0;
256         nand_pushio_byte(s, s->manf_id);
257         nand_pushio_byte(s, s->chip_id);
258         nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
259         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
260             /* Page Size, Block Size, Spare Size; bit 6 indicates
261              * 8 vs 16 bit width NAND.
262              */
263             nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
264         } else {
265             nand_pushio_byte(s, 0xc0); /* Multi-plane */
266         }
267         break;
268 
269     case NAND_CMD_RANDOMREAD2:
270     case NAND_CMD_NOSERIALREAD2:
271         if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
272             break;
273         offset = s->addr & ((1 << s->addr_shift) - 1);
274         s->blk_load(s, s->addr, offset);
275         if (s->gnd)
276             s->iolen = (1 << s->page_shift) - offset;
277         else
278             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
279         break;
280 
281     case NAND_CMD_RESET:
282         nand_reset(DEVICE(s));
283         break;
284 
285     case NAND_CMD_PAGEPROGRAM1:
286         s->ioaddr = s->io;
287         s->iolen = 0;
288         break;
289 
290     case NAND_CMD_PAGEPROGRAM2:
291         if (s->wp) {
292             s->blk_write(s);
293         }
294         break;
295 
296     case NAND_CMD_BLOCKERASE1:
297         break;
298 
299     case NAND_CMD_BLOCKERASE2:
300         s->addr &= (1ull << s->addrlen * 8) - 1;
301         s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
302                                                                     16 : 8;
303 
304         if (s->wp) {
305             s->blk_erase(s);
306         }
307         break;
308 
309     case NAND_CMD_READSTATUS:
310         s->ioaddr = s->io;
311         s->iolen = 0;
312         nand_pushio_byte(s, s->status);
313         break;
314 
315     default:
316         printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
317     }
318 }
319 
320 static int nand_pre_save(void *opaque)
321 {
322     NANDFlashState *s = NAND(opaque);
323 
324     s->ioaddr_vmstate = s->ioaddr - s->io;
325 
326     return 0;
327 }
328 
329 static int nand_post_load(void *opaque, int version_id)
330 {
331     NANDFlashState *s = NAND(opaque);
332 
333     if (s->ioaddr_vmstate > sizeof(s->io)) {
334         return -EINVAL;
335     }
336     s->ioaddr = s->io + s->ioaddr_vmstate;
337 
338     return 0;
339 }
340 
341 static const VMStateDescription vmstate_nand = {
342     .name = "nand",
343     .version_id = 1,
344     .minimum_version_id = 1,
345     .pre_save = nand_pre_save,
346     .post_load = nand_post_load,
347     .fields = (VMStateField[]) {
348         VMSTATE_UINT8(cle, NANDFlashState),
349         VMSTATE_UINT8(ale, NANDFlashState),
350         VMSTATE_UINT8(ce, NANDFlashState),
351         VMSTATE_UINT8(wp, NANDFlashState),
352         VMSTATE_UINT8(gnd, NANDFlashState),
353         VMSTATE_BUFFER(io, NANDFlashState),
354         VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
355         VMSTATE_INT32(iolen, NANDFlashState),
356         VMSTATE_UINT32(cmd, NANDFlashState),
357         VMSTATE_UINT64(addr, NANDFlashState),
358         VMSTATE_INT32(addrlen, NANDFlashState),
359         VMSTATE_INT32(status, NANDFlashState),
360         VMSTATE_INT32(offset, NANDFlashState),
361         /* XXX: do we want to save s->storage too? */
362         VMSTATE_END_OF_LIST()
363     }
364 };
365 
366 static void nand_realize(DeviceState *dev, Error **errp)
367 {
368     int pagesize;
369     NANDFlashState *s = NAND(dev);
370     int ret;
371 
372 
373     s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
374     s->size = nand_flash_ids[s->chip_id].size << 20;
375     if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
376         s->page_shift = 11;
377         s->erase_shift = 6;
378     } else {
379         s->page_shift = nand_flash_ids[s->chip_id].page_shift;
380         s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
381     }
382 
383     switch (1 << s->page_shift) {
384     case 256:
385         nand_init_256(s);
386         break;
387     case 512:
388         nand_init_512(s);
389         break;
390     case 2048:
391         nand_init_2048(s);
392         break;
393     default:
394         error_setg(errp, "Unsupported NAND block size %#x",
395                    1 << s->page_shift);
396         return;
397     }
398 
399     pagesize = 1 << s->oob_shift;
400     s->mem_oob = 1;
401     if (s->blk) {
402         if (blk_is_read_only(s->blk)) {
403             error_setg(errp, "Can't use a read-only drive");
404             return;
405         }
406         ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
407                            BLK_PERM_ALL, errp);
408         if (ret < 0) {
409             return;
410         }
411         if (blk_getlength(s->blk) >=
412                 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
413             pagesize = 0;
414             s->mem_oob = 0;
415         }
416     } else {
417         pagesize += 1 << s->page_shift;
418     }
419     if (pagesize) {
420         s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
421                         0xff, s->pages * pagesize);
422     }
423     /* Give s->ioaddr a sane value in case we save state before it is used. */
424     s->ioaddr = s->io;
425 }
426 
427 static Property nand_properties[] = {
428     DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
429     DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
430     DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
431     DEFINE_PROP_END_OF_LIST(),
432 };
433 
434 static void nand_class_init(ObjectClass *klass, void *data)
435 {
436     DeviceClass *dc = DEVICE_CLASS(klass);
437 
438     dc->realize = nand_realize;
439     dc->reset = nand_reset;
440     dc->vmsd = &vmstate_nand;
441     device_class_set_props(dc, nand_properties);
442     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
443 }
444 
445 static const TypeInfo nand_info = {
446     .name          = TYPE_NAND,
447     .parent        = TYPE_DEVICE,
448     .instance_size = sizeof(NANDFlashState),
449     .class_init    = nand_class_init,
450 };
451 
452 static void nand_register_types(void)
453 {
454     type_register_static(&nand_info);
455 }
456 
457 /*
458  * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
459  * outputs are R/B and eight I/O pins.
460  *
461  * CE, WP and R/B are active low.
462  */
463 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
464                   uint8_t ce, uint8_t wp, uint8_t gnd)
465 {
466     NANDFlashState *s = NAND(dev);
467 
468     s->cle = cle;
469     s->ale = ale;
470     s->ce = ce;
471     s->wp = wp;
472     s->gnd = gnd;
473     if (wp) {
474         s->status |= NAND_IOSTATUS_UNPROTCT;
475     } else {
476         s->status &= ~NAND_IOSTATUS_UNPROTCT;
477     }
478 }
479 
480 void nand_getpins(DeviceState *dev, int *rb)
481 {
482     *rb = 1;
483 }
484 
485 void nand_setio(DeviceState *dev, uint32_t value)
486 {
487     int i;
488     NANDFlashState *s = NAND(dev);
489 
490     if (!s->ce && s->cle) {
491         if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
492             if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
493                 return;
494             if (value == NAND_CMD_RANDOMREAD1) {
495                 s->addr &= ~((1 << s->addr_shift) - 1);
496                 s->addrlen = 0;
497                 return;
498             }
499         }
500         if (value == NAND_CMD_READ0) {
501             s->offset = 0;
502         } else if (value == NAND_CMD_READ1) {
503             s->offset = 0x100;
504             value = NAND_CMD_READ0;
505         } else if (value == NAND_CMD_READ2) {
506             s->offset = 1 << s->page_shift;
507             value = NAND_CMD_READ0;
508         }
509 
510         s->cmd = value;
511 
512         if (s->cmd == NAND_CMD_READSTATUS ||
513                 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
514                 s->cmd == NAND_CMD_BLOCKERASE1 ||
515                 s->cmd == NAND_CMD_BLOCKERASE2 ||
516                 s->cmd == NAND_CMD_NOSERIALREAD2 ||
517                 s->cmd == NAND_CMD_RANDOMREAD2 ||
518                 s->cmd == NAND_CMD_RESET) {
519             nand_command(s);
520         }
521 
522         if (s->cmd != NAND_CMD_RANDOMREAD2) {
523             s->addrlen = 0;
524         }
525     }
526 
527     if (s->ale) {
528         unsigned int shift = s->addrlen * 8;
529         uint64_t mask = ~(0xffull << shift);
530         uint64_t v = (uint64_t)value << shift;
531 
532         s->addr = (s->addr & mask) | v;
533         s->addrlen ++;
534 
535         switch (s->addrlen) {
536         case 1:
537             if (s->cmd == NAND_CMD_READID) {
538                 nand_command(s);
539             }
540             break;
541         case 2: /* fix cache address as a byte address */
542             s->addr <<= (s->buswidth - 1);
543             break;
544         case 3:
545             if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
546                     (s->cmd == NAND_CMD_READ0 ||
547                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
548                 nand_command(s);
549             }
550             break;
551         case 4:
552             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
553                     nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
554                     (s->cmd == NAND_CMD_READ0 ||
555                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
556                 nand_command(s);
557             }
558             break;
559         case 5:
560             if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
561                     nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
562                     (s->cmd == NAND_CMD_READ0 ||
563                      s->cmd == NAND_CMD_PAGEPROGRAM1)) {
564                 nand_command(s);
565             }
566             break;
567         default:
568             break;
569         }
570     }
571 
572     if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
573         if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
574             for (i = s->buswidth; i--; value >>= 8) {
575                 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
576             }
577         }
578     } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
579         if ((s->addr & ((1 << s->addr_shift) - 1)) <
580                 (1 << s->page_shift) + (1 << s->oob_shift)) {
581             for (i = s->buswidth; i--; s->addr++, value >>= 8) {
582                 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
583                     (uint8_t) (value & 0xff);
584             }
585         }
586     }
587 }
588 
589 uint32_t nand_getio(DeviceState *dev)
590 {
591     int offset;
592     uint32_t x = 0;
593     NANDFlashState *s = NAND(dev);
594 
595     /* Allow sequential reading */
596     if (!s->iolen && s->cmd == NAND_CMD_READ0) {
597         offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
598         s->offset = 0;
599 
600         s->blk_load(s, s->addr, offset);
601         if (s->gnd)
602             s->iolen = (1 << s->page_shift) - offset;
603         else
604             s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
605     }
606 
607     if (s->ce || s->iolen <= 0) {
608         return 0;
609     }
610 
611     for (offset = s->buswidth; offset--;) {
612         x |= s->ioaddr[offset] << (offset << 3);
613     }
614     /* after receiving READ STATUS command all subsequent reads will
615      * return the status register value until another command is issued
616      */
617     if (s->cmd != NAND_CMD_READSTATUS) {
618         s->addr   += s->buswidth;
619         s->ioaddr += s->buswidth;
620         s->iolen  -= s->buswidth;
621     }
622     return x;
623 }
624 
625 uint32_t nand_getbuswidth(DeviceState *dev)
626 {
627     NANDFlashState *s = (NANDFlashState *) dev;
628     return s->buswidth << 3;
629 }
630 
631 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
632 {
633     DeviceState *dev;
634 
635     if (nand_flash_ids[chip_id].size == 0) {
636         hw_error("%s: Unsupported NAND chip ID.\n", __func__);
637     }
638     dev = qdev_new(TYPE_NAND);
639     qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
640     qdev_prop_set_uint8(dev, "chip_id", chip_id);
641     if (blk) {
642         qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
643     }
644 
645     qdev_realize(dev, NULL, &error_fatal);
646     return dev;
647 }
648 
649 type_init(nand_register_types)
650 
651 #else
652 
653 /* Program a single page */
654 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
655 {
656     uint64_t off, page, sector, soff;
657     uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
658     if (PAGE(s->addr) >= s->pages)
659         return;
660 
661     if (!s->blk) {
662         mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
663                         s->offset, s->io, s->iolen);
664     } else if (s->mem_oob) {
665         sector = SECTOR(s->addr);
666         off = (s->addr & PAGE_MASK) + s->offset;
667         soff = SECTOR_OFFSET(s->addr);
668         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
669                       PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
670             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
671             return;
672         }
673 
674         mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
675         if (off + s->iolen > PAGE_SIZE) {
676             page = PAGE(s->addr);
677             mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
678                             MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
679         }
680 
681         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
682                        PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
683             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
684         }
685     } else {
686         off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
687         sector = off >> 9;
688         soff = off & 0x1ff;
689         if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
690                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
691             printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
692             return;
693         }
694 
695         mem_and(iobuf + soff, s->io, s->iolen);
696 
697         if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
698                        (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
699             printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
700         }
701     }
702     s->offset = 0;
703 }
704 
705 /* Erase a single block */
706 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
707 {
708     uint64_t i, page, addr;
709     uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
710     addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
711 
712     if (PAGE(addr) >= s->pages) {
713         return;
714     }
715 
716     if (!s->blk) {
717         memset(s->storage + PAGE_START(addr),
718                         0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
719     } else if (s->mem_oob) {
720         memset(s->storage + (PAGE(addr) << OOB_SHIFT),
721                         0xff, OOB_SIZE << s->erase_shift);
722         i = SECTOR(addr);
723         page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
724         for (; i < page; i ++)
725             if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
726                            BDRV_SECTOR_SIZE, 0) < 0) {
727                 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
728             }
729     } else {
730         addr = PAGE_START(addr);
731         page = addr >> 9;
732         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
733                       BDRV_SECTOR_SIZE) < 0) {
734             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
735         }
736         memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
737         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
738                        BDRV_SECTOR_SIZE, 0) < 0) {
739             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
740         }
741 
742         memset(iobuf, 0xff, 0x200);
743         i = (addr & ~0x1ff) + 0x200;
744         for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
745                         i < addr; i += 0x200) {
746             if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
747                 printf("%s: write error in sector %" PRIu64 "\n",
748                        __func__, i >> 9);
749             }
750         }
751 
752         page = i >> 9;
753         if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
754                       BDRV_SECTOR_SIZE) < 0) {
755             printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
756         }
757         memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
758         if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
759                        BDRV_SECTOR_SIZE, 0) < 0) {
760             printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
761         }
762     }
763 }
764 
765 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
766                 uint64_t addr, int offset)
767 {
768     if (PAGE(addr) >= s->pages) {
769         return;
770     }
771 
772     if (s->blk) {
773         if (s->mem_oob) {
774             if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
775                           PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
776                 printf("%s: read error in sector %" PRIu64 "\n",
777                                 __func__, SECTOR(addr));
778             }
779             memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
780                             s->storage + (PAGE(s->addr) << OOB_SHIFT),
781                             OOB_SIZE);
782             s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
783         } else {
784             if (blk_pread(s->blk, PAGE_START(addr), s->io,
785                           (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
786                 printf("%s: read error in sector %" PRIu64 "\n",
787                                 __func__, PAGE_START(addr) >> 9);
788             }
789             s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
790         }
791     } else {
792         memcpy(s->io, s->storage + PAGE_START(s->addr) +
793                         offset, PAGE_SIZE + OOB_SIZE - offset);
794         s->ioaddr = s->io;
795     }
796 }
797 
798 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
799 {
800     s->oob_shift = PAGE_SHIFT - 5;
801     s->pages = s->size >> PAGE_SHIFT;
802     s->addr_shift = ADDR_SHIFT;
803 
804     s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
805     s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
806     s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
807 }
808 
809 # undef PAGE_SIZE
810 # undef PAGE_SHIFT
811 # undef PAGE_SECTORS
812 # undef ADDR_SHIFT
813 #endif	/* NAND_IO */
814