xref: /openbmc/qemu/hw/block/m25p80.c (revision db895a1e)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "hw/hw.h"
25 #include "sysemu/blockdev.h"
26 #include "hw/ssi.h"
27 
28 #ifndef M25P80_ERR_DEBUG
29 #define M25P80_ERR_DEBUG 0
30 #endif
31 
32 #define DB_PRINT_L(level, ...) do { \
33     if (M25P80_ERR_DEBUG > (level)) { \
34         fprintf(stderr,  ": %s: ", __func__); \
35         fprintf(stderr, ## __VA_ARGS__); \
36     } \
37 } while (0);
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define WR_1 0x100
48 
49 typedef struct FlashPartInfo {
50     const char *part_name;
51     /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52     uint32_t jedec;
53     /* extended jedec code */
54     uint16_t ext_jedec;
55     /* there is confusion between manufacturers as to what a sector is. In this
56      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57      * command (opcode 0xd8).
58      */
59     uint32_t sector_size;
60     uint32_t n_sectors;
61     uint32_t page_size;
62     uint8_t flags;
63 } FlashPartInfo;
64 
65 /* adapted from linux */
66 
67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68     .part_name = (_part_name),\
69     .jedec = (_jedec),\
70     .ext_jedec = (_ext_jedec),\
71     .sector_size = (_sector_size),\
72     .n_sectors = (_n_sectors),\
73     .page_size = 256,\
74     .flags = (_flags),\
75 
76 #define JEDEC_NUMONYX 0x20
77 #define JEDEC_WINBOND 0xEF
78 #define JEDEC_SPANSION 0x01
79 
80 static const FlashPartInfo known_devices[] = {
81     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
83     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
84 
85     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
86     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
87     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
88 
89     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
90     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
91     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
92     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
93 
94     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
95 
96     /* EON -- en25xxx */
97     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
98     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
99     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
100     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
101     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
102 
103     /* GigaDevice */
104     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
105     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
106 
107     /* Intel/Numonyx -- xxxs33b */
108     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
109     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
110     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
111     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
112 
113     /* Macronix */
114     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
115     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
116     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
117     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
118     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
119     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
120     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
121     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
122     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
123     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
124 
125     /* Micron */
126     { INFO("n25q032a",    0x20bb16,      0,  64 << 10,  64, ER_4K) },
127     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, 0) },
128     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, 0) },
129     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
130 
131     /* Spansion -- single (large) sector size only, at least
132      * for the chips listed here (without boot sectors).
133      */
134     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
135     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
136     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
137     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
138     { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
139     { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
140     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
141     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
142     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
143     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
144     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
145     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
146     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
147     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
148     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
149     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
150     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
151 
152     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
153     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
154     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
155     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
156     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
157     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
158     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
159     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
160     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
161 
162     /* ST Microelectronics -- newer production may have feature updates */
163     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
164     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
165     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
166     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
167     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
168     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
169     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
170     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
171     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
172     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
173 
174     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
175     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
176     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
177 
178     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
179     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
180     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
181 
182     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
183     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
184     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
185     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
186 
187     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
188     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
189     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
190     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
191     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
192     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
193     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
194     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
195     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
196     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
197     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
198     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
199     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
200     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
201 
202     /* Numonyx -- n25q128 */
203     { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
204 };
205 
206 typedef enum {
207     NOP = 0,
208     WRSR = 0x1,
209     WRDI = 0x4,
210     RDSR = 0x5,
211     WREN = 0x6,
212     JEDEC_READ = 0x9f,
213     BULK_ERASE = 0xc7,
214 
215     READ = 0x3,
216     FAST_READ = 0xb,
217     DOR = 0x3b,
218     QOR = 0x6b,
219     DIOR = 0xbb,
220     QIOR = 0xeb,
221 
222     PP = 0x2,
223     DPP = 0xa2,
224     QPP = 0x32,
225 
226     ERASE_4K = 0x20,
227     ERASE_32K = 0x52,
228     ERASE_SECTOR = 0xd8,
229 } FlashCMD;
230 
231 typedef enum {
232     STATE_IDLE,
233     STATE_PAGE_PROGRAM,
234     STATE_READ,
235     STATE_COLLECTING_DATA,
236     STATE_READING_DATA,
237 } CMDState;
238 
239 typedef struct Flash {
240     SSISlave ssidev;
241     uint32_t r;
242 
243     BlockDriverState *bdrv;
244 
245     uint8_t *storage;
246     uint32_t size;
247     int page_size;
248 
249     uint8_t state;
250     uint8_t data[16];
251     uint32_t len;
252     uint32_t pos;
253     uint8_t needed_bytes;
254     uint8_t cmd_in_progress;
255     uint64_t cur_addr;
256     bool write_enable;
257 
258     int64_t dirty_page;
259 
260     const FlashPartInfo *pi;
261 
262 } Flash;
263 
264 typedef struct M25P80Class {
265     SSISlaveClass parent_class;
266     FlashPartInfo *pi;
267 } M25P80Class;
268 
269 #define TYPE_M25P80 "m25p80-generic"
270 #define M25P80(obj) \
271      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
272 #define M25P80_CLASS(klass) \
273      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
274 #define M25P80_GET_CLASS(obj) \
275      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
276 
277 static void bdrv_sync_complete(void *opaque, int ret)
278 {
279     /* do nothing. Masters do not directly interact with the backing store,
280      * only the working copy so no mutexing required.
281      */
282 }
283 
284 static void flash_sync_page(Flash *s, int page)
285 {
286     if (s->bdrv) {
287         int bdrv_sector, nb_sectors;
288         QEMUIOVector iov;
289 
290         bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
291         nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
292         qemu_iovec_init(&iov, 1);
293         qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
294                                                 nb_sectors * BDRV_SECTOR_SIZE);
295         bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
296                                                 bdrv_sync_complete, NULL);
297     }
298 }
299 
300 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
301 {
302     int64_t start, end, nb_sectors;
303     QEMUIOVector iov;
304 
305     if (!s->bdrv) {
306         return;
307     }
308 
309     assert(!(len % BDRV_SECTOR_SIZE));
310     start = off / BDRV_SECTOR_SIZE;
311     end = (off + len) / BDRV_SECTOR_SIZE;
312     nb_sectors = end - start;
313     qemu_iovec_init(&iov, 1);
314     qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
315                                         nb_sectors * BDRV_SECTOR_SIZE);
316     bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
317 }
318 
319 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
320 {
321     uint32_t len;
322     uint8_t capa_to_assert = 0;
323 
324     switch (cmd) {
325     case ERASE_4K:
326         len = 4 << 10;
327         capa_to_assert = ER_4K;
328         break;
329     case ERASE_32K:
330         len = 32 << 10;
331         capa_to_assert = ER_32K;
332         break;
333     case ERASE_SECTOR:
334         len = s->pi->sector_size;
335         break;
336     case BULK_ERASE:
337         len = s->size;
338         break;
339     default:
340         abort();
341     }
342 
343     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
344     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
345         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
346                       " device\n", len);
347     }
348 
349     if (!s->write_enable) {
350         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
351         return;
352     }
353     memset(s->storage + offset, 0xff, len);
354     flash_sync_area(s, offset, len);
355 }
356 
357 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
358 {
359     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
360         flash_sync_page(s, s->dirty_page);
361         s->dirty_page = newpage;
362     }
363 }
364 
365 static inline
366 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
367 {
368     int64_t page = addr / s->pi->page_size;
369     uint8_t prev = s->storage[s->cur_addr];
370 
371     if (!s->write_enable) {
372         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
373     }
374 
375     if ((prev ^ data) & data) {
376         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
377                    " -> %" PRIx8 "\n", addr, prev, data);
378     }
379 
380     if (s->pi->flags & WR_1) {
381         s->storage[s->cur_addr] = data;
382     } else {
383         s->storage[s->cur_addr] &= data;
384     }
385 
386     flash_sync_dirty(s, page);
387     s->dirty_page = page;
388 }
389 
390 static void complete_collecting_data(Flash *s)
391 {
392     s->cur_addr = s->data[0] << 16;
393     s->cur_addr |= s->data[1] << 8;
394     s->cur_addr |= s->data[2];
395 
396     s->state = STATE_IDLE;
397 
398     switch (s->cmd_in_progress) {
399     case DPP:
400     case QPP:
401     case PP:
402         s->state = STATE_PAGE_PROGRAM;
403         break;
404     case READ:
405     case FAST_READ:
406     case DOR:
407     case QOR:
408     case DIOR:
409     case QIOR:
410         s->state = STATE_READ;
411         break;
412     case ERASE_4K:
413     case ERASE_32K:
414     case ERASE_SECTOR:
415         flash_erase(s, s->cur_addr, s->cmd_in_progress);
416         break;
417     case WRSR:
418         if (s->write_enable) {
419             s->write_enable = false;
420         }
421         break;
422     default:
423         break;
424     }
425 }
426 
427 static void decode_new_cmd(Flash *s, uint32_t value)
428 {
429     s->cmd_in_progress = value;
430     DB_PRINT_L(0, "decoded new command:%x\n", value);
431 
432     switch (value) {
433 
434     case ERASE_4K:
435     case ERASE_32K:
436     case ERASE_SECTOR:
437     case READ:
438     case DPP:
439     case QPP:
440     case PP:
441         s->needed_bytes = 3;
442         s->pos = 0;
443         s->len = 0;
444         s->state = STATE_COLLECTING_DATA;
445         break;
446 
447     case FAST_READ:
448     case DOR:
449     case QOR:
450         s->needed_bytes = 4;
451         s->pos = 0;
452         s->len = 0;
453         s->state = STATE_COLLECTING_DATA;
454         break;
455 
456     case DIOR:
457         switch ((s->pi->jedec >> 16) & 0xFF) {
458         case JEDEC_WINBOND:
459         case JEDEC_SPANSION:
460             s->needed_bytes = 4;
461             break;
462         case JEDEC_NUMONYX:
463         default:
464             s->needed_bytes = 5;
465         }
466         s->pos = 0;
467         s->len = 0;
468         s->state = STATE_COLLECTING_DATA;
469         break;
470 
471     case QIOR:
472         switch ((s->pi->jedec >> 16) & 0xFF) {
473         case JEDEC_WINBOND:
474         case JEDEC_SPANSION:
475             s->needed_bytes = 6;
476             break;
477         case JEDEC_NUMONYX:
478         default:
479             s->needed_bytes = 8;
480         }
481         s->pos = 0;
482         s->len = 0;
483         s->state = STATE_COLLECTING_DATA;
484         break;
485 
486     case WRSR:
487         if (s->write_enable) {
488             s->needed_bytes = 1;
489             s->pos = 0;
490             s->len = 0;
491             s->state = STATE_COLLECTING_DATA;
492         }
493         break;
494 
495     case WRDI:
496         s->write_enable = false;
497         break;
498     case WREN:
499         s->write_enable = true;
500         break;
501 
502     case RDSR:
503         s->data[0] = (!!s->write_enable) << 1;
504         s->pos = 0;
505         s->len = 1;
506         s->state = STATE_READING_DATA;
507         break;
508 
509     case JEDEC_READ:
510         DB_PRINT_L(0, "populated jedec code\n");
511         s->data[0] = (s->pi->jedec >> 16) & 0xff;
512         s->data[1] = (s->pi->jedec >> 8) & 0xff;
513         s->data[2] = s->pi->jedec & 0xff;
514         if (s->pi->ext_jedec) {
515             s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
516             s->data[4] = s->pi->ext_jedec & 0xff;
517             s->len = 5;
518         } else {
519             s->len = 3;
520         }
521         s->pos = 0;
522         s->state = STATE_READING_DATA;
523         break;
524 
525     case BULK_ERASE:
526         if (s->write_enable) {
527             DB_PRINT_L(0, "chip erase\n");
528             flash_erase(s, 0, BULK_ERASE);
529         } else {
530             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
531                           "protect!\n");
532         }
533         break;
534     case NOP:
535         break;
536     default:
537         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
538         break;
539     }
540 }
541 
542 static int m25p80_cs(SSISlave *ss, bool select)
543 {
544     Flash *s = FROM_SSI_SLAVE(Flash, ss);
545 
546     if (select) {
547         s->len = 0;
548         s->pos = 0;
549         s->state = STATE_IDLE;
550         flash_sync_dirty(s, -1);
551     }
552 
553     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
554 
555     return 0;
556 }
557 
558 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
559 {
560     Flash *s = FROM_SSI_SLAVE(Flash, ss);
561     uint32_t r = 0;
562 
563     switch (s->state) {
564 
565     case STATE_PAGE_PROGRAM:
566         DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
567                    s->cur_addr, (uint8_t)tx);
568         flash_write8(s, s->cur_addr, (uint8_t)tx);
569         s->cur_addr++;
570         break;
571 
572     case STATE_READ:
573         r = s->storage[s->cur_addr];
574         DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
575                    (uint8_t)r);
576         s->cur_addr = (s->cur_addr + 1) % s->size;
577         break;
578 
579     case STATE_COLLECTING_DATA:
580         s->data[s->len] = (uint8_t)tx;
581         s->len++;
582 
583         if (s->len == s->needed_bytes) {
584             complete_collecting_data(s);
585         }
586         break;
587 
588     case STATE_READING_DATA:
589         r = s->data[s->pos];
590         s->pos++;
591         if (s->pos == s->len) {
592             s->pos = 0;
593             s->state = STATE_IDLE;
594         }
595         break;
596 
597     default:
598     case STATE_IDLE:
599         decode_new_cmd(s, (uint8_t)tx);
600         break;
601     }
602 
603     return r;
604 }
605 
606 static int m25p80_init(SSISlave *ss)
607 {
608     DriveInfo *dinfo;
609     Flash *s = FROM_SSI_SLAVE(Flash, ss);
610     M25P80Class *mc = M25P80_GET_CLASS(s);
611 
612     s->pi = mc->pi;
613 
614     s->size = s->pi->sector_size * s->pi->n_sectors;
615     s->dirty_page = -1;
616     s->storage = qemu_blockalign(s->bdrv, s->size);
617 
618     dinfo = drive_get_next(IF_MTD);
619 
620     if (dinfo && dinfo->bdrv) {
621         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
622         s->bdrv = dinfo->bdrv;
623         /* FIXME: Move to late init */
624         if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
625                                                     BDRV_SECTOR_SIZE))) {
626             fprintf(stderr, "Failed to initialize SPI flash!\n");
627             return 1;
628         }
629     } else {
630         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
631         memset(s->storage, 0xFF, s->size);
632     }
633 
634     return 0;
635 }
636 
637 static void m25p80_pre_save(void *opaque)
638 {
639     flash_sync_dirty((Flash *)opaque, -1);
640 }
641 
642 static const VMStateDescription vmstate_m25p80 = {
643     .name = "xilinx_spi",
644     .version_id = 1,
645     .minimum_version_id = 1,
646     .minimum_version_id_old = 1,
647     .pre_save = m25p80_pre_save,
648     .fields = (VMStateField[]) {
649         VMSTATE_UINT8(state, Flash),
650         VMSTATE_UINT8_ARRAY(data, Flash, 16),
651         VMSTATE_UINT32(len, Flash),
652         VMSTATE_UINT32(pos, Flash),
653         VMSTATE_UINT8(needed_bytes, Flash),
654         VMSTATE_UINT8(cmd_in_progress, Flash),
655         VMSTATE_UINT64(cur_addr, Flash),
656         VMSTATE_BOOL(write_enable, Flash),
657         VMSTATE_END_OF_LIST()
658     }
659 };
660 
661 static void m25p80_class_init(ObjectClass *klass, void *data)
662 {
663     DeviceClass *dc = DEVICE_CLASS(klass);
664     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
665     M25P80Class *mc = M25P80_CLASS(klass);
666 
667     k->init = m25p80_init;
668     k->transfer = m25p80_transfer8;
669     k->set_cs = m25p80_cs;
670     k->cs_polarity = SSI_CS_LOW;
671     dc->vmsd = &vmstate_m25p80;
672     mc->pi = data;
673 }
674 
675 static const TypeInfo m25p80_info = {
676     .name           = TYPE_M25P80,
677     .parent         = TYPE_SSI_SLAVE,
678     .instance_size  = sizeof(Flash),
679     .class_size     = sizeof(M25P80Class),
680     .abstract       = true,
681 };
682 
683 static void m25p80_register_types(void)
684 {
685     int i;
686 
687     type_register_static(&m25p80_info);
688     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
689         TypeInfo ti = {
690             .name       = known_devices[i].part_name,
691             .parent     = TYPE_M25P80,
692             .class_init = m25p80_class_init,
693             .class_data = (void *)&known_devices[i],
694         };
695         type_register(&ti);
696     }
697 }
698 
699 type_init(m25p80_register_types)
700