xref: /openbmc/qemu/hw/block/m25p80.c (revision e7b79428)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define EEPROM 0x100
48 
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
51 
52 #define SPI_NOR_MAX_ID_LEN 6
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* ISSI */
214     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
216     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
218     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
219     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
220     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
221     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
225 
226     /* Macronix */
227     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
228     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
229     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
230     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
231     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
232     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
233     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
234     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
235     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
236     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
237     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
238     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
239     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
240     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
241 
242     /* Micron */
243     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
244     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
245     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
246     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
247     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
248     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
249     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
250     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
251     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
252     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
253     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
254     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
255     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
256     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
257     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
258     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
259                    ER_4K | ER_32K, 2) },
260     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
261     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
262     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
263     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
264     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
265     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
266 
267     /* Spansion -- single (large) sector size only, at least
268      * for the chips listed here (without boot sectors).
269      */
270     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
271     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
272     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
273     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
274     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
275     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
276     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
277     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
278     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
279     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
280     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
281     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
282     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
283     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
284     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
285     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
286     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
287 
288     /* Spansion --  boot sectors support  */
289     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
290     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
291 
292     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
293     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
294     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
295     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
296     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
297     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
298     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
299     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
300     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
301     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
302 
303     /* ST Microelectronics -- newer production may have feature updates */
304     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
305     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
306     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
307     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
308     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
309     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
310     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
311     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
312     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
313     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
314 
315     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
316     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
317     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
318 
319     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
320     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
321     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
322 
323     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
324     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
325     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
326     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
327 
328     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
329     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
330     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
331     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
332     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
333     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
334     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
335     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
336     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
337     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
338     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
339     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
340     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
341     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
342     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
343     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K) },
344 };
345 
346 typedef enum {
347     NOP = 0,
348     WRSR = 0x1,
349     WRDI = 0x4,
350     RDSR = 0x5,
351     WREN = 0x6,
352     BRRD = 0x16,
353     BRWR = 0x17,
354     JEDEC_READ = 0x9f,
355     BULK_ERASE_60 = 0x60,
356     BULK_ERASE = 0xc7,
357     READ_FSR = 0x70,
358     RDCR = 0x15,
359 
360     READ = 0x03,
361     READ4 = 0x13,
362     FAST_READ = 0x0b,
363     FAST_READ4 = 0x0c,
364     DOR = 0x3b,
365     DOR4 = 0x3c,
366     QOR = 0x6b,
367     QOR4 = 0x6c,
368     DIOR = 0xbb,
369     DIOR4 = 0xbc,
370     QIOR = 0xeb,
371     QIOR4 = 0xec,
372 
373     PP = 0x02,
374     PP4 = 0x12,
375     PP4_4 = 0x3e,
376     DPP = 0xa2,
377     QPP = 0x32,
378     QPP_4 = 0x34,
379     RDID_90 = 0x90,
380     RDID_AB = 0xab,
381     AAI_WP = 0xad,
382 
383     ERASE_4K = 0x20,
384     ERASE4_4K = 0x21,
385     ERASE_32K = 0x52,
386     ERASE4_32K = 0x5c,
387     ERASE_SECTOR = 0xd8,
388     ERASE4_SECTOR = 0xdc,
389 
390     EN_4BYTE_ADDR = 0xB7,
391     EX_4BYTE_ADDR = 0xE9,
392 
393     EXTEND_ADDR_READ = 0xC8,
394     EXTEND_ADDR_WRITE = 0xC5,
395 
396     RESET_ENABLE = 0x66,
397     RESET_MEMORY = 0x99,
398 
399     /*
400      * Micron: 0x35 - enable QPI
401      * Spansion: 0x35 - read control register
402      */
403     RDCR_EQIO = 0x35,
404     RSTQIO = 0xf5,
405 
406     RNVCR = 0xB5,
407     WNVCR = 0xB1,
408 
409     RVCR = 0x85,
410     WVCR = 0x81,
411 
412     REVCR = 0x65,
413     WEVCR = 0x61,
414 
415     DIE_ERASE = 0xC4,
416 } FlashCMD;
417 
418 typedef enum {
419     STATE_IDLE,
420     STATE_PAGE_PROGRAM,
421     STATE_READ,
422     STATE_COLLECTING_DATA,
423     STATE_COLLECTING_VAR_LEN_DATA,
424     STATE_READING_DATA,
425 } CMDState;
426 
427 typedef enum {
428     MAN_SPANSION,
429     MAN_MACRONIX,
430     MAN_NUMONYX,
431     MAN_WINBOND,
432     MAN_SST,
433     MAN_ISSI,
434     MAN_GENERIC,
435 } Manufacturer;
436 
437 typedef enum {
438     MODE_STD = 0,
439     MODE_DIO = 1,
440     MODE_QIO = 2
441 } SPIMode;
442 
443 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
444 
445 struct Flash {
446     SSIPeripheral parent_obj;
447 
448     BlockBackend *blk;
449 
450     uint8_t *storage;
451     uint32_t size;
452     int page_size;
453 
454     uint8_t state;
455     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
456     uint32_t len;
457     uint32_t pos;
458     bool data_read_loop;
459     uint8_t needed_bytes;
460     uint8_t cmd_in_progress;
461     uint32_t cur_addr;
462     uint32_t nonvolatile_cfg;
463     /* Configuration register for Macronix */
464     uint32_t volatile_cfg;
465     uint32_t enh_volatile_cfg;
466     /* Spansion cfg registers. */
467     uint8_t spansion_cr1nv;
468     uint8_t spansion_cr2nv;
469     uint8_t spansion_cr3nv;
470     uint8_t spansion_cr4nv;
471     uint8_t spansion_cr1v;
472     uint8_t spansion_cr2v;
473     uint8_t spansion_cr3v;
474     uint8_t spansion_cr4v;
475     bool write_enable;
476     bool four_bytes_address_mode;
477     bool reset_enable;
478     bool quad_enable;
479     bool aai_enable;
480     uint8_t ear;
481 
482     int64_t dirty_page;
483 
484     const FlashPartInfo *pi;
485 
486 };
487 
488 struct M25P80Class {
489     SSIPeripheralClass parent_class;
490     FlashPartInfo *pi;
491 };
492 
493 #define TYPE_M25P80 "m25p80-generic"
494 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
495 
496 static inline Manufacturer get_man(Flash *s)
497 {
498     switch (s->pi->id[0]) {
499     case 0x20:
500         return MAN_NUMONYX;
501     case 0xEF:
502         return MAN_WINBOND;
503     case 0x01:
504         return MAN_SPANSION;
505     case 0xC2:
506         return MAN_MACRONIX;
507     case 0xBF:
508         return MAN_SST;
509     case 0x9D:
510         return MAN_ISSI;
511     default:
512         return MAN_GENERIC;
513     }
514 }
515 
516 static void blk_sync_complete(void *opaque, int ret)
517 {
518     QEMUIOVector *iov = opaque;
519 
520     qemu_iovec_destroy(iov);
521     g_free(iov);
522 
523     /* do nothing. Masters do not directly interact with the backing store,
524      * only the working copy so no mutexing required.
525      */
526 }
527 
528 static void flash_sync_page(Flash *s, int page)
529 {
530     QEMUIOVector *iov;
531 
532     if (!s->blk || !blk_is_writable(s->blk)) {
533         return;
534     }
535 
536     iov = g_new(QEMUIOVector, 1);
537     qemu_iovec_init(iov, 1);
538     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
539                    s->pi->page_size);
540     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
541                     blk_sync_complete, iov);
542 }
543 
544 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
545 {
546     QEMUIOVector *iov;
547 
548     if (!s->blk || !blk_is_writable(s->blk)) {
549         return;
550     }
551 
552     assert(!(len % BDRV_SECTOR_SIZE));
553     iov = g_new(QEMUIOVector, 1);
554     qemu_iovec_init(iov, 1);
555     qemu_iovec_add(iov, s->storage + off, len);
556     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
557 }
558 
559 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
560 {
561     uint32_t len;
562     uint8_t capa_to_assert = 0;
563 
564     switch (cmd) {
565     case ERASE_4K:
566     case ERASE4_4K:
567         len = 4 * KiB;
568         capa_to_assert = ER_4K;
569         break;
570     case ERASE_32K:
571     case ERASE4_32K:
572         len = 32 * KiB;
573         capa_to_assert = ER_32K;
574         break;
575     case ERASE_SECTOR:
576     case ERASE4_SECTOR:
577         len = s->pi->sector_size;
578         break;
579     case BULK_ERASE:
580         len = s->size;
581         break;
582     case DIE_ERASE:
583         if (s->pi->die_cnt) {
584             len = s->size / s->pi->die_cnt;
585             offset = offset & (~(len - 1));
586         } else {
587             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
588                           " by device\n");
589             return;
590         }
591         break;
592     default:
593         abort();
594     }
595 
596     trace_m25p80_flash_erase(s, offset, len);
597 
598     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
599         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
600                       " device\n", len);
601     }
602 
603     if (!s->write_enable) {
604         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
605         return;
606     }
607     memset(s->storage + offset, 0xff, len);
608     flash_sync_area(s, offset, len);
609 }
610 
611 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
612 {
613     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
614         flash_sync_page(s, s->dirty_page);
615         s->dirty_page = newpage;
616     }
617 }
618 
619 static inline
620 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
621 {
622     uint32_t page = addr / s->pi->page_size;
623     uint8_t prev = s->storage[s->cur_addr];
624 
625     if (!s->write_enable) {
626         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
627         return;
628     }
629 
630     if ((prev ^ data) & data) {
631         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
632     }
633 
634     if (s->pi->flags & EEPROM) {
635         s->storage[s->cur_addr] = data;
636     } else {
637         s->storage[s->cur_addr] &= data;
638     }
639 
640     flash_sync_dirty(s, page);
641     s->dirty_page = page;
642 }
643 
644 static inline int get_addr_length(Flash *s)
645 {
646    /* check if eeprom is in use */
647     if (s->pi->flags == EEPROM) {
648         return 2;
649     }
650 
651    switch (s->cmd_in_progress) {
652    case PP4:
653    case PP4_4:
654    case QPP_4:
655    case READ4:
656    case QIOR4:
657    case ERASE4_4K:
658    case ERASE4_32K:
659    case ERASE4_SECTOR:
660    case FAST_READ4:
661    case DOR4:
662    case QOR4:
663    case DIOR4:
664        return 4;
665    default:
666        return s->four_bytes_address_mode ? 4 : 3;
667    }
668 }
669 
670 static void complete_collecting_data(Flash *s)
671 {
672     int i, n;
673 
674     n = get_addr_length(s);
675     s->cur_addr = (n == 3 ? s->ear : 0);
676     for (i = 0; i < n; ++i) {
677         s->cur_addr <<= 8;
678         s->cur_addr |= s->data[i];
679     }
680 
681     s->cur_addr &= s->size - 1;
682 
683     s->state = STATE_IDLE;
684 
685     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
686                                      s->cur_addr);
687 
688     switch (s->cmd_in_progress) {
689     case DPP:
690     case QPP:
691     case QPP_4:
692     case PP:
693     case PP4:
694     case PP4_4:
695         s->state = STATE_PAGE_PROGRAM;
696         break;
697     case AAI_WP:
698         /* AAI programming starts from the even address */
699         s->cur_addr &= ~BIT(0);
700         s->state = STATE_PAGE_PROGRAM;
701         break;
702     case READ:
703     case READ4:
704     case FAST_READ:
705     case FAST_READ4:
706     case DOR:
707     case DOR4:
708     case QOR:
709     case QOR4:
710     case DIOR:
711     case DIOR4:
712     case QIOR:
713     case QIOR4:
714         s->state = STATE_READ;
715         break;
716     case ERASE_4K:
717     case ERASE4_4K:
718     case ERASE_32K:
719     case ERASE4_32K:
720     case ERASE_SECTOR:
721     case ERASE4_SECTOR:
722     case DIE_ERASE:
723         flash_erase(s, s->cur_addr, s->cmd_in_progress);
724         break;
725     case WRSR:
726         switch (get_man(s)) {
727         case MAN_SPANSION:
728             s->quad_enable = !!(s->data[1] & 0x02);
729             break;
730         case MAN_ISSI:
731             s->quad_enable = extract32(s->data[0], 6, 1);
732             break;
733         case MAN_MACRONIX:
734             s->quad_enable = extract32(s->data[0], 6, 1);
735             if (s->len > 1) {
736                 s->volatile_cfg = s->data[1];
737                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
738             }
739             break;
740         default:
741             break;
742         }
743         if (s->write_enable) {
744             s->write_enable = false;
745         }
746         break;
747     case BRWR:
748     case EXTEND_ADDR_WRITE:
749         s->ear = s->data[0];
750         break;
751     case WNVCR:
752         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
753         break;
754     case WVCR:
755         s->volatile_cfg = s->data[0];
756         break;
757     case WEVCR:
758         s->enh_volatile_cfg = s->data[0];
759         break;
760     case RDID_90:
761     case RDID_AB:
762         if (get_man(s) == MAN_SST) {
763             if (s->cur_addr <= 1) {
764                 if (s->cur_addr) {
765                     s->data[0] = s->pi->id[2];
766                     s->data[1] = s->pi->id[0];
767                 } else {
768                     s->data[0] = s->pi->id[0];
769                     s->data[1] = s->pi->id[2];
770                 }
771                 s->pos = 0;
772                 s->len = 2;
773                 s->data_read_loop = true;
774                 s->state = STATE_READING_DATA;
775             } else {
776                 qemu_log_mask(LOG_GUEST_ERROR,
777                               "M25P80: Invalid read id address\n");
778             }
779         } else {
780             qemu_log_mask(LOG_GUEST_ERROR,
781                           "M25P80: Read id (command 0x90/0xAB) is not supported"
782                           " by device\n");
783         }
784         break;
785     default:
786         break;
787     }
788 }
789 
790 static void reset_memory(Flash *s)
791 {
792     s->cmd_in_progress = NOP;
793     s->cur_addr = 0;
794     s->ear = 0;
795     s->four_bytes_address_mode = false;
796     s->len = 0;
797     s->needed_bytes = 0;
798     s->pos = 0;
799     s->state = STATE_IDLE;
800     s->write_enable = false;
801     s->reset_enable = false;
802     s->quad_enable = false;
803     s->aai_enable = false;
804 
805     switch (get_man(s)) {
806     case MAN_NUMONYX:
807         s->volatile_cfg = 0;
808         s->volatile_cfg |= VCFG_DUMMY;
809         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
810         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
811                                 == NVCFG_XIP_MODE_DISABLED) {
812             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
813         }
814         s->volatile_cfg |= deposit32(s->volatile_cfg,
815                             VCFG_DUMMY_CLK_POS,
816                             CFG_DUMMY_CLK_LEN,
817                             extract32(s->nonvolatile_cfg,
818                                         NVCFG_DUMMY_CLK_POS,
819                                         CFG_DUMMY_CLK_LEN)
820                             );
821 
822         s->enh_volatile_cfg = 0;
823         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
824         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
825         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
826         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
827             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
828         }
829         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
830             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
831         }
832         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
833             s->four_bytes_address_mode = true;
834         }
835         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
836             s->ear = s->size / MAX_3BYTES_SIZE - 1;
837         }
838         break;
839     case MAN_MACRONIX:
840         s->volatile_cfg = 0x7;
841         break;
842     case MAN_SPANSION:
843         s->spansion_cr1v = s->spansion_cr1nv;
844         s->spansion_cr2v = s->spansion_cr2nv;
845         s->spansion_cr3v = s->spansion_cr3nv;
846         s->spansion_cr4v = s->spansion_cr4nv;
847         s->quad_enable = extract32(s->spansion_cr1v,
848                                    SPANSION_QUAD_CFG_POS,
849                                    SPANSION_QUAD_CFG_LEN
850                                    );
851         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
852                 SPANSION_ADDR_LEN_POS,
853                 SPANSION_ADDR_LEN_LEN
854                 );
855         break;
856     default:
857         break;
858     }
859 
860     trace_m25p80_reset_done(s);
861 }
862 
863 static uint8_t numonyx_mode(Flash *s)
864 {
865     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
866         return MODE_QIO;
867     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
868         return MODE_DIO;
869     } else {
870         return MODE_STD;
871     }
872 }
873 
874 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
875 {
876     uint8_t num_dummies;
877     uint8_t mode;
878     assert(get_man(s) == MAN_NUMONYX);
879 
880     mode = numonyx_mode(s);
881     num_dummies = extract32(s->volatile_cfg, 4, 4);
882 
883     if (num_dummies == 0x0 || num_dummies == 0xf) {
884         switch (s->cmd_in_progress) {
885         case QIOR:
886         case QIOR4:
887             num_dummies = 10;
888             break;
889         default:
890             num_dummies = (mode == MODE_QIO) ? 10 : 8;
891             break;
892         }
893     }
894 
895     return num_dummies;
896 }
897 
898 static void decode_fast_read_cmd(Flash *s)
899 {
900     s->needed_bytes = get_addr_length(s);
901     switch (get_man(s)) {
902     /* Dummy cycles - modeled with bytes writes instead of bits */
903     case MAN_SST:
904         s->needed_bytes += 1;
905         break;
906     case MAN_WINBOND:
907         s->needed_bytes += 8;
908         break;
909     case MAN_NUMONYX:
910         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
911         break;
912     case MAN_MACRONIX:
913         if (extract32(s->volatile_cfg, 6, 2) == 1) {
914             s->needed_bytes += 6;
915         } else {
916             s->needed_bytes += 8;
917         }
918         break;
919     case MAN_SPANSION:
920         s->needed_bytes += extract32(s->spansion_cr2v,
921                                     SPANSION_DUMMY_CLK_POS,
922                                     SPANSION_DUMMY_CLK_LEN
923                                     );
924         break;
925     case MAN_ISSI:
926         /*
927          * The Fast Read instruction code is followed by address bytes and
928          * dummy cycles, transmitted via the SI line.
929          *
930          * The number of dummy cycles is configurable but this is currently
931          * unmodeled, hence the default value 8 is used.
932          *
933          * QPI (Quad Peripheral Interface) mode has different default value
934          * of dummy cycles, but this is unsupported at the time being.
935          */
936         s->needed_bytes += 1;
937         break;
938     default:
939         break;
940     }
941     s->pos = 0;
942     s->len = 0;
943     s->state = STATE_COLLECTING_DATA;
944 }
945 
946 static void decode_dio_read_cmd(Flash *s)
947 {
948     s->needed_bytes = get_addr_length(s);
949     /* Dummy cycles modeled with bytes writes instead of bits */
950     switch (get_man(s)) {
951     case MAN_WINBOND:
952         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
953         break;
954     case MAN_SPANSION:
955         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
956         s->needed_bytes += extract32(s->spansion_cr2v,
957                                     SPANSION_DUMMY_CLK_POS,
958                                     SPANSION_DUMMY_CLK_LEN
959                                     );
960         break;
961     case MAN_NUMONYX:
962         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
963         break;
964     case MAN_MACRONIX:
965         switch (extract32(s->volatile_cfg, 6, 2)) {
966         case 1:
967             s->needed_bytes += 6;
968             break;
969         case 2:
970             s->needed_bytes += 8;
971             break;
972         default:
973             s->needed_bytes += 4;
974             break;
975         }
976         break;
977     case MAN_ISSI:
978         /*
979          * The Fast Read Dual I/O instruction code is followed by address bytes
980          * and dummy cycles, transmitted via the IO1 and IO0 line.
981          *
982          * The number of dummy cycles is configurable but this is currently
983          * unmodeled, hence the default value 4 is used.
984          */
985         s->needed_bytes += 1;
986         break;
987     default:
988         break;
989     }
990     s->pos = 0;
991     s->len = 0;
992     s->state = STATE_COLLECTING_DATA;
993 }
994 
995 static void decode_qio_read_cmd(Flash *s)
996 {
997     s->needed_bytes = get_addr_length(s);
998     /* Dummy cycles modeled with bytes writes instead of bits */
999     switch (get_man(s)) {
1000     case MAN_WINBOND:
1001         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1002         s->needed_bytes += 4;
1003         break;
1004     case MAN_SPANSION:
1005         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1006         s->needed_bytes += extract32(s->spansion_cr2v,
1007                                     SPANSION_DUMMY_CLK_POS,
1008                                     SPANSION_DUMMY_CLK_LEN
1009                                     );
1010         break;
1011     case MAN_NUMONYX:
1012         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1013         break;
1014     case MAN_MACRONIX:
1015         switch (extract32(s->volatile_cfg, 6, 2)) {
1016         case 1:
1017             s->needed_bytes += 4;
1018             break;
1019         case 2:
1020             s->needed_bytes += 8;
1021             break;
1022         default:
1023             s->needed_bytes += 6;
1024             break;
1025         }
1026         break;
1027     case MAN_ISSI:
1028         /*
1029          * The Fast Read Quad I/O instruction code is followed by address bytes
1030          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1031          *
1032          * The number of dummy cycles is configurable but this is currently
1033          * unmodeled, hence the default value 6 is used.
1034          *
1035          * QPI (Quad Peripheral Interface) mode has different default value
1036          * of dummy cycles, but this is unsupported at the time being.
1037          */
1038         s->needed_bytes += 3;
1039         break;
1040     default:
1041         break;
1042     }
1043     s->pos = 0;
1044     s->len = 0;
1045     s->state = STATE_COLLECTING_DATA;
1046 }
1047 
1048 static bool is_valid_aai_cmd(uint32_t cmd)
1049 {
1050     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1051 }
1052 
1053 static void decode_new_cmd(Flash *s, uint32_t value)
1054 {
1055     int i;
1056 
1057     s->cmd_in_progress = value;
1058     trace_m25p80_command_decoded(s, value);
1059 
1060     if (value != RESET_MEMORY) {
1061         s->reset_enable = false;
1062     }
1063 
1064     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1065         qemu_log_mask(LOG_GUEST_ERROR,
1066                       "M25P80: Invalid cmd within AAI programming sequence");
1067     }
1068 
1069     switch (value) {
1070 
1071     case ERASE_4K:
1072     case ERASE4_4K:
1073     case ERASE_32K:
1074     case ERASE4_32K:
1075     case ERASE_SECTOR:
1076     case ERASE4_SECTOR:
1077     case PP:
1078     case PP4:
1079     case DIE_ERASE:
1080     case RDID_90:
1081     case RDID_AB:
1082         s->needed_bytes = get_addr_length(s);
1083         s->pos = 0;
1084         s->len = 0;
1085         s->state = STATE_COLLECTING_DATA;
1086         break;
1087     case READ:
1088     case READ4:
1089         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1090             s->needed_bytes = get_addr_length(s);
1091             s->pos = 0;
1092             s->len = 0;
1093             s->state = STATE_COLLECTING_DATA;
1094         } else {
1095             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1096                           "DIO or QIO mode\n", s->cmd_in_progress);
1097         }
1098         break;
1099     case DPP:
1100         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1101             s->needed_bytes = get_addr_length(s);
1102             s->pos = 0;
1103             s->len = 0;
1104             s->state = STATE_COLLECTING_DATA;
1105         } else {
1106             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1107                           "QIO mode\n", s->cmd_in_progress);
1108         }
1109         break;
1110     case QPP:
1111     case QPP_4:
1112     case PP4_4:
1113         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1114             s->needed_bytes = get_addr_length(s);
1115             s->pos = 0;
1116             s->len = 0;
1117             s->state = STATE_COLLECTING_DATA;
1118         } else {
1119             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1120                           "DIO mode\n", s->cmd_in_progress);
1121         }
1122         break;
1123 
1124     case FAST_READ:
1125     case FAST_READ4:
1126         decode_fast_read_cmd(s);
1127         break;
1128     case DOR:
1129     case DOR4:
1130         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1131             decode_fast_read_cmd(s);
1132         } else {
1133             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1134                           "QIO mode\n", s->cmd_in_progress);
1135         }
1136         break;
1137     case QOR:
1138     case QOR4:
1139         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1140             decode_fast_read_cmd(s);
1141         } else {
1142             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1143                           "DIO mode\n", s->cmd_in_progress);
1144         }
1145         break;
1146 
1147     case DIOR:
1148     case DIOR4:
1149         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1150             decode_dio_read_cmd(s);
1151         } else {
1152             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1153                           "QIO mode\n", s->cmd_in_progress);
1154         }
1155         break;
1156 
1157     case QIOR:
1158     case QIOR4:
1159         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1160             decode_qio_read_cmd(s);
1161         } else {
1162             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1163                           "DIO mode\n", s->cmd_in_progress);
1164         }
1165         break;
1166 
1167     case WRSR:
1168         if (s->write_enable) {
1169             switch (get_man(s)) {
1170             case MAN_SPANSION:
1171                 s->needed_bytes = 2;
1172                 s->state = STATE_COLLECTING_DATA;
1173                 break;
1174             case MAN_MACRONIX:
1175                 s->needed_bytes = 2;
1176                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1177                 break;
1178             default:
1179                 s->needed_bytes = 1;
1180                 s->state = STATE_COLLECTING_DATA;
1181             }
1182             s->pos = 0;
1183         }
1184         break;
1185 
1186     case WRDI:
1187         s->write_enable = false;
1188         if (get_man(s) == MAN_SST) {
1189             s->aai_enable = false;
1190         }
1191         break;
1192     case WREN:
1193         s->write_enable = true;
1194         break;
1195 
1196     case RDSR:
1197         s->data[0] = (!!s->write_enable) << 1;
1198         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1199             s->data[0] |= (!!s->quad_enable) << 6;
1200         }
1201         if (get_man(s) == MAN_SST) {
1202             s->data[0] |= (!!s->aai_enable) << 6;
1203         }
1204 
1205         s->pos = 0;
1206         s->len = 1;
1207         s->data_read_loop = true;
1208         s->state = STATE_READING_DATA;
1209         break;
1210 
1211     case READ_FSR:
1212         s->data[0] = FSR_FLASH_READY;
1213         if (s->four_bytes_address_mode) {
1214             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1215         }
1216         s->pos = 0;
1217         s->len = 1;
1218         s->data_read_loop = true;
1219         s->state = STATE_READING_DATA;
1220         break;
1221 
1222     case JEDEC_READ:
1223         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1224             trace_m25p80_populated_jedec(s);
1225             for (i = 0; i < s->pi->id_len; i++) {
1226                 s->data[i] = s->pi->id[i];
1227             }
1228             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1229                 s->data[i] = 0;
1230             }
1231 
1232             s->len = SPI_NOR_MAX_ID_LEN;
1233             s->pos = 0;
1234             s->state = STATE_READING_DATA;
1235         } else {
1236             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1237                           "in DIO or QIO mode\n");
1238         }
1239         break;
1240 
1241     case RDCR:
1242         s->data[0] = s->volatile_cfg & 0xFF;
1243         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1244         s->pos = 0;
1245         s->len = 1;
1246         s->state = STATE_READING_DATA;
1247         break;
1248 
1249     case BULK_ERASE_60:
1250     case BULK_ERASE:
1251         if (s->write_enable) {
1252             trace_m25p80_chip_erase(s);
1253             flash_erase(s, 0, BULK_ERASE);
1254         } else {
1255             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1256                           "protect!\n");
1257         }
1258         break;
1259     case NOP:
1260         break;
1261     case EN_4BYTE_ADDR:
1262         s->four_bytes_address_mode = true;
1263         break;
1264     case EX_4BYTE_ADDR:
1265         s->four_bytes_address_mode = false;
1266         break;
1267     case BRRD:
1268     case EXTEND_ADDR_READ:
1269         s->data[0] = s->ear;
1270         s->pos = 0;
1271         s->len = 1;
1272         s->state = STATE_READING_DATA;
1273         break;
1274     case BRWR:
1275     case EXTEND_ADDR_WRITE:
1276         if (s->write_enable) {
1277             s->needed_bytes = 1;
1278             s->pos = 0;
1279             s->len = 0;
1280             s->state = STATE_COLLECTING_DATA;
1281         }
1282         break;
1283     case RNVCR:
1284         s->data[0] = s->nonvolatile_cfg & 0xFF;
1285         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1286         s->pos = 0;
1287         s->len = 2;
1288         s->state = STATE_READING_DATA;
1289         break;
1290     case WNVCR:
1291         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1292             s->needed_bytes = 2;
1293             s->pos = 0;
1294             s->len = 0;
1295             s->state = STATE_COLLECTING_DATA;
1296         }
1297         break;
1298     case RVCR:
1299         s->data[0] = s->volatile_cfg & 0xFF;
1300         s->pos = 0;
1301         s->len = 1;
1302         s->state = STATE_READING_DATA;
1303         break;
1304     case WVCR:
1305         if (s->write_enable) {
1306             s->needed_bytes = 1;
1307             s->pos = 0;
1308             s->len = 0;
1309             s->state = STATE_COLLECTING_DATA;
1310         }
1311         break;
1312     case REVCR:
1313         s->data[0] = s->enh_volatile_cfg & 0xFF;
1314         s->pos = 0;
1315         s->len = 1;
1316         s->state = STATE_READING_DATA;
1317         break;
1318     case WEVCR:
1319         if (s->write_enable) {
1320             s->needed_bytes = 1;
1321             s->pos = 0;
1322             s->len = 0;
1323             s->state = STATE_COLLECTING_DATA;
1324         }
1325         break;
1326     case RESET_ENABLE:
1327         s->reset_enable = true;
1328         break;
1329     case RESET_MEMORY:
1330         if (s->reset_enable) {
1331             reset_memory(s);
1332         }
1333         break;
1334     case RDCR_EQIO:
1335         switch (get_man(s)) {
1336         case MAN_SPANSION:
1337             s->data[0] = (!!s->quad_enable) << 1;
1338             s->pos = 0;
1339             s->len = 1;
1340             s->state = STATE_READING_DATA;
1341             break;
1342         case MAN_MACRONIX:
1343             s->quad_enable = true;
1344             break;
1345         default:
1346             break;
1347         }
1348         break;
1349     case RSTQIO:
1350         s->quad_enable = false;
1351         break;
1352     case AAI_WP:
1353         if (get_man(s) == MAN_SST) {
1354             if (s->write_enable) {
1355                 if (s->aai_enable) {
1356                     s->state = STATE_PAGE_PROGRAM;
1357                 } else {
1358                     s->aai_enable = true;
1359                     s->needed_bytes = get_addr_length(s);
1360                     s->state = STATE_COLLECTING_DATA;
1361                 }
1362             } else {
1363                 qemu_log_mask(LOG_GUEST_ERROR,
1364                               "M25P80: AAI_WP with write protect\n");
1365             }
1366         } else {
1367             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1368         }
1369         break;
1370     default:
1371         s->pos = 0;
1372         s->len = 1;
1373         s->state = STATE_READING_DATA;
1374         s->data_read_loop = true;
1375         s->data[0] = 0;
1376         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1377         break;
1378     }
1379 }
1380 
1381 static int m25p80_cs(SSIPeripheral *ss, bool select)
1382 {
1383     Flash *s = M25P80(ss);
1384 
1385     if (select) {
1386         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1387             complete_collecting_data(s);
1388         }
1389         s->len = 0;
1390         s->pos = 0;
1391         s->state = STATE_IDLE;
1392         flash_sync_dirty(s, -1);
1393         s->data_read_loop = false;
1394     }
1395 
1396     trace_m25p80_select(s, select ? "de" : "");
1397 
1398     return 0;
1399 }
1400 
1401 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1402 {
1403     Flash *s = M25P80(ss);
1404     uint32_t r = 0;
1405 
1406     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1407                           s->cur_addr, (uint8_t)tx);
1408 
1409     switch (s->state) {
1410 
1411     case STATE_PAGE_PROGRAM:
1412         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1413         flash_write8(s, s->cur_addr, (uint8_t)tx);
1414         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1415 
1416         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1417             /*
1418              * There is no wrap mode during AAI programming once the highest
1419              * unprotected memory address is reached. The Write-Enable-Latch
1420              * bit is automatically reset, and AAI programming mode aborts.
1421              */
1422             s->write_enable = false;
1423             s->aai_enable = false;
1424         }
1425 
1426         break;
1427 
1428     case STATE_READ:
1429         r = s->storage[s->cur_addr];
1430         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1431         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1432         break;
1433 
1434     case STATE_COLLECTING_DATA:
1435     case STATE_COLLECTING_VAR_LEN_DATA:
1436 
1437         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1438             qemu_log_mask(LOG_GUEST_ERROR,
1439                           "M25P80: Write overrun internal data buffer. "
1440                           "SPI controller (QEMU emulator or guest driver) "
1441                           "is misbehaving\n");
1442             s->len = s->pos = 0;
1443             s->state = STATE_IDLE;
1444             break;
1445         }
1446 
1447         s->data[s->len] = (uint8_t)tx;
1448         s->len++;
1449 
1450         if (s->len == s->needed_bytes) {
1451             complete_collecting_data(s);
1452         }
1453         break;
1454 
1455     case STATE_READING_DATA:
1456 
1457         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1458             qemu_log_mask(LOG_GUEST_ERROR,
1459                           "M25P80: Read overrun internal data buffer. "
1460                           "SPI controller (QEMU emulator or guest driver) "
1461                           "is misbehaving\n");
1462             s->len = s->pos = 0;
1463             s->state = STATE_IDLE;
1464             break;
1465         }
1466 
1467         r = s->data[s->pos];
1468         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1469         s->pos++;
1470         if (s->pos == s->len) {
1471             s->pos = 0;
1472             if (!s->data_read_loop) {
1473                 s->state = STATE_IDLE;
1474             }
1475         }
1476         break;
1477 
1478     default:
1479     case STATE_IDLE:
1480         decode_new_cmd(s, (uint8_t)tx);
1481         break;
1482     }
1483 
1484     return r;
1485 }
1486 
1487 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1488 {
1489     Flash *s = M25P80(ss);
1490     M25P80Class *mc = M25P80_GET_CLASS(s);
1491     int ret;
1492 
1493     s->pi = mc->pi;
1494 
1495     s->size = s->pi->sector_size * s->pi->n_sectors;
1496     s->dirty_page = -1;
1497 
1498     if (s->blk) {
1499         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1500                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1501         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1502         if (ret < 0) {
1503             return;
1504         }
1505 
1506         trace_m25p80_binding(s);
1507         s->storage = blk_blockalign(s->blk, s->size);
1508 
1509         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1510             error_setg(errp, "failed to read the initial flash content");
1511             return;
1512         }
1513     } else {
1514         trace_m25p80_binding_no_bdrv(s);
1515         s->storage = blk_blockalign(NULL, s->size);
1516         memset(s->storage, 0xFF, s->size);
1517     }
1518 }
1519 
1520 static void m25p80_reset(DeviceState *d)
1521 {
1522     Flash *s = M25P80(d);
1523 
1524     reset_memory(s);
1525 }
1526 
1527 static int m25p80_pre_save(void *opaque)
1528 {
1529     flash_sync_dirty((Flash *)opaque, -1);
1530 
1531     return 0;
1532 }
1533 
1534 static Property m25p80_properties[] = {
1535     /* This is default value for Micron flash */
1536     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1537     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1538     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1539     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1540     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1541     DEFINE_PROP_DRIVE("drive", Flash, blk),
1542     DEFINE_PROP_END_OF_LIST(),
1543 };
1544 
1545 static int m25p80_pre_load(void *opaque)
1546 {
1547     Flash *s = (Flash *)opaque;
1548 
1549     s->data_read_loop = false;
1550     return 0;
1551 }
1552 
1553 static bool m25p80_data_read_loop_needed(void *opaque)
1554 {
1555     Flash *s = (Flash *)opaque;
1556 
1557     return s->data_read_loop;
1558 }
1559 
1560 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1561     .name = "m25p80/data_read_loop",
1562     .version_id = 1,
1563     .minimum_version_id = 1,
1564     .needed = m25p80_data_read_loop_needed,
1565     .fields = (VMStateField[]) {
1566         VMSTATE_BOOL(data_read_loop, Flash),
1567         VMSTATE_END_OF_LIST()
1568     }
1569 };
1570 
1571 static bool m25p80_aai_enable_needed(void *opaque)
1572 {
1573     Flash *s = (Flash *)opaque;
1574 
1575     return s->aai_enable;
1576 }
1577 
1578 static const VMStateDescription vmstate_m25p80_aai_enable = {
1579     .name = "m25p80/aai_enable",
1580     .version_id = 1,
1581     .minimum_version_id = 1,
1582     .needed = m25p80_aai_enable_needed,
1583     .fields = (VMStateField[]) {
1584         VMSTATE_BOOL(aai_enable, Flash),
1585         VMSTATE_END_OF_LIST()
1586     }
1587 };
1588 
1589 static const VMStateDescription vmstate_m25p80 = {
1590     .name = "m25p80",
1591     .version_id = 0,
1592     .minimum_version_id = 0,
1593     .pre_save = m25p80_pre_save,
1594     .pre_load = m25p80_pre_load,
1595     .fields = (VMStateField[]) {
1596         VMSTATE_UINT8(state, Flash),
1597         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1598         VMSTATE_UINT32(len, Flash),
1599         VMSTATE_UINT32(pos, Flash),
1600         VMSTATE_UINT8(needed_bytes, Flash),
1601         VMSTATE_UINT8(cmd_in_progress, Flash),
1602         VMSTATE_UINT32(cur_addr, Flash),
1603         VMSTATE_BOOL(write_enable, Flash),
1604         VMSTATE_BOOL(reset_enable, Flash),
1605         VMSTATE_UINT8(ear, Flash),
1606         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1607         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1608         VMSTATE_UINT32(volatile_cfg, Flash),
1609         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1610         VMSTATE_BOOL(quad_enable, Flash),
1611         VMSTATE_UINT8(spansion_cr1nv, Flash),
1612         VMSTATE_UINT8(spansion_cr2nv, Flash),
1613         VMSTATE_UINT8(spansion_cr3nv, Flash),
1614         VMSTATE_UINT8(spansion_cr4nv, Flash),
1615         VMSTATE_END_OF_LIST()
1616     },
1617     .subsections = (const VMStateDescription * []) {
1618         &vmstate_m25p80_data_read_loop,
1619         &vmstate_m25p80_aai_enable,
1620         NULL
1621     }
1622 };
1623 
1624 static void m25p80_class_init(ObjectClass *klass, void *data)
1625 {
1626     DeviceClass *dc = DEVICE_CLASS(klass);
1627     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1628     M25P80Class *mc = M25P80_CLASS(klass);
1629 
1630     k->realize = m25p80_realize;
1631     k->transfer = m25p80_transfer8;
1632     k->set_cs = m25p80_cs;
1633     k->cs_polarity = SSI_CS_LOW;
1634     dc->vmsd = &vmstate_m25p80;
1635     device_class_set_props(dc, m25p80_properties);
1636     dc->reset = m25p80_reset;
1637     mc->pi = data;
1638 }
1639 
1640 static const TypeInfo m25p80_info = {
1641     .name           = TYPE_M25P80,
1642     .parent         = TYPE_SSI_PERIPHERAL,
1643     .instance_size  = sizeof(Flash),
1644     .class_size     = sizeof(M25P80Class),
1645     .abstract       = true,
1646 };
1647 
1648 static void m25p80_register_types(void)
1649 {
1650     int i;
1651 
1652     type_register_static(&m25p80_info);
1653     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1654         TypeInfo ti = {
1655             .name       = known_devices[i].part_name,
1656             .parent     = TYPE_M25P80,
1657             .class_init = m25p80_class_init,
1658             .class_data = (void *)&known_devices[i],
1659         };
1660         type_register(&ti);
1661     }
1662 }
1663 
1664 type_init(m25p80_register_types)
1665