1 /* 2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command 3 * set. Known devices table current as of Jun/2012 and taken from linux. 4 * See drivers/mtd/devices/m25p80.c. 5 * 6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com> 7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com> 8 * Copyright (C) 2012 PetaLogix 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 or 13 * (at your option) a later version of the License. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "hw/hw.h" 25 #include "sysemu/blockdev.h" 26 #include "hw/ssi.h" 27 28 #ifndef M25P80_ERR_DEBUG 29 #define M25P80_ERR_DEBUG 0 30 #endif 31 32 #define DB_PRINT_L(level, ...) do { \ 33 if (M25P80_ERR_DEBUG > (level)) { \ 34 fprintf(stderr, ": %s: ", __func__); \ 35 fprintf(stderr, ## __VA_ARGS__); \ 36 } \ 37 } while (0); 38 39 /* Fields for FlashPartInfo->flags */ 40 41 /* erase capabilities */ 42 #define ER_4K 1 43 #define ER_32K 2 44 /* set to allow the page program command to write 0s back to 1. Useful for 45 * modelling EEPROM with SPI flash command set 46 */ 47 #define WR_1 0x100 48 49 typedef struct FlashPartInfo { 50 const char *part_name; 51 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */ 52 uint32_t jedec; 53 /* extended jedec code */ 54 uint16_t ext_jedec; 55 /* there is confusion between manufacturers as to what a sector is. In this 56 * device model, a "sector" is the size that is erased by the ERASE_SECTOR 57 * command (opcode 0xd8). 58 */ 59 uint32_t sector_size; 60 uint32_t n_sectors; 61 uint32_t page_size; 62 uint8_t flags; 63 } FlashPartInfo; 64 65 /* adapted from linux */ 66 67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\ 68 .part_name = (_part_name),\ 69 .jedec = (_jedec),\ 70 .ext_jedec = (_ext_jedec),\ 71 .sector_size = (_sector_size),\ 72 .n_sectors = (_n_sectors),\ 73 .page_size = 256,\ 74 .flags = (_flags),\ 75 76 #define JEDEC_NUMONYX 0x20 77 #define JEDEC_WINBOND 0xEF 78 #define JEDEC_SPANSION 0x01 79 80 static const FlashPartInfo known_devices[] = { 81 /* Atmel -- some are (confusingly) marketed as "DataFlash" */ 82 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) }, 83 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) }, 84 85 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) }, 86 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) }, 87 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) }, 88 89 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) }, 90 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) }, 91 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) }, 92 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) }, 93 94 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) }, 95 96 /* EON -- en25xxx */ 97 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) }, 98 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) }, 99 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) }, 100 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) }, 101 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) }, 102 103 /* GigaDevice */ 104 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) }, 105 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) }, 106 107 /* Intel/Numonyx -- xxxs33b */ 108 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) }, 109 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) }, 110 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) }, 111 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) }, 112 113 /* Macronix */ 114 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) }, 115 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) }, 116 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) }, 117 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) }, 118 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) }, 119 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) }, 120 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) }, 121 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) }, 122 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) }, 123 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) }, 124 125 /* Micron */ 126 { INFO("n25q032a", 0x20bb16, 0, 64 << 10, 64, ER_4K) }, 127 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, 0) }, 128 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, 0) }, 129 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, 130 131 /* Spansion -- single (large) sector size only, at least 132 * for the chips listed here (without boot sectors). 133 */ 134 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) }, 135 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) }, 136 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) }, 137 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) }, 138 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) }, 139 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) }, 140 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) }, 141 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) }, 142 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) }, 143 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) }, 144 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) }, 145 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) }, 146 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) }, 147 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) }, 148 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) }, 149 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) }, 150 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) }, 151 152 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */ 153 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) }, 154 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) }, 155 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) }, 156 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) }, 157 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) }, 158 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) }, 159 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) }, 160 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) }, 161 162 /* ST Microelectronics -- newer production may have feature updates */ 163 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) }, 164 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) }, 165 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) }, 166 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) }, 167 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) }, 168 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) }, 169 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) }, 170 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) }, 171 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) }, 172 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) }, 173 174 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) }, 175 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) }, 176 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) }, 177 178 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) }, 179 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) }, 180 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) }, 181 182 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) }, 183 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) }, 184 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) }, 185 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) }, 186 187 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */ 188 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) }, 189 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) }, 190 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) }, 191 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) }, 192 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) }, 193 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) }, 194 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) }, 195 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) }, 196 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) }, 197 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) }, 198 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) }, 199 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) }, 200 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) }, 201 202 /* Numonyx -- n25q128 */ 203 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) }, 204 }; 205 206 typedef enum { 207 NOP = 0, 208 WRSR = 0x1, 209 WRDI = 0x4, 210 RDSR = 0x5, 211 WREN = 0x6, 212 JEDEC_READ = 0x9f, 213 BULK_ERASE = 0xc7, 214 215 READ = 0x3, 216 FAST_READ = 0xb, 217 DOR = 0x3b, 218 QOR = 0x6b, 219 DIOR = 0xbb, 220 QIOR = 0xeb, 221 222 PP = 0x2, 223 DPP = 0xa2, 224 QPP = 0x32, 225 226 ERASE_4K = 0x20, 227 ERASE_32K = 0x52, 228 ERASE_SECTOR = 0xd8, 229 } FlashCMD; 230 231 typedef enum { 232 STATE_IDLE, 233 STATE_PAGE_PROGRAM, 234 STATE_READ, 235 STATE_COLLECTING_DATA, 236 STATE_READING_DATA, 237 } CMDState; 238 239 typedef struct Flash { 240 SSISlave ssidev; 241 uint32_t r; 242 243 BlockDriverState *bdrv; 244 245 uint8_t *storage; 246 uint32_t size; 247 int page_size; 248 249 uint8_t state; 250 uint8_t data[16]; 251 uint32_t len; 252 uint32_t pos; 253 uint8_t needed_bytes; 254 uint8_t cmd_in_progress; 255 uint64_t cur_addr; 256 bool write_enable; 257 258 int64_t dirty_page; 259 260 const FlashPartInfo *pi; 261 262 } Flash; 263 264 typedef struct M25P80Class { 265 SSISlaveClass parent_class; 266 FlashPartInfo *pi; 267 } M25P80Class; 268 269 #define TYPE_M25P80 "m25p80-generic" 270 #define M25P80(obj) \ 271 OBJECT_CHECK(Flash, (obj), TYPE_M25P80) 272 #define M25P80_CLASS(klass) \ 273 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80) 274 #define M25P80_GET_CLASS(obj) \ 275 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80) 276 277 static void bdrv_sync_complete(void *opaque, int ret) 278 { 279 /* do nothing. Masters do not directly interact with the backing store, 280 * only the working copy so no mutexing required. 281 */ 282 } 283 284 static void flash_sync_page(Flash *s, int page) 285 { 286 if (s->bdrv) { 287 int bdrv_sector, nb_sectors; 288 QEMUIOVector iov; 289 290 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE; 291 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE); 292 qemu_iovec_init(&iov, 1); 293 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE, 294 nb_sectors * BDRV_SECTOR_SIZE); 295 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors, 296 bdrv_sync_complete, NULL); 297 } 298 } 299 300 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len) 301 { 302 int64_t start, end, nb_sectors; 303 QEMUIOVector iov; 304 305 if (!s->bdrv) { 306 return; 307 } 308 309 assert(!(len % BDRV_SECTOR_SIZE)); 310 start = off / BDRV_SECTOR_SIZE; 311 end = (off + len) / BDRV_SECTOR_SIZE; 312 nb_sectors = end - start; 313 qemu_iovec_init(&iov, 1); 314 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE), 315 nb_sectors * BDRV_SECTOR_SIZE); 316 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL); 317 } 318 319 static void flash_erase(Flash *s, int offset, FlashCMD cmd) 320 { 321 uint32_t len; 322 uint8_t capa_to_assert = 0; 323 324 switch (cmd) { 325 case ERASE_4K: 326 len = 4 << 10; 327 capa_to_assert = ER_4K; 328 break; 329 case ERASE_32K: 330 len = 32 << 10; 331 capa_to_assert = ER_32K; 332 break; 333 case ERASE_SECTOR: 334 len = s->pi->sector_size; 335 break; 336 case BULK_ERASE: 337 len = s->size; 338 break; 339 default: 340 abort(); 341 } 342 343 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len); 344 if ((s->pi->flags & capa_to_assert) != capa_to_assert) { 345 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by" 346 " device\n", len); 347 } 348 349 if (!s->write_enable) { 350 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n"); 351 return; 352 } 353 memset(s->storage + offset, 0xff, len); 354 flash_sync_area(s, offset, len); 355 } 356 357 static inline void flash_sync_dirty(Flash *s, int64_t newpage) 358 { 359 if (s->dirty_page >= 0 && s->dirty_page != newpage) { 360 flash_sync_page(s, s->dirty_page); 361 s->dirty_page = newpage; 362 } 363 } 364 365 static inline 366 void flash_write8(Flash *s, uint64_t addr, uint8_t data) 367 { 368 int64_t page = addr / s->pi->page_size; 369 uint8_t prev = s->storage[s->cur_addr]; 370 371 if (!s->write_enable) { 372 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n"); 373 } 374 375 if ((prev ^ data) & data) { 376 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8 377 " -> %" PRIx8 "\n", addr, prev, data); 378 } 379 380 if (s->pi->flags & WR_1) { 381 s->storage[s->cur_addr] = data; 382 } else { 383 s->storage[s->cur_addr] &= data; 384 } 385 386 flash_sync_dirty(s, page); 387 s->dirty_page = page; 388 } 389 390 static void complete_collecting_data(Flash *s) 391 { 392 s->cur_addr = s->data[0] << 16; 393 s->cur_addr |= s->data[1] << 8; 394 s->cur_addr |= s->data[2]; 395 396 s->state = STATE_IDLE; 397 398 switch (s->cmd_in_progress) { 399 case DPP: 400 case QPP: 401 case PP: 402 s->state = STATE_PAGE_PROGRAM; 403 break; 404 case READ: 405 case FAST_READ: 406 case DOR: 407 case QOR: 408 case DIOR: 409 case QIOR: 410 s->state = STATE_READ; 411 break; 412 case ERASE_4K: 413 case ERASE_32K: 414 case ERASE_SECTOR: 415 flash_erase(s, s->cur_addr, s->cmd_in_progress); 416 break; 417 case WRSR: 418 if (s->write_enable) { 419 s->write_enable = false; 420 } 421 break; 422 default: 423 break; 424 } 425 } 426 427 static void decode_new_cmd(Flash *s, uint32_t value) 428 { 429 s->cmd_in_progress = value; 430 DB_PRINT_L(0, "decoded new command:%x\n", value); 431 432 switch (value) { 433 434 case ERASE_4K: 435 case ERASE_32K: 436 case ERASE_SECTOR: 437 case READ: 438 case DPP: 439 case QPP: 440 case PP: 441 s->needed_bytes = 3; 442 s->pos = 0; 443 s->len = 0; 444 s->state = STATE_COLLECTING_DATA; 445 break; 446 447 case FAST_READ: 448 case DOR: 449 case QOR: 450 s->needed_bytes = 4; 451 s->pos = 0; 452 s->len = 0; 453 s->state = STATE_COLLECTING_DATA; 454 break; 455 456 case DIOR: 457 switch ((s->pi->jedec >> 16) & 0xFF) { 458 case JEDEC_WINBOND: 459 case JEDEC_SPANSION: 460 s->needed_bytes = 4; 461 break; 462 case JEDEC_NUMONYX: 463 default: 464 s->needed_bytes = 5; 465 } 466 s->pos = 0; 467 s->len = 0; 468 s->state = STATE_COLLECTING_DATA; 469 break; 470 471 case QIOR: 472 switch ((s->pi->jedec >> 16) & 0xFF) { 473 case JEDEC_WINBOND: 474 case JEDEC_SPANSION: 475 s->needed_bytes = 6; 476 break; 477 case JEDEC_NUMONYX: 478 default: 479 s->needed_bytes = 8; 480 } 481 s->pos = 0; 482 s->len = 0; 483 s->state = STATE_COLLECTING_DATA; 484 break; 485 486 case WRSR: 487 if (s->write_enable) { 488 s->needed_bytes = 1; 489 s->pos = 0; 490 s->len = 0; 491 s->state = STATE_COLLECTING_DATA; 492 } 493 break; 494 495 case WRDI: 496 s->write_enable = false; 497 break; 498 case WREN: 499 s->write_enable = true; 500 break; 501 502 case RDSR: 503 s->data[0] = (!!s->write_enable) << 1; 504 s->pos = 0; 505 s->len = 1; 506 s->state = STATE_READING_DATA; 507 break; 508 509 case JEDEC_READ: 510 DB_PRINT_L(0, "populated jedec code\n"); 511 s->data[0] = (s->pi->jedec >> 16) & 0xff; 512 s->data[1] = (s->pi->jedec >> 8) & 0xff; 513 s->data[2] = s->pi->jedec & 0xff; 514 if (s->pi->ext_jedec) { 515 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff; 516 s->data[4] = s->pi->ext_jedec & 0xff; 517 s->len = 5; 518 } else { 519 s->len = 3; 520 } 521 s->pos = 0; 522 s->state = STATE_READING_DATA; 523 break; 524 525 case BULK_ERASE: 526 if (s->write_enable) { 527 DB_PRINT_L(0, "chip erase\n"); 528 flash_erase(s, 0, BULK_ERASE); 529 } else { 530 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write " 531 "protect!\n"); 532 } 533 break; 534 case NOP: 535 break; 536 default: 537 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); 538 break; 539 } 540 } 541 542 static int m25p80_cs(SSISlave *ss, bool select) 543 { 544 Flash *s = FROM_SSI_SLAVE(Flash, ss); 545 546 if (select) { 547 s->len = 0; 548 s->pos = 0; 549 s->state = STATE_IDLE; 550 flash_sync_dirty(s, -1); 551 } 552 553 DB_PRINT_L(0, "%sselect\n", select ? "de" : ""); 554 555 return 0; 556 } 557 558 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx) 559 { 560 Flash *s = FROM_SSI_SLAVE(Flash, ss); 561 uint32_t r = 0; 562 563 switch (s->state) { 564 565 case STATE_PAGE_PROGRAM: 566 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n", 567 s->cur_addr, (uint8_t)tx); 568 flash_write8(s, s->cur_addr, (uint8_t)tx); 569 s->cur_addr++; 570 break; 571 572 case STATE_READ: 573 r = s->storage[s->cur_addr]; 574 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr, 575 (uint8_t)r); 576 s->cur_addr = (s->cur_addr + 1) % s->size; 577 break; 578 579 case STATE_COLLECTING_DATA: 580 s->data[s->len] = (uint8_t)tx; 581 s->len++; 582 583 if (s->len == s->needed_bytes) { 584 complete_collecting_data(s); 585 } 586 break; 587 588 case STATE_READING_DATA: 589 r = s->data[s->pos]; 590 s->pos++; 591 if (s->pos == s->len) { 592 s->pos = 0; 593 s->state = STATE_IDLE; 594 } 595 break; 596 597 default: 598 case STATE_IDLE: 599 decode_new_cmd(s, (uint8_t)tx); 600 break; 601 } 602 603 return r; 604 } 605 606 static int m25p80_init(SSISlave *ss) 607 { 608 DriveInfo *dinfo; 609 Flash *s = FROM_SSI_SLAVE(Flash, ss); 610 M25P80Class *mc = M25P80_GET_CLASS(s); 611 612 s->pi = mc->pi; 613 614 s->size = s->pi->sector_size * s->pi->n_sectors; 615 s->dirty_page = -1; 616 s->storage = qemu_blockalign(s->bdrv, s->size); 617 618 dinfo = drive_get_next(IF_MTD); 619 620 if (dinfo && dinfo->bdrv) { 621 DB_PRINT_L(0, "Binding to IF_MTD drive\n"); 622 s->bdrv = dinfo->bdrv; 623 /* FIXME: Move to late init */ 624 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size, 625 BDRV_SECTOR_SIZE))) { 626 fprintf(stderr, "Failed to initialize SPI flash!\n"); 627 return 1; 628 } 629 } else { 630 DB_PRINT_L(0, "No BDRV - binding to RAM\n"); 631 memset(s->storage, 0xFF, s->size); 632 } 633 634 return 0; 635 } 636 637 static void m25p80_pre_save(void *opaque) 638 { 639 flash_sync_dirty((Flash *)opaque, -1); 640 } 641 642 static const VMStateDescription vmstate_m25p80 = { 643 .name = "xilinx_spi", 644 .version_id = 1, 645 .minimum_version_id = 1, 646 .minimum_version_id_old = 1, 647 .pre_save = m25p80_pre_save, 648 .fields = (VMStateField[]) { 649 VMSTATE_UINT8(state, Flash), 650 VMSTATE_UINT8_ARRAY(data, Flash, 16), 651 VMSTATE_UINT32(len, Flash), 652 VMSTATE_UINT32(pos, Flash), 653 VMSTATE_UINT8(needed_bytes, Flash), 654 VMSTATE_UINT8(cmd_in_progress, Flash), 655 VMSTATE_UINT64(cur_addr, Flash), 656 VMSTATE_BOOL(write_enable, Flash), 657 VMSTATE_END_OF_LIST() 658 } 659 }; 660 661 static void m25p80_class_init(ObjectClass *klass, void *data) 662 { 663 DeviceClass *dc = DEVICE_CLASS(klass); 664 SSISlaveClass *k = SSI_SLAVE_CLASS(klass); 665 M25P80Class *mc = M25P80_CLASS(klass); 666 667 k->init = m25p80_init; 668 k->transfer = m25p80_transfer8; 669 k->set_cs = m25p80_cs; 670 k->cs_polarity = SSI_CS_LOW; 671 dc->vmsd = &vmstate_m25p80; 672 mc->pi = data; 673 } 674 675 static const TypeInfo m25p80_info = { 676 .name = TYPE_M25P80, 677 .parent = TYPE_SSI_SLAVE, 678 .instance_size = sizeof(Flash), 679 .class_size = sizeof(M25P80Class), 680 .abstract = true, 681 }; 682 683 static void m25p80_register_types(void) 684 { 685 int i; 686 687 type_register_static(&m25p80_info); 688 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) { 689 TypeInfo ti = { 690 .name = known_devices[i].part_name, 691 .parent = TYPE_M25P80, 692 .class_init = m25p80_class_init, 693 .class_data = (void *)&known_devices[i], 694 }; 695 type_register(&ti); 696 } 697 } 698 699 type_init(m25p80_register_types) 700