1 /* 2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command 3 * set. Known devices table current as of Jun/2012 and taken from linux. 4 * See drivers/mtd/devices/m25p80.c. 5 * 6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com> 7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com> 8 * Copyright (C) 2012 PetaLogix 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 or 13 * (at your option) a later version of the License. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qemu/units.h" 26 #include "sysemu/block-backend.h" 27 #include "hw/block/block.h" 28 #include "hw/block/flash.h" 29 #include "hw/qdev-properties.h" 30 #include "hw/qdev-properties-system.h" 31 #include "hw/ssi/ssi.h" 32 #include "migration/vmstate.h" 33 #include "qemu/bitops.h" 34 #include "qemu/log.h" 35 #include "qemu/module.h" 36 #include "qemu/error-report.h" 37 #include "qapi/error.h" 38 #include "trace.h" 39 #include "qom/object.h" 40 #include "m25p80_sfdp.h" 41 42 /* 16 MiB max in 3 byte address mode */ 43 #define MAX_3BYTES_SIZE 0x1000000 44 #define SPI_NOR_MAX_ID_LEN 6 45 46 /* Fields for FlashPartInfo->flags */ 47 enum spi_flash_option_flags { 48 ER_4K = BIT(0), 49 ER_32K = BIT(1), 50 EEPROM = BIT(2), 51 HAS_SR_TB = BIT(3), 52 HAS_SR_BP3_BIT6 = BIT(4), 53 }; 54 55 typedef struct FlashPartInfo { 56 const char *part_name; 57 /* 58 * This array stores the ID bytes. 59 * The first three bytes are the JEDIC ID. 60 * JEDEC ID zero means "no ID" (mostly older chips). 61 */ 62 uint8_t id[SPI_NOR_MAX_ID_LEN]; 63 uint8_t id_len; 64 /* there is confusion between manufacturers as to what a sector is. In this 65 * device model, a "sector" is the size that is erased by the ERASE_SECTOR 66 * command (opcode 0xd8). 67 */ 68 uint32_t sector_size; 69 uint32_t n_sectors; 70 uint32_t page_size; 71 uint16_t flags; 72 /* 73 * Big sized spi nor are often stacked devices, thus sometime 74 * replace chip erase with die erase. 75 * This field inform how many die is in the chip. 76 */ 77 uint8_t die_cnt; 78 uint8_t (*sfdp_read)(uint32_t sfdp_addr); 79 } FlashPartInfo; 80 81 /* adapted from linux */ 82 /* Used when the "_ext_id" is two bytes at most */ 83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ 84 .part_name = _part_name,\ 85 .id = {\ 86 ((_jedec_id) >> 16) & 0xff,\ 87 ((_jedec_id) >> 8) & 0xff,\ 88 (_jedec_id) & 0xff,\ 89 ((_ext_id) >> 8) & 0xff,\ 90 (_ext_id) & 0xff,\ 91 },\ 92 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ 93 .sector_size = (_sector_size),\ 94 .n_sectors = (_n_sectors),\ 95 .page_size = 256,\ 96 .flags = (_flags),\ 97 .die_cnt = 0 98 99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ 100 .part_name = _part_name,\ 101 .id = {\ 102 ((_jedec_id) >> 16) & 0xff,\ 103 ((_jedec_id) >> 8) & 0xff,\ 104 (_jedec_id) & 0xff,\ 105 ((_ext_id) >> 16) & 0xff,\ 106 ((_ext_id) >> 8) & 0xff,\ 107 (_ext_id) & 0xff,\ 108 },\ 109 .id_len = 6,\ 110 .sector_size = (_sector_size),\ 111 .n_sectors = (_n_sectors),\ 112 .page_size = 256,\ 113 .flags = (_flags),\ 114 .die_cnt = 0 115 116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\ 117 _flags, _die_cnt)\ 118 .part_name = _part_name,\ 119 .id = {\ 120 ((_jedec_id) >> 16) & 0xff,\ 121 ((_jedec_id) >> 8) & 0xff,\ 122 (_jedec_id) & 0xff,\ 123 ((_ext_id) >> 8) & 0xff,\ 124 (_ext_id) & 0xff,\ 125 },\ 126 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ 127 .sector_size = (_sector_size),\ 128 .n_sectors = (_n_sectors),\ 129 .page_size = 256,\ 130 .flags = (_flags),\ 131 .die_cnt = _die_cnt 132 133 #define JEDEC_NUMONYX 0x20 134 #define JEDEC_WINBOND 0xEF 135 #define JEDEC_SPANSION 0x01 136 137 /* Numonyx (Micron) Configuration register macros */ 138 #define VCFG_DUMMY 0x1 139 #define VCFG_WRAP_SEQUENTIAL 0x2 140 #define NVCFG_XIP_MODE_DISABLED (7 << 9) 141 #define NVCFG_XIP_MODE_MASK (7 << 9) 142 #define VCFG_XIP_MODE_DISABLED (1 << 3) 143 #define CFG_DUMMY_CLK_LEN 4 144 #define NVCFG_DUMMY_CLK_POS 12 145 #define VCFG_DUMMY_CLK_POS 4 146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7 147 #define EVCFG_VPP_ACCELERATOR (1 << 3) 148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4) 149 #define NVCFG_DUAL_IO_MASK (1 << 2) 150 #define EVCFG_DUAL_IO_DISABLED (1 << 6) 151 #define NVCFG_QUAD_IO_MASK (1 << 3) 152 #define EVCFG_QUAD_IO_DISABLED (1 << 7) 153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0) 154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1) 155 156 /* Numonyx (Micron) Flag Status Register macros */ 157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1 158 #define FSR_FLASH_READY (1 << 7) 159 160 /* Spansion configuration registers macros. */ 161 #define SPANSION_QUAD_CFG_POS 0 162 #define SPANSION_QUAD_CFG_LEN 1 163 #define SPANSION_DUMMY_CLK_POS 0 164 #define SPANSION_DUMMY_CLK_LEN 4 165 #define SPANSION_ADDR_LEN_POS 7 166 #define SPANSION_ADDR_LEN_LEN 1 167 168 /* 169 * Spansion read mode command length in bytes, 170 * the mode is currently not supported. 171 */ 172 173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1 174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1 175 176 static const FlashPartInfo known_devices[] = { 177 /* Atmel -- some are (confusingly) marketed as "DataFlash" */ 178 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) }, 179 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) }, 180 181 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) }, 182 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) }, 183 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) }, 184 185 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) }, 186 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) }, 187 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) }, 188 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) }, 189 190 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) }, 191 192 /* Atmel EEPROMS - it is assumed, that don't care bit in command 193 * is set to 0. Block protection is not supported. 194 */ 195 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) }, 196 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) }, 197 198 /* EON -- en25xxx */ 199 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) }, 200 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) }, 201 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) }, 202 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) }, 203 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) }, 204 205 /* GigaDevice */ 206 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) }, 207 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) }, 208 209 /* Intel/Numonyx -- xxxs33b */ 210 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) }, 211 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) }, 212 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) }, 213 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) }, 214 215 /* ISSI */ 216 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K) }, 217 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K) }, 218 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K) }, 219 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K) }, 220 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K) }, 221 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K) }, 222 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K) }, 223 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K) }, 224 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K) }, 225 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K) }, 226 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K), 227 .sfdp_read = m25p80_sfdp_is25wp256 }, 228 229 /* Macronix */ 230 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) }, 231 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) }, 232 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) }, 233 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) }, 234 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) }, 235 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) }, 236 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) }, 237 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) }, 238 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 239 ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e }, 240 { INFO6("mx25l25635f", 0xc22019, 0xc22019, 64 << 10, 512, 241 ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f }, 242 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) }, 243 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, 244 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, 245 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, 246 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K), 247 .sfdp_read = m25p80_sfdp_mx66l1g45g }, 248 249 /* Micron */ 250 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) }, 251 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) }, 252 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) }, 253 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) }, 254 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) }, 255 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) }, 256 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) }, 257 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K), 258 .sfdp_read = m25p80_sfdp_n25q256a }, 259 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) }, 260 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, 261 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) }, 262 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, 263 ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB), 264 .sfdp_read = m25p80_sfdp_n25q256a }, 265 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, 266 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) }, 267 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) }, 268 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024, 269 ER_4K | ER_32K, 2) }, 270 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, 271 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, 272 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, 273 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, 274 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) }, 275 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) }, 276 277 /* Spansion -- single (large) sector size only, at least 278 * for the chips listed here (without boot sectors). 279 */ 280 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) }, 281 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) }, 282 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) }, 283 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) }, 284 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) }, 285 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) }, 286 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) }, 287 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) }, 288 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) }, 289 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) }, 290 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) }, 291 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) }, 292 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) }, 293 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) }, 294 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) }, 295 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) }, 296 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) }, 297 298 /* Spansion -- boot sectors support */ 299 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) }, 300 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) }, 301 302 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */ 303 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) }, 304 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) }, 305 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) }, 306 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) }, 307 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) }, 308 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) }, 309 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) }, 310 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) }, 311 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) }, 312 313 /* ST Microelectronics -- newer production may have feature updates */ 314 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) }, 315 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) }, 316 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) }, 317 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) }, 318 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) }, 319 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) }, 320 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) }, 321 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) }, 322 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) }, 323 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) }, 324 325 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) }, 326 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) }, 327 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) }, 328 329 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) }, 330 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) }, 331 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) }, 332 333 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) }, 334 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) }, 335 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) }, 336 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) }, 337 338 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */ 339 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) }, 340 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) }, 341 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) }, 342 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) }, 343 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) }, 344 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) }, 345 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) }, 346 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) }, 347 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) }, 348 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) }, 349 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) }, 350 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) }, 351 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K), 352 .sfdp_read = m25p80_sfdp_w25q256 }, 353 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K), 354 .sfdp_read = m25p80_sfdp_w25q512jv }, 355 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K), 356 .sfdp_read = m25p80_sfdp_w25q01jvq }, 357 }; 358 359 typedef enum { 360 NOP = 0, 361 WRSR = 0x1, 362 WRDI = 0x4, 363 RDSR = 0x5, 364 WREN = 0x6, 365 BRRD = 0x16, 366 BRWR = 0x17, 367 JEDEC_READ = 0x9f, 368 BULK_ERASE_60 = 0x60, 369 BULK_ERASE = 0xc7, 370 READ_FSR = 0x70, 371 RDCR = 0x15, 372 RDSFDP = 0x5a, 373 374 READ = 0x03, 375 READ4 = 0x13, 376 FAST_READ = 0x0b, 377 FAST_READ4 = 0x0c, 378 DOR = 0x3b, 379 DOR4 = 0x3c, 380 QOR = 0x6b, 381 QOR4 = 0x6c, 382 DIOR = 0xbb, 383 DIOR4 = 0xbc, 384 QIOR = 0xeb, 385 QIOR4 = 0xec, 386 387 PP = 0x02, 388 PP4 = 0x12, 389 PP4_4 = 0x3e, 390 DPP = 0xa2, 391 QPP = 0x32, 392 QPP_4 = 0x34, 393 RDID_90 = 0x90, 394 RDID_AB = 0xab, 395 AAI_WP = 0xad, 396 397 ERASE_4K = 0x20, 398 ERASE4_4K = 0x21, 399 ERASE_32K = 0x52, 400 ERASE4_32K = 0x5c, 401 ERASE_SECTOR = 0xd8, 402 ERASE4_SECTOR = 0xdc, 403 404 EN_4BYTE_ADDR = 0xB7, 405 EX_4BYTE_ADDR = 0xE9, 406 407 EXTEND_ADDR_READ = 0xC8, 408 EXTEND_ADDR_WRITE = 0xC5, 409 410 RESET_ENABLE = 0x66, 411 RESET_MEMORY = 0x99, 412 413 /* 414 * Micron: 0x35 - enable QPI 415 * Spansion: 0x35 - read control register 416 */ 417 RDCR_EQIO = 0x35, 418 RSTQIO = 0xf5, 419 420 RNVCR = 0xB5, 421 WNVCR = 0xB1, 422 423 RVCR = 0x85, 424 WVCR = 0x81, 425 426 REVCR = 0x65, 427 WEVCR = 0x61, 428 429 DIE_ERASE = 0xC4, 430 } FlashCMD; 431 432 typedef enum { 433 STATE_IDLE, 434 STATE_PAGE_PROGRAM, 435 STATE_READ, 436 STATE_COLLECTING_DATA, 437 STATE_COLLECTING_VAR_LEN_DATA, 438 STATE_READING_DATA, 439 STATE_READING_SFDP, 440 } CMDState; 441 442 typedef enum { 443 MAN_SPANSION, 444 MAN_MACRONIX, 445 MAN_NUMONYX, 446 MAN_WINBOND, 447 MAN_SST, 448 MAN_ISSI, 449 MAN_GENERIC, 450 } Manufacturer; 451 452 typedef enum { 453 MODE_STD = 0, 454 MODE_DIO = 1, 455 MODE_QIO = 2 456 } SPIMode; 457 458 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16 459 460 struct Flash { 461 SSIPeripheral parent_obj; 462 463 BlockBackend *blk; 464 465 uint8_t *storage; 466 uint32_t size; 467 int page_size; 468 469 uint8_t state; 470 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ]; 471 uint32_t len; 472 uint32_t pos; 473 bool data_read_loop; 474 uint8_t needed_bytes; 475 uint8_t cmd_in_progress; 476 uint32_t cur_addr; 477 uint32_t nonvolatile_cfg; 478 /* Configuration register for Macronix */ 479 uint32_t volatile_cfg; 480 uint32_t enh_volatile_cfg; 481 /* Spansion cfg registers. */ 482 uint8_t spansion_cr1nv; 483 uint8_t spansion_cr2nv; 484 uint8_t spansion_cr3nv; 485 uint8_t spansion_cr4nv; 486 uint8_t spansion_cr1v; 487 uint8_t spansion_cr2v; 488 uint8_t spansion_cr3v; 489 uint8_t spansion_cr4v; 490 bool wp_level; 491 bool write_enable; 492 bool four_bytes_address_mode; 493 bool reset_enable; 494 bool quad_enable; 495 bool aai_enable; 496 bool block_protect0; 497 bool block_protect1; 498 bool block_protect2; 499 bool block_protect3; 500 bool top_bottom_bit; 501 bool status_register_write_disabled; 502 uint8_t ear; 503 504 int64_t dirty_page; 505 506 const FlashPartInfo *pi; 507 508 }; 509 510 struct M25P80Class { 511 SSIPeripheralClass parent_class; 512 FlashPartInfo *pi; 513 }; 514 515 #define TYPE_M25P80 "m25p80-generic" 516 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80) 517 518 static inline Manufacturer get_man(Flash *s) 519 { 520 switch (s->pi->id[0]) { 521 case 0x20: 522 return MAN_NUMONYX; 523 case 0xEF: 524 return MAN_WINBOND; 525 case 0x01: 526 return MAN_SPANSION; 527 case 0xC2: 528 return MAN_MACRONIX; 529 case 0xBF: 530 return MAN_SST; 531 case 0x9D: 532 return MAN_ISSI; 533 default: 534 return MAN_GENERIC; 535 } 536 } 537 538 static void blk_sync_complete(void *opaque, int ret) 539 { 540 QEMUIOVector *iov = opaque; 541 542 qemu_iovec_destroy(iov); 543 g_free(iov); 544 545 /* do nothing. Masters do not directly interact with the backing store, 546 * only the working copy so no mutexing required. 547 */ 548 } 549 550 static void flash_sync_page(Flash *s, int page) 551 { 552 QEMUIOVector *iov; 553 554 if (!s->blk || !blk_is_writable(s->blk)) { 555 return; 556 } 557 558 iov = g_new(QEMUIOVector, 1); 559 qemu_iovec_init(iov, 1); 560 qemu_iovec_add(iov, s->storage + page * s->pi->page_size, 561 s->pi->page_size); 562 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0, 563 blk_sync_complete, iov); 564 } 565 566 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len) 567 { 568 QEMUIOVector *iov; 569 570 if (!s->blk || !blk_is_writable(s->blk)) { 571 return; 572 } 573 574 assert(!(len % BDRV_SECTOR_SIZE)); 575 iov = g_new(QEMUIOVector, 1); 576 qemu_iovec_init(iov, 1); 577 qemu_iovec_add(iov, s->storage + off, len); 578 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov); 579 } 580 581 static void flash_erase(Flash *s, int offset, FlashCMD cmd) 582 { 583 uint32_t len; 584 uint8_t capa_to_assert = 0; 585 586 switch (cmd) { 587 case ERASE_4K: 588 case ERASE4_4K: 589 len = 4 * KiB; 590 capa_to_assert = ER_4K; 591 break; 592 case ERASE_32K: 593 case ERASE4_32K: 594 len = 32 * KiB; 595 capa_to_assert = ER_32K; 596 break; 597 case ERASE_SECTOR: 598 case ERASE4_SECTOR: 599 len = s->pi->sector_size; 600 break; 601 case BULK_ERASE: 602 len = s->size; 603 break; 604 case DIE_ERASE: 605 if (s->pi->die_cnt) { 606 len = s->size / s->pi->die_cnt; 607 offset = offset & (~(len - 1)); 608 } else { 609 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported" 610 " by device\n"); 611 return; 612 } 613 break; 614 default: 615 abort(); 616 } 617 618 trace_m25p80_flash_erase(s, offset, len); 619 620 if ((s->pi->flags & capa_to_assert) != capa_to_assert) { 621 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by" 622 " device\n", len); 623 } 624 625 if (!s->write_enable) { 626 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n"); 627 return; 628 } 629 memset(s->storage + offset, 0xff, len); 630 flash_sync_area(s, offset, len); 631 } 632 633 static inline void flash_sync_dirty(Flash *s, int64_t newpage) 634 { 635 if (s->dirty_page >= 0 && s->dirty_page != newpage) { 636 flash_sync_page(s, s->dirty_page); 637 s->dirty_page = newpage; 638 } 639 } 640 641 static inline 642 void flash_write8(Flash *s, uint32_t addr, uint8_t data) 643 { 644 uint32_t page = addr / s->pi->page_size; 645 uint8_t prev = s->storage[s->cur_addr]; 646 uint32_t block_protect_value = (s->block_protect3 << 3) | 647 (s->block_protect2 << 2) | 648 (s->block_protect1 << 1) | 649 (s->block_protect0 << 0); 650 651 if (!s->write_enable) { 652 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n"); 653 return; 654 } 655 656 if (block_protect_value > 0) { 657 uint32_t num_protected_sectors = 1 << (block_protect_value - 1); 658 uint32_t sector = addr / s->pi->sector_size; 659 660 /* top_bottom_bit == 0 means TOP */ 661 if (!s->top_bottom_bit) { 662 if (s->pi->n_sectors <= sector + num_protected_sectors) { 663 qemu_log_mask(LOG_GUEST_ERROR, 664 "M25P80: write with write protect!\n"); 665 return; 666 } 667 } else { 668 if (sector < num_protected_sectors) { 669 qemu_log_mask(LOG_GUEST_ERROR, 670 "M25P80: write with write protect!\n"); 671 return; 672 } 673 } 674 } 675 676 if ((prev ^ data) & data) { 677 trace_m25p80_programming_zero_to_one(s, addr, prev, data); 678 } 679 680 if (s->pi->flags & EEPROM) { 681 s->storage[s->cur_addr] = data; 682 } else { 683 s->storage[s->cur_addr] &= data; 684 } 685 686 flash_sync_dirty(s, page); 687 s->dirty_page = page; 688 } 689 690 static inline int get_addr_length(Flash *s) 691 { 692 /* check if eeprom is in use */ 693 if (s->pi->flags == EEPROM) { 694 return 2; 695 } 696 697 switch (s->cmd_in_progress) { 698 case RDSFDP: 699 return 3; 700 case PP4: 701 case PP4_4: 702 case QPP_4: 703 case READ4: 704 case QIOR4: 705 case ERASE4_4K: 706 case ERASE4_32K: 707 case ERASE4_SECTOR: 708 case FAST_READ4: 709 case DOR4: 710 case QOR4: 711 case DIOR4: 712 return 4; 713 default: 714 return s->four_bytes_address_mode ? 4 : 3; 715 } 716 } 717 718 static void complete_collecting_data(Flash *s) 719 { 720 int i, n; 721 722 n = get_addr_length(s); 723 s->cur_addr = (n == 3 ? s->ear : 0); 724 for (i = 0; i < n; ++i) { 725 s->cur_addr <<= 8; 726 s->cur_addr |= s->data[i]; 727 } 728 729 s->cur_addr &= s->size - 1; 730 731 s->state = STATE_IDLE; 732 733 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear, 734 s->cur_addr); 735 736 switch (s->cmd_in_progress) { 737 case DPP: 738 case QPP: 739 case QPP_4: 740 case PP: 741 case PP4: 742 case PP4_4: 743 s->state = STATE_PAGE_PROGRAM; 744 break; 745 case AAI_WP: 746 /* AAI programming starts from the even address */ 747 s->cur_addr &= ~BIT(0); 748 s->state = STATE_PAGE_PROGRAM; 749 break; 750 case READ: 751 case READ4: 752 case FAST_READ: 753 case FAST_READ4: 754 case DOR: 755 case DOR4: 756 case QOR: 757 case QOR4: 758 case DIOR: 759 case DIOR4: 760 case QIOR: 761 case QIOR4: 762 s->state = STATE_READ; 763 break; 764 case ERASE_4K: 765 case ERASE4_4K: 766 case ERASE_32K: 767 case ERASE4_32K: 768 case ERASE_SECTOR: 769 case ERASE4_SECTOR: 770 case DIE_ERASE: 771 flash_erase(s, s->cur_addr, s->cmd_in_progress); 772 break; 773 case WRSR: 774 s->status_register_write_disabled = extract32(s->data[0], 7, 1); 775 s->block_protect0 = extract32(s->data[0], 2, 1); 776 s->block_protect1 = extract32(s->data[0], 3, 1); 777 s->block_protect2 = extract32(s->data[0], 4, 1); 778 if (s->pi->flags & HAS_SR_TB) { 779 s->top_bottom_bit = extract32(s->data[0], 5, 1); 780 } 781 if (s->pi->flags & HAS_SR_BP3_BIT6) { 782 s->block_protect3 = extract32(s->data[0], 6, 1); 783 } 784 785 switch (get_man(s)) { 786 case MAN_SPANSION: 787 s->quad_enable = !!(s->data[1] & 0x02); 788 break; 789 case MAN_ISSI: 790 s->quad_enable = extract32(s->data[0], 6, 1); 791 break; 792 case MAN_MACRONIX: 793 s->quad_enable = extract32(s->data[0], 6, 1); 794 if (s->len > 1) { 795 s->volatile_cfg = s->data[1]; 796 s->four_bytes_address_mode = extract32(s->data[1], 5, 1); 797 } 798 break; 799 default: 800 break; 801 } 802 if (s->write_enable) { 803 s->write_enable = false; 804 } 805 break; 806 case BRWR: 807 case EXTEND_ADDR_WRITE: 808 s->ear = s->data[0]; 809 break; 810 case WNVCR: 811 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8); 812 break; 813 case WVCR: 814 s->volatile_cfg = s->data[0]; 815 break; 816 case WEVCR: 817 s->enh_volatile_cfg = s->data[0]; 818 break; 819 case RDID_90: 820 case RDID_AB: 821 if (get_man(s) == MAN_SST) { 822 if (s->cur_addr <= 1) { 823 if (s->cur_addr) { 824 s->data[0] = s->pi->id[2]; 825 s->data[1] = s->pi->id[0]; 826 } else { 827 s->data[0] = s->pi->id[0]; 828 s->data[1] = s->pi->id[2]; 829 } 830 s->pos = 0; 831 s->len = 2; 832 s->data_read_loop = true; 833 s->state = STATE_READING_DATA; 834 } else { 835 qemu_log_mask(LOG_GUEST_ERROR, 836 "M25P80: Invalid read id address\n"); 837 } 838 } else { 839 qemu_log_mask(LOG_GUEST_ERROR, 840 "M25P80: Read id (command 0x90/0xAB) is not supported" 841 " by device\n"); 842 } 843 break; 844 845 case RDSFDP: 846 s->state = STATE_READING_SFDP; 847 break; 848 849 default: 850 break; 851 } 852 } 853 854 static void reset_memory(Flash *s) 855 { 856 s->cmd_in_progress = NOP; 857 s->cur_addr = 0; 858 s->ear = 0; 859 s->four_bytes_address_mode = false; 860 s->len = 0; 861 s->needed_bytes = 0; 862 s->pos = 0; 863 s->state = STATE_IDLE; 864 s->write_enable = false; 865 s->reset_enable = false; 866 s->quad_enable = false; 867 s->aai_enable = false; 868 869 switch (get_man(s)) { 870 case MAN_NUMONYX: 871 s->volatile_cfg = 0; 872 s->volatile_cfg |= VCFG_DUMMY; 873 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL; 874 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK) 875 == NVCFG_XIP_MODE_DISABLED) { 876 s->volatile_cfg |= VCFG_XIP_MODE_DISABLED; 877 } 878 s->volatile_cfg |= deposit32(s->volatile_cfg, 879 VCFG_DUMMY_CLK_POS, 880 CFG_DUMMY_CLK_LEN, 881 extract32(s->nonvolatile_cfg, 882 NVCFG_DUMMY_CLK_POS, 883 CFG_DUMMY_CLK_LEN) 884 ); 885 886 s->enh_volatile_cfg = 0; 887 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF; 888 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR; 889 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED; 890 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) { 891 s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED; 892 } 893 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) { 894 s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED; 895 } 896 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) { 897 s->four_bytes_address_mode = true; 898 } 899 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) { 900 s->ear = s->size / MAX_3BYTES_SIZE - 1; 901 } 902 break; 903 case MAN_MACRONIX: 904 s->volatile_cfg = 0x7; 905 break; 906 case MAN_SPANSION: 907 s->spansion_cr1v = s->spansion_cr1nv; 908 s->spansion_cr2v = s->spansion_cr2nv; 909 s->spansion_cr3v = s->spansion_cr3nv; 910 s->spansion_cr4v = s->spansion_cr4nv; 911 s->quad_enable = extract32(s->spansion_cr1v, 912 SPANSION_QUAD_CFG_POS, 913 SPANSION_QUAD_CFG_LEN 914 ); 915 s->four_bytes_address_mode = extract32(s->spansion_cr2v, 916 SPANSION_ADDR_LEN_POS, 917 SPANSION_ADDR_LEN_LEN 918 ); 919 break; 920 default: 921 break; 922 } 923 924 trace_m25p80_reset_done(s); 925 } 926 927 static uint8_t numonyx_mode(Flash *s) 928 { 929 if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) { 930 return MODE_QIO; 931 } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) { 932 return MODE_DIO; 933 } else { 934 return MODE_STD; 935 } 936 } 937 938 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s) 939 { 940 uint8_t num_dummies; 941 uint8_t mode; 942 assert(get_man(s) == MAN_NUMONYX); 943 944 mode = numonyx_mode(s); 945 num_dummies = extract32(s->volatile_cfg, 4, 4); 946 947 if (num_dummies == 0x0 || num_dummies == 0xf) { 948 switch (s->cmd_in_progress) { 949 case QIOR: 950 case QIOR4: 951 num_dummies = 10; 952 break; 953 default: 954 num_dummies = (mode == MODE_QIO) ? 10 : 8; 955 break; 956 } 957 } 958 959 return num_dummies; 960 } 961 962 static void decode_fast_read_cmd(Flash *s) 963 { 964 s->needed_bytes = get_addr_length(s); 965 switch (get_man(s)) { 966 /* Dummy cycles - modeled with bytes writes instead of bits */ 967 case MAN_SST: 968 s->needed_bytes += 1; 969 break; 970 case MAN_WINBOND: 971 s->needed_bytes += 8; 972 break; 973 case MAN_NUMONYX: 974 s->needed_bytes += numonyx_extract_cfg_num_dummies(s); 975 break; 976 case MAN_MACRONIX: 977 if (extract32(s->volatile_cfg, 6, 2) == 1) { 978 s->needed_bytes += 6; 979 } else { 980 s->needed_bytes += 8; 981 } 982 break; 983 case MAN_SPANSION: 984 s->needed_bytes += extract32(s->spansion_cr2v, 985 SPANSION_DUMMY_CLK_POS, 986 SPANSION_DUMMY_CLK_LEN 987 ); 988 break; 989 case MAN_ISSI: 990 /* 991 * The Fast Read instruction code is followed by address bytes and 992 * dummy cycles, transmitted via the SI line. 993 * 994 * The number of dummy cycles is configurable but this is currently 995 * unmodeled, hence the default value 8 is used. 996 * 997 * QPI (Quad Peripheral Interface) mode has different default value 998 * of dummy cycles, but this is unsupported at the time being. 999 */ 1000 s->needed_bytes += 1; 1001 break; 1002 default: 1003 break; 1004 } 1005 s->pos = 0; 1006 s->len = 0; 1007 s->state = STATE_COLLECTING_DATA; 1008 } 1009 1010 static void decode_dio_read_cmd(Flash *s) 1011 { 1012 s->needed_bytes = get_addr_length(s); 1013 /* Dummy cycles modeled with bytes writes instead of bits */ 1014 switch (get_man(s)) { 1015 case MAN_WINBOND: 1016 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; 1017 break; 1018 case MAN_SPANSION: 1019 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; 1020 s->needed_bytes += extract32(s->spansion_cr2v, 1021 SPANSION_DUMMY_CLK_POS, 1022 SPANSION_DUMMY_CLK_LEN 1023 ); 1024 break; 1025 case MAN_NUMONYX: 1026 s->needed_bytes += numonyx_extract_cfg_num_dummies(s); 1027 break; 1028 case MAN_MACRONIX: 1029 switch (extract32(s->volatile_cfg, 6, 2)) { 1030 case 1: 1031 s->needed_bytes += 6; 1032 break; 1033 case 2: 1034 s->needed_bytes += 8; 1035 break; 1036 default: 1037 s->needed_bytes += 4; 1038 break; 1039 } 1040 break; 1041 case MAN_ISSI: 1042 /* 1043 * The Fast Read Dual I/O instruction code is followed by address bytes 1044 * and dummy cycles, transmitted via the IO1 and IO0 line. 1045 * 1046 * The number of dummy cycles is configurable but this is currently 1047 * unmodeled, hence the default value 4 is used. 1048 */ 1049 s->needed_bytes += 1; 1050 break; 1051 default: 1052 break; 1053 } 1054 s->pos = 0; 1055 s->len = 0; 1056 s->state = STATE_COLLECTING_DATA; 1057 } 1058 1059 static void decode_qio_read_cmd(Flash *s) 1060 { 1061 s->needed_bytes = get_addr_length(s); 1062 /* Dummy cycles modeled with bytes writes instead of bits */ 1063 switch (get_man(s)) { 1064 case MAN_WINBOND: 1065 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; 1066 s->needed_bytes += 4; 1067 break; 1068 case MAN_SPANSION: 1069 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; 1070 s->needed_bytes += extract32(s->spansion_cr2v, 1071 SPANSION_DUMMY_CLK_POS, 1072 SPANSION_DUMMY_CLK_LEN 1073 ); 1074 break; 1075 case MAN_NUMONYX: 1076 s->needed_bytes += numonyx_extract_cfg_num_dummies(s); 1077 break; 1078 case MAN_MACRONIX: 1079 switch (extract32(s->volatile_cfg, 6, 2)) { 1080 case 1: 1081 s->needed_bytes += 4; 1082 break; 1083 case 2: 1084 s->needed_bytes += 8; 1085 break; 1086 default: 1087 s->needed_bytes += 6; 1088 break; 1089 } 1090 break; 1091 case MAN_ISSI: 1092 /* 1093 * The Fast Read Quad I/O instruction code is followed by address bytes 1094 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line. 1095 * 1096 * The number of dummy cycles is configurable but this is currently 1097 * unmodeled, hence the default value 6 is used. 1098 * 1099 * QPI (Quad Peripheral Interface) mode has different default value 1100 * of dummy cycles, but this is unsupported at the time being. 1101 */ 1102 s->needed_bytes += 3; 1103 break; 1104 default: 1105 break; 1106 } 1107 s->pos = 0; 1108 s->len = 0; 1109 s->state = STATE_COLLECTING_DATA; 1110 } 1111 1112 static bool is_valid_aai_cmd(uint32_t cmd) 1113 { 1114 return cmd == AAI_WP || cmd == WRDI || cmd == RDSR; 1115 } 1116 1117 static void decode_new_cmd(Flash *s, uint32_t value) 1118 { 1119 int i; 1120 1121 s->cmd_in_progress = value; 1122 trace_m25p80_command_decoded(s, value); 1123 1124 if (value != RESET_MEMORY) { 1125 s->reset_enable = false; 1126 } 1127 1128 if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) { 1129 qemu_log_mask(LOG_GUEST_ERROR, 1130 "M25P80: Invalid cmd within AAI programming sequence"); 1131 } 1132 1133 switch (value) { 1134 1135 case ERASE_4K: 1136 case ERASE4_4K: 1137 case ERASE_32K: 1138 case ERASE4_32K: 1139 case ERASE_SECTOR: 1140 case ERASE4_SECTOR: 1141 case PP: 1142 case PP4: 1143 case DIE_ERASE: 1144 case RDID_90: 1145 case RDID_AB: 1146 s->needed_bytes = get_addr_length(s); 1147 s->pos = 0; 1148 s->len = 0; 1149 s->state = STATE_COLLECTING_DATA; 1150 break; 1151 case READ: 1152 case READ4: 1153 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) { 1154 s->needed_bytes = get_addr_length(s); 1155 s->pos = 0; 1156 s->len = 0; 1157 s->state = STATE_COLLECTING_DATA; 1158 } else { 1159 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1160 "DIO or QIO mode\n", s->cmd_in_progress); 1161 } 1162 break; 1163 case DPP: 1164 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { 1165 s->needed_bytes = get_addr_length(s); 1166 s->pos = 0; 1167 s->len = 0; 1168 s->state = STATE_COLLECTING_DATA; 1169 } else { 1170 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1171 "QIO mode\n", s->cmd_in_progress); 1172 } 1173 break; 1174 case QPP: 1175 case QPP_4: 1176 case PP4_4: 1177 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { 1178 s->needed_bytes = get_addr_length(s); 1179 s->pos = 0; 1180 s->len = 0; 1181 s->state = STATE_COLLECTING_DATA; 1182 } else { 1183 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1184 "DIO mode\n", s->cmd_in_progress); 1185 } 1186 break; 1187 1188 case FAST_READ: 1189 case FAST_READ4: 1190 decode_fast_read_cmd(s); 1191 break; 1192 case DOR: 1193 case DOR4: 1194 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { 1195 decode_fast_read_cmd(s); 1196 } else { 1197 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1198 "QIO mode\n", s->cmd_in_progress); 1199 } 1200 break; 1201 case QOR: 1202 case QOR4: 1203 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { 1204 decode_fast_read_cmd(s); 1205 } else { 1206 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1207 "DIO mode\n", s->cmd_in_progress); 1208 } 1209 break; 1210 1211 case DIOR: 1212 case DIOR4: 1213 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { 1214 decode_dio_read_cmd(s); 1215 } else { 1216 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1217 "QIO mode\n", s->cmd_in_progress); 1218 } 1219 break; 1220 1221 case QIOR: 1222 case QIOR4: 1223 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { 1224 decode_qio_read_cmd(s); 1225 } else { 1226 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1227 "DIO mode\n", s->cmd_in_progress); 1228 } 1229 break; 1230 1231 case WRSR: 1232 /* 1233 * If WP# is low and status_register_write_disabled is high, 1234 * status register writes are disabled. 1235 * This is also called "hardware protected mode" (HPM). All other 1236 * combinations of the two states are called "software protected mode" 1237 * (SPM), and status register writes are permitted. 1238 */ 1239 if ((s->wp_level == 0 && s->status_register_write_disabled) 1240 || !s->write_enable) { 1241 qemu_log_mask(LOG_GUEST_ERROR, 1242 "M25P80: Status register write is disabled!\n"); 1243 break; 1244 } 1245 1246 switch (get_man(s)) { 1247 case MAN_SPANSION: 1248 s->needed_bytes = 2; 1249 s->state = STATE_COLLECTING_DATA; 1250 break; 1251 case MAN_MACRONIX: 1252 s->needed_bytes = 2; 1253 s->state = STATE_COLLECTING_VAR_LEN_DATA; 1254 break; 1255 default: 1256 s->needed_bytes = 1; 1257 s->state = STATE_COLLECTING_DATA; 1258 } 1259 s->pos = 0; 1260 break; 1261 1262 case WRDI: 1263 s->write_enable = false; 1264 if (get_man(s) == MAN_SST) { 1265 s->aai_enable = false; 1266 } 1267 break; 1268 case WREN: 1269 s->write_enable = true; 1270 break; 1271 1272 case RDSR: 1273 s->data[0] = (!!s->write_enable) << 1; 1274 s->data[0] |= (!!s->status_register_write_disabled) << 7; 1275 s->data[0] |= (!!s->block_protect0) << 2; 1276 s->data[0] |= (!!s->block_protect1) << 3; 1277 s->data[0] |= (!!s->block_protect2) << 4; 1278 if (s->pi->flags & HAS_SR_TB) { 1279 s->data[0] |= (!!s->top_bottom_bit) << 5; 1280 } 1281 if (s->pi->flags & HAS_SR_BP3_BIT6) { 1282 s->data[0] |= (!!s->block_protect3) << 6; 1283 } 1284 1285 if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) { 1286 s->data[0] |= (!!s->quad_enable) << 6; 1287 } 1288 if (get_man(s) == MAN_SST) { 1289 s->data[0] |= (!!s->aai_enable) << 6; 1290 } 1291 1292 s->pos = 0; 1293 s->len = 1; 1294 s->data_read_loop = true; 1295 s->state = STATE_READING_DATA; 1296 break; 1297 1298 case READ_FSR: 1299 s->data[0] = FSR_FLASH_READY; 1300 if (s->four_bytes_address_mode) { 1301 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED; 1302 } 1303 s->pos = 0; 1304 s->len = 1; 1305 s->data_read_loop = true; 1306 s->state = STATE_READING_DATA; 1307 break; 1308 1309 case JEDEC_READ: 1310 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) { 1311 trace_m25p80_populated_jedec(s); 1312 for (i = 0; i < s->pi->id_len; i++) { 1313 s->data[i] = s->pi->id[i]; 1314 } 1315 for (; i < SPI_NOR_MAX_ID_LEN; i++) { 1316 s->data[i] = 0; 1317 } 1318 1319 s->len = SPI_NOR_MAX_ID_LEN; 1320 s->pos = 0; 1321 s->state = STATE_READING_DATA; 1322 } else { 1323 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read " 1324 "in DIO or QIO mode\n"); 1325 } 1326 break; 1327 1328 case RDCR: 1329 s->data[0] = s->volatile_cfg & 0xFF; 1330 s->data[0] |= (!!s->four_bytes_address_mode) << 5; 1331 s->pos = 0; 1332 s->len = 1; 1333 s->state = STATE_READING_DATA; 1334 break; 1335 1336 case BULK_ERASE_60: 1337 case BULK_ERASE: 1338 if (s->write_enable) { 1339 trace_m25p80_chip_erase(s); 1340 flash_erase(s, 0, BULK_ERASE); 1341 } else { 1342 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write " 1343 "protect!\n"); 1344 } 1345 break; 1346 case NOP: 1347 break; 1348 case EN_4BYTE_ADDR: 1349 s->four_bytes_address_mode = true; 1350 break; 1351 case EX_4BYTE_ADDR: 1352 s->four_bytes_address_mode = false; 1353 break; 1354 case BRRD: 1355 case EXTEND_ADDR_READ: 1356 s->data[0] = s->ear; 1357 s->pos = 0; 1358 s->len = 1; 1359 s->state = STATE_READING_DATA; 1360 break; 1361 case BRWR: 1362 case EXTEND_ADDR_WRITE: 1363 if (s->write_enable) { 1364 s->needed_bytes = 1; 1365 s->pos = 0; 1366 s->len = 0; 1367 s->state = STATE_COLLECTING_DATA; 1368 } 1369 break; 1370 case RNVCR: 1371 s->data[0] = s->nonvolatile_cfg & 0xFF; 1372 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF; 1373 s->pos = 0; 1374 s->len = 2; 1375 s->state = STATE_READING_DATA; 1376 break; 1377 case WNVCR: 1378 if (s->write_enable && get_man(s) == MAN_NUMONYX) { 1379 s->needed_bytes = 2; 1380 s->pos = 0; 1381 s->len = 0; 1382 s->state = STATE_COLLECTING_DATA; 1383 } 1384 break; 1385 case RVCR: 1386 s->data[0] = s->volatile_cfg & 0xFF; 1387 s->pos = 0; 1388 s->len = 1; 1389 s->state = STATE_READING_DATA; 1390 break; 1391 case WVCR: 1392 if (s->write_enable) { 1393 s->needed_bytes = 1; 1394 s->pos = 0; 1395 s->len = 0; 1396 s->state = STATE_COLLECTING_DATA; 1397 } 1398 break; 1399 case REVCR: 1400 s->data[0] = s->enh_volatile_cfg & 0xFF; 1401 s->pos = 0; 1402 s->len = 1; 1403 s->state = STATE_READING_DATA; 1404 break; 1405 case WEVCR: 1406 if (s->write_enable) { 1407 s->needed_bytes = 1; 1408 s->pos = 0; 1409 s->len = 0; 1410 s->state = STATE_COLLECTING_DATA; 1411 } 1412 break; 1413 case RESET_ENABLE: 1414 s->reset_enable = true; 1415 break; 1416 case RESET_MEMORY: 1417 if (s->reset_enable) { 1418 reset_memory(s); 1419 } 1420 break; 1421 case RDCR_EQIO: 1422 switch (get_man(s)) { 1423 case MAN_SPANSION: 1424 s->data[0] = (!!s->quad_enable) << 1; 1425 s->pos = 0; 1426 s->len = 1; 1427 s->state = STATE_READING_DATA; 1428 break; 1429 case MAN_MACRONIX: 1430 s->quad_enable = true; 1431 break; 1432 default: 1433 break; 1434 } 1435 break; 1436 case RSTQIO: 1437 s->quad_enable = false; 1438 break; 1439 case AAI_WP: 1440 if (get_man(s) == MAN_SST) { 1441 if (s->write_enable) { 1442 if (s->aai_enable) { 1443 s->state = STATE_PAGE_PROGRAM; 1444 } else { 1445 s->aai_enable = true; 1446 s->needed_bytes = get_addr_length(s); 1447 s->state = STATE_COLLECTING_DATA; 1448 } 1449 } else { 1450 qemu_log_mask(LOG_GUEST_ERROR, 1451 "M25P80: AAI_WP with write protect\n"); 1452 } 1453 } else { 1454 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); 1455 } 1456 break; 1457 case RDSFDP: 1458 if (s->pi->sfdp_read) { 1459 s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */ 1460 s->pos = 0; 1461 s->len = 0; 1462 s->state = STATE_COLLECTING_DATA; 1463 break; 1464 } 1465 /* Fallthrough */ 1466 1467 default: 1468 s->pos = 0; 1469 s->len = 1; 1470 s->state = STATE_READING_DATA; 1471 s->data_read_loop = true; 1472 s->data[0] = 0; 1473 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); 1474 break; 1475 } 1476 } 1477 1478 static int m25p80_cs(SSIPeripheral *ss, bool select) 1479 { 1480 Flash *s = M25P80(ss); 1481 1482 if (select) { 1483 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) { 1484 complete_collecting_data(s); 1485 } 1486 s->len = 0; 1487 s->pos = 0; 1488 s->state = STATE_IDLE; 1489 flash_sync_dirty(s, -1); 1490 s->data_read_loop = false; 1491 } 1492 1493 trace_m25p80_select(s, select ? "de" : ""); 1494 1495 return 0; 1496 } 1497 1498 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx) 1499 { 1500 Flash *s = M25P80(ss); 1501 uint32_t r = 0; 1502 1503 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos, 1504 s->cur_addr, (uint8_t)tx); 1505 1506 switch (s->state) { 1507 1508 case STATE_PAGE_PROGRAM: 1509 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx); 1510 flash_write8(s, s->cur_addr, (uint8_t)tx); 1511 s->cur_addr = (s->cur_addr + 1) & (s->size - 1); 1512 1513 if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) { 1514 /* 1515 * There is no wrap mode during AAI programming once the highest 1516 * unprotected memory address is reached. The Write-Enable-Latch 1517 * bit is automatically reset, and AAI programming mode aborts. 1518 */ 1519 s->write_enable = false; 1520 s->aai_enable = false; 1521 } 1522 1523 break; 1524 1525 case STATE_READ: 1526 r = s->storage[s->cur_addr]; 1527 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r); 1528 s->cur_addr = (s->cur_addr + 1) & (s->size - 1); 1529 break; 1530 1531 case STATE_COLLECTING_DATA: 1532 case STATE_COLLECTING_VAR_LEN_DATA: 1533 1534 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) { 1535 qemu_log_mask(LOG_GUEST_ERROR, 1536 "M25P80: Write overrun internal data buffer. " 1537 "SPI controller (QEMU emulator or guest driver) " 1538 "is misbehaving\n"); 1539 s->len = s->pos = 0; 1540 s->state = STATE_IDLE; 1541 break; 1542 } 1543 1544 s->data[s->len] = (uint8_t)tx; 1545 s->len++; 1546 1547 if (s->len == s->needed_bytes) { 1548 complete_collecting_data(s); 1549 } 1550 break; 1551 1552 case STATE_READING_DATA: 1553 1554 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) { 1555 qemu_log_mask(LOG_GUEST_ERROR, 1556 "M25P80: Read overrun internal data buffer. " 1557 "SPI controller (QEMU emulator or guest driver) " 1558 "is misbehaving\n"); 1559 s->len = s->pos = 0; 1560 s->state = STATE_IDLE; 1561 break; 1562 } 1563 1564 r = s->data[s->pos]; 1565 trace_m25p80_read_data(s, s->pos, (uint8_t)r); 1566 s->pos++; 1567 if (s->pos == s->len) { 1568 s->pos = 0; 1569 if (!s->data_read_loop) { 1570 s->state = STATE_IDLE; 1571 } 1572 } 1573 break; 1574 case STATE_READING_SFDP: 1575 assert(s->pi->sfdp_read); 1576 r = s->pi->sfdp_read(s->cur_addr); 1577 trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r); 1578 s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1); 1579 break; 1580 1581 default: 1582 case STATE_IDLE: 1583 decode_new_cmd(s, (uint8_t)tx); 1584 break; 1585 } 1586 1587 return r; 1588 } 1589 1590 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level) 1591 { 1592 Flash *s = M25P80(opaque); 1593 /* WP# is just a single pin. */ 1594 assert(n == 0); 1595 s->wp_level = !!level; 1596 } 1597 1598 static void m25p80_realize(SSIPeripheral *ss, Error **errp) 1599 { 1600 Flash *s = M25P80(ss); 1601 M25P80Class *mc = M25P80_GET_CLASS(s); 1602 int ret; 1603 1604 s->pi = mc->pi; 1605 1606 s->size = s->pi->sector_size * s->pi->n_sectors; 1607 s->dirty_page = -1; 1608 1609 if (s->blk) { 1610 uint64_t perm = BLK_PERM_CONSISTENT_READ | 1611 (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0); 1612 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp); 1613 if (ret < 0) { 1614 return; 1615 } 1616 1617 trace_m25p80_binding(s); 1618 s->storage = blk_blockalign(s->blk, s->size); 1619 1620 if (!blk_check_size_and_read_all(s->blk, s->storage, s->size, errp)) { 1621 return; 1622 } 1623 } else { 1624 trace_m25p80_binding_no_bdrv(s); 1625 s->storage = blk_blockalign(NULL, s->size); 1626 memset(s->storage, 0xFF, s->size); 1627 } 1628 1629 qdev_init_gpio_in_named(DEVICE(s), 1630 m25p80_write_protect_pin_irq_handler, "WP#", 1); 1631 } 1632 1633 static void m25p80_reset(DeviceState *d) 1634 { 1635 Flash *s = M25P80(d); 1636 1637 s->wp_level = true; 1638 s->status_register_write_disabled = false; 1639 s->block_protect0 = false; 1640 s->block_protect1 = false; 1641 s->block_protect2 = false; 1642 s->block_protect3 = false; 1643 s->top_bottom_bit = false; 1644 1645 reset_memory(s); 1646 } 1647 1648 static int m25p80_pre_save(void *opaque) 1649 { 1650 flash_sync_dirty((Flash *)opaque, -1); 1651 1652 return 0; 1653 } 1654 1655 static Property m25p80_properties[] = { 1656 /* This is default value for Micron flash */ 1657 DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false), 1658 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF), 1659 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0), 1660 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8), 1661 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2), 1662 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10), 1663 DEFINE_PROP_DRIVE("drive", Flash, blk), 1664 DEFINE_PROP_END_OF_LIST(), 1665 }; 1666 1667 static int m25p80_pre_load(void *opaque) 1668 { 1669 Flash *s = (Flash *)opaque; 1670 1671 s->data_read_loop = false; 1672 return 0; 1673 } 1674 1675 static bool m25p80_data_read_loop_needed(void *opaque) 1676 { 1677 Flash *s = (Flash *)opaque; 1678 1679 return s->data_read_loop; 1680 } 1681 1682 static const VMStateDescription vmstate_m25p80_data_read_loop = { 1683 .name = "m25p80/data_read_loop", 1684 .version_id = 1, 1685 .minimum_version_id = 1, 1686 .needed = m25p80_data_read_loop_needed, 1687 .fields = (const VMStateField[]) { 1688 VMSTATE_BOOL(data_read_loop, Flash), 1689 VMSTATE_END_OF_LIST() 1690 } 1691 }; 1692 1693 static bool m25p80_aai_enable_needed(void *opaque) 1694 { 1695 Flash *s = (Flash *)opaque; 1696 1697 return s->aai_enable; 1698 } 1699 1700 static const VMStateDescription vmstate_m25p80_aai_enable = { 1701 .name = "m25p80/aai_enable", 1702 .version_id = 1, 1703 .minimum_version_id = 1, 1704 .needed = m25p80_aai_enable_needed, 1705 .fields = (const VMStateField[]) { 1706 VMSTATE_BOOL(aai_enable, Flash), 1707 VMSTATE_END_OF_LIST() 1708 } 1709 }; 1710 1711 static bool m25p80_wp_level_srwd_needed(void *opaque) 1712 { 1713 Flash *s = (Flash *)opaque; 1714 1715 return !s->wp_level || s->status_register_write_disabled; 1716 } 1717 1718 static const VMStateDescription vmstate_m25p80_write_protect = { 1719 .name = "m25p80/write_protect", 1720 .version_id = 1, 1721 .minimum_version_id = 1, 1722 .needed = m25p80_wp_level_srwd_needed, 1723 .fields = (const VMStateField[]) { 1724 VMSTATE_BOOL(wp_level, Flash), 1725 VMSTATE_BOOL(status_register_write_disabled, Flash), 1726 VMSTATE_END_OF_LIST() 1727 } 1728 }; 1729 1730 static bool m25p80_block_protect_needed(void *opaque) 1731 { 1732 Flash *s = (Flash *)opaque; 1733 1734 return s->block_protect0 || 1735 s->block_protect1 || 1736 s->block_protect2 || 1737 s->block_protect3 || 1738 s->top_bottom_bit; 1739 } 1740 1741 static const VMStateDescription vmstate_m25p80_block_protect = { 1742 .name = "m25p80/block_protect", 1743 .version_id = 1, 1744 .minimum_version_id = 1, 1745 .needed = m25p80_block_protect_needed, 1746 .fields = (const VMStateField[]) { 1747 VMSTATE_BOOL(block_protect0, Flash), 1748 VMSTATE_BOOL(block_protect1, Flash), 1749 VMSTATE_BOOL(block_protect2, Flash), 1750 VMSTATE_BOOL(block_protect3, Flash), 1751 VMSTATE_BOOL(top_bottom_bit, Flash), 1752 VMSTATE_END_OF_LIST() 1753 } 1754 }; 1755 1756 static const VMStateDescription vmstate_m25p80 = { 1757 .name = "m25p80", 1758 .version_id = 0, 1759 .minimum_version_id = 0, 1760 .pre_save = m25p80_pre_save, 1761 .pre_load = m25p80_pre_load, 1762 .fields = (const VMStateField[]) { 1763 VMSTATE_UINT8(state, Flash), 1764 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ), 1765 VMSTATE_UINT32(len, Flash), 1766 VMSTATE_UINT32(pos, Flash), 1767 VMSTATE_UINT8(needed_bytes, Flash), 1768 VMSTATE_UINT8(cmd_in_progress, Flash), 1769 VMSTATE_UINT32(cur_addr, Flash), 1770 VMSTATE_BOOL(write_enable, Flash), 1771 VMSTATE_BOOL(reset_enable, Flash), 1772 VMSTATE_UINT8(ear, Flash), 1773 VMSTATE_BOOL(four_bytes_address_mode, Flash), 1774 VMSTATE_UINT32(nonvolatile_cfg, Flash), 1775 VMSTATE_UINT32(volatile_cfg, Flash), 1776 VMSTATE_UINT32(enh_volatile_cfg, Flash), 1777 VMSTATE_BOOL(quad_enable, Flash), 1778 VMSTATE_UINT8(spansion_cr1nv, Flash), 1779 VMSTATE_UINT8(spansion_cr2nv, Flash), 1780 VMSTATE_UINT8(spansion_cr3nv, Flash), 1781 VMSTATE_UINT8(spansion_cr4nv, Flash), 1782 VMSTATE_END_OF_LIST() 1783 }, 1784 .subsections = (const VMStateDescription * const []) { 1785 &vmstate_m25p80_data_read_loop, 1786 &vmstate_m25p80_aai_enable, 1787 &vmstate_m25p80_write_protect, 1788 &vmstate_m25p80_block_protect, 1789 NULL 1790 } 1791 }; 1792 1793 static void m25p80_class_init(ObjectClass *klass, void *data) 1794 { 1795 DeviceClass *dc = DEVICE_CLASS(klass); 1796 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass); 1797 M25P80Class *mc = M25P80_CLASS(klass); 1798 1799 k->realize = m25p80_realize; 1800 k->transfer = m25p80_transfer8; 1801 k->set_cs = m25p80_cs; 1802 k->cs_polarity = SSI_CS_LOW; 1803 dc->vmsd = &vmstate_m25p80; 1804 device_class_set_props(dc, m25p80_properties); 1805 dc->reset = m25p80_reset; 1806 mc->pi = data; 1807 } 1808 1809 static const TypeInfo m25p80_info = { 1810 .name = TYPE_M25P80, 1811 .parent = TYPE_SSI_PERIPHERAL, 1812 .instance_size = sizeof(Flash), 1813 .class_size = sizeof(M25P80Class), 1814 .abstract = true, 1815 }; 1816 1817 static void m25p80_register_types(void) 1818 { 1819 int i; 1820 1821 type_register_static(&m25p80_info); 1822 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) { 1823 TypeInfo ti = { 1824 .name = known_devices[i].part_name, 1825 .parent = TYPE_M25P80, 1826 .class_init = m25p80_class_init, 1827 .class_data = (void *)&known_devices[i], 1828 }; 1829 type_register(&ti); 1830 } 1831 } 1832 1833 type_init(m25p80_register_types) 1834 1835 BlockBackend *m25p80_get_blk(DeviceState *dev) 1836 { 1837 return M25P80(dev)->blk; 1838 } 1839