1 /* 2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash 3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from 4 * Samsung Electronic. 5 * 6 * Copyright (c) 2006 Openedhand Ltd. 7 * Written by Andrzej Zaborowski <balrog@zabor.org> 8 * 9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16" 10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet 11 * from ST Microelectronics. 12 * 13 * This code is licensed under the GNU GPL v2. 14 * 15 * Contributions after 2012-01-13 are licensed under the terms of the 16 * GNU GPL, version 2 or (at your option) any later version. 17 */ 18 19 #ifndef NAND_IO 20 21 #include "qemu/osdep.h" 22 #include "hw/hw.h" 23 #include "hw/qdev-properties.h" 24 #include "hw/qdev-properties-system.h" 25 #include "hw/block/flash.h" 26 #include "sysemu/block-backend.h" 27 #include "migration/vmstate.h" 28 #include "qapi/error.h" 29 #include "qemu/error-report.h" 30 #include "qemu/module.h" 31 #include "qom/object.h" 32 33 # define NAND_CMD_READ0 0x00 34 # define NAND_CMD_READ1 0x01 35 # define NAND_CMD_READ2 0x50 36 # define NAND_CMD_LPREAD2 0x30 37 # define NAND_CMD_NOSERIALREAD2 0x35 38 # define NAND_CMD_RANDOMREAD1 0x05 39 # define NAND_CMD_RANDOMREAD2 0xe0 40 # define NAND_CMD_READID 0x90 41 # define NAND_CMD_RESET 0xff 42 # define NAND_CMD_PAGEPROGRAM1 0x80 43 # define NAND_CMD_PAGEPROGRAM2 0x10 44 # define NAND_CMD_CACHEPROGRAM2 0x15 45 # define NAND_CMD_BLOCKERASE1 0x60 46 # define NAND_CMD_BLOCKERASE2 0xd0 47 # define NAND_CMD_READSTATUS 0x70 48 # define NAND_CMD_COPYBACKPRG1 0x85 49 50 # define NAND_IOSTATUS_ERROR (1 << 0) 51 # define NAND_IOSTATUS_PLANE0 (1 << 1) 52 # define NAND_IOSTATUS_PLANE1 (1 << 2) 53 # define NAND_IOSTATUS_PLANE2 (1 << 3) 54 # define NAND_IOSTATUS_PLANE3 (1 << 4) 55 # define NAND_IOSTATUS_READY (1 << 6) 56 # define NAND_IOSTATUS_UNPROTCT (1 << 7) 57 58 # define MAX_PAGE 0x800 59 # define MAX_OOB 0x40 60 61 typedef struct NANDFlashState NANDFlashState; 62 struct NANDFlashState { 63 DeviceState parent_obj; 64 65 uint8_t manf_id, chip_id; 66 uint8_t buswidth; /* in BYTES */ 67 int size, pages; 68 int page_shift, oob_shift, erase_shift, addr_shift; 69 uint8_t *storage; 70 BlockBackend *blk; 71 int mem_oob; 72 73 uint8_t cle, ale, ce, wp, gnd; 74 75 uint8_t io[MAX_PAGE + MAX_OOB + 0x400]; 76 uint8_t *ioaddr; 77 int iolen; 78 79 uint32_t cmd; 80 uint64_t addr; 81 int addrlen; 82 int status; 83 int offset; 84 85 void (*blk_write)(NANDFlashState *s); 86 void (*blk_erase)(NANDFlashState *s); 87 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset); 88 89 uint32_t ioaddr_vmstate; 90 }; 91 92 #define TYPE_NAND "nand" 93 94 OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND) 95 96 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n) 97 { 98 /* Like memcpy() but we logical-AND the data into the destination */ 99 int i; 100 for (i = 0; i < n; i++) { 101 dest[i] &= src[i]; 102 } 103 } 104 105 # define NAND_NO_AUTOINCR 0x00000001 106 # define NAND_BUSWIDTH_16 0x00000002 107 # define NAND_NO_PADDING 0x00000004 108 # define NAND_CACHEPRG 0x00000008 109 # define NAND_COPYBACK 0x00000010 110 # define NAND_IS_AND 0x00000020 111 # define NAND_4PAGE_ARRAY 0x00000040 112 # define NAND_NO_READRDY 0x00000100 113 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK) 114 115 # define NAND_IO 116 117 # define PAGE(addr) ((addr) >> ADDR_SHIFT) 118 # define PAGE_START(page) (PAGE(page) * (NAND_PAGE_SIZE + OOB_SIZE)) 119 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1) 120 # define OOB_SHIFT (PAGE_SHIFT - 5) 121 # define OOB_SIZE (1 << OOB_SHIFT) 122 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT)) 123 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8)) 124 125 # define NAND_PAGE_SIZE 256 126 # define PAGE_SHIFT 8 127 # define PAGE_SECTORS 1 128 # define ADDR_SHIFT 8 129 # include "nand.c" 130 # define NAND_PAGE_SIZE 512 131 # define PAGE_SHIFT 9 132 # define PAGE_SECTORS 1 133 # define ADDR_SHIFT 8 134 # include "nand.c" 135 # define NAND_PAGE_SIZE 2048 136 # define PAGE_SHIFT 11 137 # define PAGE_SECTORS 4 138 # define ADDR_SHIFT 16 139 # include "nand.c" 140 141 /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */ 142 static const struct { 143 int size; 144 int width; 145 int page_shift; 146 int erase_shift; 147 uint32_t options; 148 } nand_flash_ids[0x100] = { 149 [0 ... 0xff] = { 0 }, 150 151 [0x6b] = { 4, 8, 9, 4, 0 }, 152 [0xe3] = { 4, 8, 9, 4, 0 }, 153 [0xe5] = { 4, 8, 9, 4, 0 }, 154 [0xd6] = { 8, 8, 9, 4, 0 }, 155 [0xe6] = { 8, 8, 9, 4, 0 }, 156 157 [0x33] = { 16, 8, 9, 5, 0 }, 158 [0x73] = { 16, 8, 9, 5, 0 }, 159 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, 160 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, 161 162 [0x35] = { 32, 8, 9, 5, 0 }, 163 [0x75] = { 32, 8, 9, 5, 0 }, 164 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, 165 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, 166 167 [0x36] = { 64, 8, 9, 5, 0 }, 168 [0x76] = { 64, 8, 9, 5, 0 }, 169 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, 170 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, 171 172 [0x78] = { 128, 8, 9, 5, 0 }, 173 [0x39] = { 128, 8, 9, 5, 0 }, 174 [0x79] = { 128, 8, 9, 5, 0 }, 175 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 176 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 177 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 178 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, 179 180 [0x71] = { 256, 8, 9, 5, 0 }, 181 182 /* 183 * These are the new chips with large page size. The pagesize and the 184 * erasesize is determined from the extended id bytes 185 */ 186 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR) 187 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) 188 189 /* 512 Megabit */ 190 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS }, 191 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS }, 192 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 }, 193 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 }, 194 195 /* 1 Gigabit */ 196 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS }, 197 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS }, 198 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 }, 199 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 }, 200 201 /* 2 Gigabit */ 202 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS }, 203 [0xda] = { 256, 8, 0, 0, LP_OPTIONS }, 204 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 }, 205 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 }, 206 207 /* 4 Gigabit */ 208 [0xac] = { 512, 8, 0, 0, LP_OPTIONS }, 209 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS }, 210 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 }, 211 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 }, 212 213 /* 8 Gigabit */ 214 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS }, 215 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS }, 216 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, 217 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, 218 219 /* 16 Gigabit */ 220 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS }, 221 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS }, 222 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, 223 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, 224 }; 225 226 static void nand_reset(DeviceState *dev) 227 { 228 NANDFlashState *s = NAND(dev); 229 s->cmd = NAND_CMD_READ0; 230 s->addr = 0; 231 s->addrlen = 0; 232 s->iolen = 0; 233 s->offset = 0; 234 s->status &= NAND_IOSTATUS_UNPROTCT; 235 s->status |= NAND_IOSTATUS_READY; 236 } 237 238 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value) 239 { 240 s->ioaddr[s->iolen++] = value; 241 for (value = s->buswidth; --value;) { 242 s->ioaddr[s->iolen++] = 0; 243 } 244 } 245 246 static void nand_command(NANDFlashState *s) 247 { 248 unsigned int offset; 249 switch (s->cmd) { 250 case NAND_CMD_READ0: 251 s->iolen = 0; 252 break; 253 254 case NAND_CMD_READID: 255 s->ioaddr = s->io; 256 s->iolen = 0; 257 nand_pushio_byte(s, s->manf_id); 258 nand_pushio_byte(s, s->chip_id); 259 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */ 260 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { 261 /* Page Size, Block Size, Spare Size; bit 6 indicates 262 * 8 vs 16 bit width NAND. 263 */ 264 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15); 265 } else { 266 nand_pushio_byte(s, 0xc0); /* Multi-plane */ 267 } 268 break; 269 270 case NAND_CMD_RANDOMREAD2: 271 case NAND_CMD_NOSERIALREAD2: 272 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)) 273 break; 274 offset = s->addr & ((1 << s->addr_shift) - 1); 275 s->blk_load(s, s->addr, offset); 276 if (s->gnd) 277 s->iolen = (1 << s->page_shift) - offset; 278 else 279 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; 280 break; 281 282 case NAND_CMD_RESET: 283 nand_reset(DEVICE(s)); 284 break; 285 286 case NAND_CMD_PAGEPROGRAM1: 287 s->ioaddr = s->io; 288 s->iolen = 0; 289 break; 290 291 case NAND_CMD_PAGEPROGRAM2: 292 if (s->wp) { 293 s->blk_write(s); 294 } 295 break; 296 297 case NAND_CMD_BLOCKERASE1: 298 break; 299 300 case NAND_CMD_BLOCKERASE2: 301 s->addr &= (1ull << s->addrlen * 8) - 1; 302 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ? 303 16 : 8; 304 305 if (s->wp) { 306 s->blk_erase(s); 307 } 308 break; 309 310 case NAND_CMD_READSTATUS: 311 s->ioaddr = s->io; 312 s->iolen = 0; 313 nand_pushio_byte(s, s->status); 314 break; 315 316 default: 317 printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd); 318 } 319 } 320 321 static int nand_pre_save(void *opaque) 322 { 323 NANDFlashState *s = NAND(opaque); 324 325 s->ioaddr_vmstate = s->ioaddr - s->io; 326 327 return 0; 328 } 329 330 static int nand_post_load(void *opaque, int version_id) 331 { 332 NANDFlashState *s = NAND(opaque); 333 334 if (s->ioaddr_vmstate > sizeof(s->io)) { 335 return -EINVAL; 336 } 337 s->ioaddr = s->io + s->ioaddr_vmstate; 338 339 return 0; 340 } 341 342 static const VMStateDescription vmstate_nand = { 343 .name = "nand", 344 .version_id = 1, 345 .minimum_version_id = 1, 346 .pre_save = nand_pre_save, 347 .post_load = nand_post_load, 348 .fields = (VMStateField[]) { 349 VMSTATE_UINT8(cle, NANDFlashState), 350 VMSTATE_UINT8(ale, NANDFlashState), 351 VMSTATE_UINT8(ce, NANDFlashState), 352 VMSTATE_UINT8(wp, NANDFlashState), 353 VMSTATE_UINT8(gnd, NANDFlashState), 354 VMSTATE_BUFFER(io, NANDFlashState), 355 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState), 356 VMSTATE_INT32(iolen, NANDFlashState), 357 VMSTATE_UINT32(cmd, NANDFlashState), 358 VMSTATE_UINT64(addr, NANDFlashState), 359 VMSTATE_INT32(addrlen, NANDFlashState), 360 VMSTATE_INT32(status, NANDFlashState), 361 VMSTATE_INT32(offset, NANDFlashState), 362 /* XXX: do we want to save s->storage too? */ 363 VMSTATE_END_OF_LIST() 364 } 365 }; 366 367 static void nand_realize(DeviceState *dev, Error **errp) 368 { 369 int pagesize; 370 NANDFlashState *s = NAND(dev); 371 int ret; 372 373 374 s->buswidth = nand_flash_ids[s->chip_id].width >> 3; 375 s->size = nand_flash_ids[s->chip_id].size << 20; 376 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { 377 s->page_shift = 11; 378 s->erase_shift = 6; 379 } else { 380 s->page_shift = nand_flash_ids[s->chip_id].page_shift; 381 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift; 382 } 383 384 switch (1 << s->page_shift) { 385 case 256: 386 nand_init_256(s); 387 break; 388 case 512: 389 nand_init_512(s); 390 break; 391 case 2048: 392 nand_init_2048(s); 393 break; 394 default: 395 error_setg(errp, "Unsupported NAND block size %#x", 396 1 << s->page_shift); 397 return; 398 } 399 400 pagesize = 1 << s->oob_shift; 401 s->mem_oob = 1; 402 if (s->blk) { 403 if (blk_is_read_only(s->blk)) { 404 error_setg(errp, "Can't use a read-only drive"); 405 return; 406 } 407 ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, 408 BLK_PERM_ALL, errp); 409 if (ret < 0) { 410 return; 411 } 412 if (blk_getlength(s->blk) >= 413 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) { 414 pagesize = 0; 415 s->mem_oob = 0; 416 } 417 } else { 418 pagesize += 1 << s->page_shift; 419 } 420 if (pagesize) { 421 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize), 422 0xff, s->pages * pagesize); 423 } 424 /* Give s->ioaddr a sane value in case we save state before it is used. */ 425 s->ioaddr = s->io; 426 } 427 428 static Property nand_properties[] = { 429 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0), 430 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0), 431 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk), 432 DEFINE_PROP_END_OF_LIST(), 433 }; 434 435 static void nand_class_init(ObjectClass *klass, void *data) 436 { 437 DeviceClass *dc = DEVICE_CLASS(klass); 438 439 dc->realize = nand_realize; 440 dc->reset = nand_reset; 441 dc->vmsd = &vmstate_nand; 442 device_class_set_props(dc, nand_properties); 443 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 444 } 445 446 static const TypeInfo nand_info = { 447 .name = TYPE_NAND, 448 .parent = TYPE_DEVICE, 449 .instance_size = sizeof(NANDFlashState), 450 .class_init = nand_class_init, 451 }; 452 453 static void nand_register_types(void) 454 { 455 type_register_static(&nand_info); 456 } 457 458 /* 459 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip 460 * outputs are R/B and eight I/O pins. 461 * 462 * CE, WP and R/B are active low. 463 */ 464 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale, 465 uint8_t ce, uint8_t wp, uint8_t gnd) 466 { 467 NANDFlashState *s = NAND(dev); 468 469 s->cle = cle; 470 s->ale = ale; 471 s->ce = ce; 472 s->wp = wp; 473 s->gnd = gnd; 474 if (wp) { 475 s->status |= NAND_IOSTATUS_UNPROTCT; 476 } else { 477 s->status &= ~NAND_IOSTATUS_UNPROTCT; 478 } 479 } 480 481 void nand_getpins(DeviceState *dev, int *rb) 482 { 483 *rb = 1; 484 } 485 486 void nand_setio(DeviceState *dev, uint32_t value) 487 { 488 int i; 489 NANDFlashState *s = NAND(dev); 490 491 if (!s->ce && s->cle) { 492 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { 493 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) 494 return; 495 if (value == NAND_CMD_RANDOMREAD1) { 496 s->addr &= ~((1 << s->addr_shift) - 1); 497 s->addrlen = 0; 498 return; 499 } 500 } 501 if (value == NAND_CMD_READ0) { 502 s->offset = 0; 503 } else if (value == NAND_CMD_READ1) { 504 s->offset = 0x100; 505 value = NAND_CMD_READ0; 506 } else if (value == NAND_CMD_READ2) { 507 s->offset = 1 << s->page_shift; 508 value = NAND_CMD_READ0; 509 } 510 511 s->cmd = value; 512 513 if (s->cmd == NAND_CMD_READSTATUS || 514 s->cmd == NAND_CMD_PAGEPROGRAM2 || 515 s->cmd == NAND_CMD_BLOCKERASE1 || 516 s->cmd == NAND_CMD_BLOCKERASE2 || 517 s->cmd == NAND_CMD_NOSERIALREAD2 || 518 s->cmd == NAND_CMD_RANDOMREAD2 || 519 s->cmd == NAND_CMD_RESET) { 520 nand_command(s); 521 } 522 523 if (s->cmd != NAND_CMD_RANDOMREAD2) { 524 s->addrlen = 0; 525 } 526 } 527 528 if (s->ale) { 529 unsigned int shift = s->addrlen * 8; 530 uint64_t mask = ~(0xffull << shift); 531 uint64_t v = (uint64_t)value << shift; 532 533 s->addr = (s->addr & mask) | v; 534 s->addrlen ++; 535 536 switch (s->addrlen) { 537 case 1: 538 if (s->cmd == NAND_CMD_READID) { 539 nand_command(s); 540 } 541 break; 542 case 2: /* fix cache address as a byte address */ 543 s->addr <<= (s->buswidth - 1); 544 break; 545 case 3: 546 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && 547 (s->cmd == NAND_CMD_READ0 || 548 s->cmd == NAND_CMD_PAGEPROGRAM1)) { 549 nand_command(s); 550 } 551 break; 552 case 4: 553 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && 554 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */ 555 (s->cmd == NAND_CMD_READ0 || 556 s->cmd == NAND_CMD_PAGEPROGRAM1)) { 557 nand_command(s); 558 } 559 break; 560 case 5: 561 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && 562 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */ 563 (s->cmd == NAND_CMD_READ0 || 564 s->cmd == NAND_CMD_PAGEPROGRAM1)) { 565 nand_command(s); 566 } 567 break; 568 default: 569 break; 570 } 571 } 572 573 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) { 574 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) { 575 for (i = s->buswidth; i--; value >>= 8) { 576 s->io[s->iolen ++] = (uint8_t) (value & 0xff); 577 } 578 } 579 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) { 580 if ((s->addr & ((1 << s->addr_shift) - 1)) < 581 (1 << s->page_shift) + (1 << s->oob_shift)) { 582 for (i = s->buswidth; i--; s->addr++, value >>= 8) { 583 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = 584 (uint8_t) (value & 0xff); 585 } 586 } 587 } 588 } 589 590 uint32_t nand_getio(DeviceState *dev) 591 { 592 int offset; 593 uint32_t x = 0; 594 NANDFlashState *s = NAND(dev); 595 596 /* Allow sequential reading */ 597 if (!s->iolen && s->cmd == NAND_CMD_READ0) { 598 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset; 599 s->offset = 0; 600 601 s->blk_load(s, s->addr, offset); 602 if (s->gnd) 603 s->iolen = (1 << s->page_shift) - offset; 604 else 605 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; 606 } 607 608 if (s->ce || s->iolen <= 0) { 609 return 0; 610 } 611 612 for (offset = s->buswidth; offset--;) { 613 x |= s->ioaddr[offset] << (offset << 3); 614 } 615 /* after receiving READ STATUS command all subsequent reads will 616 * return the status register value until another command is issued 617 */ 618 if (s->cmd != NAND_CMD_READSTATUS) { 619 s->addr += s->buswidth; 620 s->ioaddr += s->buswidth; 621 s->iolen -= s->buswidth; 622 } 623 return x; 624 } 625 626 uint32_t nand_getbuswidth(DeviceState *dev) 627 { 628 NANDFlashState *s = (NANDFlashState *) dev; 629 return s->buswidth << 3; 630 } 631 632 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id) 633 { 634 DeviceState *dev; 635 636 if (nand_flash_ids[chip_id].size == 0) { 637 hw_error("%s: Unsupported NAND chip ID.\n", __func__); 638 } 639 dev = qdev_new(TYPE_NAND); 640 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id); 641 qdev_prop_set_uint8(dev, "chip_id", chip_id); 642 if (blk) { 643 qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal); 644 } 645 646 qdev_realize(dev, NULL, &error_fatal); 647 return dev; 648 } 649 650 type_init(nand_register_types) 651 652 #else 653 654 /* Program a single page */ 655 static void glue(nand_blk_write_, NAND_PAGE_SIZE)(NANDFlashState *s) 656 { 657 uint64_t off, page, sector, soff; 658 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200]; 659 if (PAGE(s->addr) >= s->pages) 660 return; 661 662 if (!s->blk) { 663 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) + 664 s->offset, s->io, s->iolen); 665 } else if (s->mem_oob) { 666 sector = SECTOR(s->addr); 667 off = (s->addr & PAGE_MASK) + s->offset; 668 soff = SECTOR_OFFSET(s->addr); 669 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf, 670 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) { 671 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); 672 return; 673 } 674 675 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, NAND_PAGE_SIZE - off)); 676 if (off + s->iolen > NAND_PAGE_SIZE) { 677 page = PAGE(s->addr); 678 mem_and(s->storage + (page << OOB_SHIFT), s->io + NAND_PAGE_SIZE - off, 679 MIN(OOB_SIZE, off + s->iolen - NAND_PAGE_SIZE)); 680 } 681 682 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf, 683 PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) { 684 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); 685 } 686 } else { 687 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset; 688 sector = off >> 9; 689 soff = off & 0x1ff; 690 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf, 691 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) { 692 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); 693 return; 694 } 695 696 mem_and(iobuf + soff, s->io, s->iolen); 697 698 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf, 699 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) { 700 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); 701 } 702 } 703 s->offset = 0; 704 } 705 706 /* Erase a single block */ 707 static void glue(nand_blk_erase_, NAND_PAGE_SIZE)(NANDFlashState *s) 708 { 709 uint64_t i, page, addr; 710 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, }; 711 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1); 712 713 if (PAGE(addr) >= s->pages) { 714 return; 715 } 716 717 if (!s->blk) { 718 memset(s->storage + PAGE_START(addr), 719 0xff, (NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift); 720 } else if (s->mem_oob) { 721 memset(s->storage + (PAGE(addr) << OOB_SHIFT), 722 0xff, OOB_SIZE << s->erase_shift); 723 i = SECTOR(addr); 724 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift))); 725 for (; i < page; i ++) 726 if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf, 727 BDRV_SECTOR_SIZE, 0) < 0) { 728 printf("%s: write error in sector %" PRIu64 "\n", __func__, i); 729 } 730 } else { 731 addr = PAGE_START(addr); 732 page = addr >> 9; 733 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf, 734 BDRV_SECTOR_SIZE) < 0) { 735 printf("%s: read error in sector %" PRIu64 "\n", __func__, page); 736 } 737 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1); 738 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf, 739 BDRV_SECTOR_SIZE, 0) < 0) { 740 printf("%s: write error in sector %" PRIu64 "\n", __func__, page); 741 } 742 743 memset(iobuf, 0xff, 0x200); 744 i = (addr & ~0x1ff) + 0x200; 745 for (addr += ((NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200; 746 i < addr; i += 0x200) { 747 if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) { 748 printf("%s: write error in sector %" PRIu64 "\n", 749 __func__, i >> 9); 750 } 751 } 752 753 page = i >> 9; 754 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf, 755 BDRV_SECTOR_SIZE) < 0) { 756 printf("%s: read error in sector %" PRIu64 "\n", __func__, page); 757 } 758 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1); 759 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf, 760 BDRV_SECTOR_SIZE, 0) < 0) { 761 printf("%s: write error in sector %" PRIu64 "\n", __func__, page); 762 } 763 } 764 } 765 766 static void glue(nand_blk_load_, NAND_PAGE_SIZE)(NANDFlashState *s, 767 uint64_t addr, int offset) 768 { 769 if (PAGE(addr) >= s->pages) { 770 return; 771 } 772 773 if (s->blk) { 774 if (s->mem_oob) { 775 if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io, 776 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) { 777 printf("%s: read error in sector %" PRIu64 "\n", 778 __func__, SECTOR(addr)); 779 } 780 memcpy(s->io + SECTOR_OFFSET(s->addr) + NAND_PAGE_SIZE, 781 s->storage + (PAGE(s->addr) << OOB_SHIFT), 782 OOB_SIZE); 783 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset; 784 } else { 785 if (blk_pread(s->blk, PAGE_START(addr), s->io, 786 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) { 787 printf("%s: read error in sector %" PRIu64 "\n", 788 __func__, PAGE_START(addr) >> 9); 789 } 790 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset; 791 } 792 } else { 793 memcpy(s->io, s->storage + PAGE_START(s->addr) + 794 offset, NAND_PAGE_SIZE + OOB_SIZE - offset); 795 s->ioaddr = s->io; 796 } 797 } 798 799 static void glue(nand_init_, NAND_PAGE_SIZE)(NANDFlashState *s) 800 { 801 s->oob_shift = PAGE_SHIFT - 5; 802 s->pages = s->size >> PAGE_SHIFT; 803 s->addr_shift = ADDR_SHIFT; 804 805 s->blk_erase = glue(nand_blk_erase_, NAND_PAGE_SIZE); 806 s->blk_write = glue(nand_blk_write_, NAND_PAGE_SIZE); 807 s->blk_load = glue(nand_blk_load_, NAND_PAGE_SIZE); 808 } 809 810 # undef NAND_PAGE_SIZE 811 # undef PAGE_SHIFT 812 # undef PAGE_SECTORS 813 # undef ADDR_SHIFT 814 #endif /* NAND_IO */ 815