xref: /openbmc/qemu/hw/block/m25p80.c (revision d177892d)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define EEPROM 0x100
48 
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
51 
52 #define SPI_NOR_MAX_ID_LEN 6
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* ISSI */
214     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
216     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
218     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
219     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
220     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
221     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
225 
226     /* Macronix */
227     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
228     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
229     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
230     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
231     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
232     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
233     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
234     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
235     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
236     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
237     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
238     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
239     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
240     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
241 
242     /* Micron */
243     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
244     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
245     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
246     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
247     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
248     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
249     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
250     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
251     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
252     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
253     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
254     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
255     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
256     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
257     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
258     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
259     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
260     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
261     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
262 
263     /* Spansion -- single (large) sector size only, at least
264      * for the chips listed here (without boot sectors).
265      */
266     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
267     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
268     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
269     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
270     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
271     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
272     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
273     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
274     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
275     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
276     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
277     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
278     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
279     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
280     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
281     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
282     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
283 
284     /* Spansion --  boot sectors support  */
285     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
286     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
287 
288     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
289     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
290     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
291     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
292     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
293     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
294     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
295     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
296     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
297     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
298 
299     /* ST Microelectronics -- newer production may have feature updates */
300     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
301     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
302     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
303     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
304     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
305     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
306     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
307     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
308     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
309     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
310 
311     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
312     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
313     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
314 
315     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
316     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
317     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
318 
319     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
320     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
321     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
322     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
323 
324     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
325     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
326     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
327     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
328     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
329     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
330     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
331     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
332     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
333     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
334     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
335     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
336     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
337     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
338     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
339 };
340 
341 typedef enum {
342     NOP = 0,
343     WRSR = 0x1,
344     WRDI = 0x4,
345     RDSR = 0x5,
346     WREN = 0x6,
347     BRRD = 0x16,
348     BRWR = 0x17,
349     JEDEC_READ = 0x9f,
350     BULK_ERASE_60 = 0x60,
351     BULK_ERASE = 0xc7,
352     READ_FSR = 0x70,
353     RDCR = 0x15,
354 
355     READ = 0x03,
356     READ4 = 0x13,
357     FAST_READ = 0x0b,
358     FAST_READ4 = 0x0c,
359     DOR = 0x3b,
360     DOR4 = 0x3c,
361     QOR = 0x6b,
362     QOR4 = 0x6c,
363     DIOR = 0xbb,
364     DIOR4 = 0xbc,
365     QIOR = 0xeb,
366     QIOR4 = 0xec,
367 
368     PP = 0x02,
369     PP4 = 0x12,
370     PP4_4 = 0x3e,
371     DPP = 0xa2,
372     QPP = 0x32,
373     QPP_4 = 0x34,
374     RDID_90 = 0x90,
375     RDID_AB = 0xab,
376     AAI_WP = 0xad,
377 
378     ERASE_4K = 0x20,
379     ERASE4_4K = 0x21,
380     ERASE_32K = 0x52,
381     ERASE4_32K = 0x5c,
382     ERASE_SECTOR = 0xd8,
383     ERASE4_SECTOR = 0xdc,
384 
385     EN_4BYTE_ADDR = 0xB7,
386     EX_4BYTE_ADDR = 0xE9,
387 
388     EXTEND_ADDR_READ = 0xC8,
389     EXTEND_ADDR_WRITE = 0xC5,
390 
391     RESET_ENABLE = 0x66,
392     RESET_MEMORY = 0x99,
393 
394     /*
395      * Micron: 0x35 - enable QPI
396      * Spansion: 0x35 - read control register
397      */
398     RDCR_EQIO = 0x35,
399     RSTQIO = 0xf5,
400 
401     RNVCR = 0xB5,
402     WNVCR = 0xB1,
403 
404     RVCR = 0x85,
405     WVCR = 0x81,
406 
407     REVCR = 0x65,
408     WEVCR = 0x61,
409 
410     DIE_ERASE = 0xC4,
411 } FlashCMD;
412 
413 typedef enum {
414     STATE_IDLE,
415     STATE_PAGE_PROGRAM,
416     STATE_READ,
417     STATE_COLLECTING_DATA,
418     STATE_COLLECTING_VAR_LEN_DATA,
419     STATE_READING_DATA,
420 } CMDState;
421 
422 typedef enum {
423     MAN_SPANSION,
424     MAN_MACRONIX,
425     MAN_NUMONYX,
426     MAN_WINBOND,
427     MAN_SST,
428     MAN_ISSI,
429     MAN_GENERIC,
430 } Manufacturer;
431 
432 typedef enum {
433     MODE_STD = 0,
434     MODE_DIO = 1,
435     MODE_QIO = 2
436 } SPIMode;
437 
438 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
439 
440 struct Flash {
441     SSIPeripheral parent_obj;
442 
443     BlockBackend *blk;
444 
445     uint8_t *storage;
446     uint32_t size;
447     int page_size;
448 
449     uint8_t state;
450     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
451     uint32_t len;
452     uint32_t pos;
453     bool data_read_loop;
454     uint8_t needed_bytes;
455     uint8_t cmd_in_progress;
456     uint32_t cur_addr;
457     uint32_t nonvolatile_cfg;
458     /* Configuration register for Macronix */
459     uint32_t volatile_cfg;
460     uint32_t enh_volatile_cfg;
461     /* Spansion cfg registers. */
462     uint8_t spansion_cr1nv;
463     uint8_t spansion_cr2nv;
464     uint8_t spansion_cr3nv;
465     uint8_t spansion_cr4nv;
466     uint8_t spansion_cr1v;
467     uint8_t spansion_cr2v;
468     uint8_t spansion_cr3v;
469     uint8_t spansion_cr4v;
470     bool write_enable;
471     bool four_bytes_address_mode;
472     bool reset_enable;
473     bool quad_enable;
474     bool aai_enable;
475     uint8_t ear;
476 
477     int64_t dirty_page;
478 
479     const FlashPartInfo *pi;
480 
481 };
482 
483 struct M25P80Class {
484     SSIPeripheralClass parent_class;
485     FlashPartInfo *pi;
486 };
487 
488 #define TYPE_M25P80 "m25p80-generic"
489 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
490 
491 static inline Manufacturer get_man(Flash *s)
492 {
493     switch (s->pi->id[0]) {
494     case 0x20:
495         return MAN_NUMONYX;
496     case 0xEF:
497         return MAN_WINBOND;
498     case 0x01:
499         return MAN_SPANSION;
500     case 0xC2:
501         return MAN_MACRONIX;
502     case 0xBF:
503         return MAN_SST;
504     case 0x9D:
505         return MAN_ISSI;
506     default:
507         return MAN_GENERIC;
508     }
509 }
510 
511 static void blk_sync_complete(void *opaque, int ret)
512 {
513     QEMUIOVector *iov = opaque;
514 
515     qemu_iovec_destroy(iov);
516     g_free(iov);
517 
518     /* do nothing. Masters do not directly interact with the backing store,
519      * only the working copy so no mutexing required.
520      */
521 }
522 
523 static void flash_sync_page(Flash *s, int page)
524 {
525     QEMUIOVector *iov;
526 
527     if (!s->blk || !blk_is_writable(s->blk)) {
528         return;
529     }
530 
531     iov = g_new(QEMUIOVector, 1);
532     qemu_iovec_init(iov, 1);
533     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
534                    s->pi->page_size);
535     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
536                     blk_sync_complete, iov);
537 }
538 
539 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
540 {
541     QEMUIOVector *iov;
542 
543     if (!s->blk || !blk_is_writable(s->blk)) {
544         return;
545     }
546 
547     assert(!(len % BDRV_SECTOR_SIZE));
548     iov = g_new(QEMUIOVector, 1);
549     qemu_iovec_init(iov, 1);
550     qemu_iovec_add(iov, s->storage + off, len);
551     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
552 }
553 
554 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
555 {
556     uint32_t len;
557     uint8_t capa_to_assert = 0;
558 
559     switch (cmd) {
560     case ERASE_4K:
561     case ERASE4_4K:
562         len = 4 * KiB;
563         capa_to_assert = ER_4K;
564         break;
565     case ERASE_32K:
566     case ERASE4_32K:
567         len = 32 * KiB;
568         capa_to_assert = ER_32K;
569         break;
570     case ERASE_SECTOR:
571     case ERASE4_SECTOR:
572         len = s->pi->sector_size;
573         break;
574     case BULK_ERASE:
575         len = s->size;
576         break;
577     case DIE_ERASE:
578         if (s->pi->die_cnt) {
579             len = s->size / s->pi->die_cnt;
580             offset = offset & (~(len - 1));
581         } else {
582             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
583                           " by device\n");
584             return;
585         }
586         break;
587     default:
588         abort();
589     }
590 
591     trace_m25p80_flash_erase(s, offset, len);
592 
593     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
594         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
595                       " device\n", len);
596     }
597 
598     if (!s->write_enable) {
599         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
600         return;
601     }
602     memset(s->storage + offset, 0xff, len);
603     flash_sync_area(s, offset, len);
604 }
605 
606 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
607 {
608     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
609         flash_sync_page(s, s->dirty_page);
610         s->dirty_page = newpage;
611     }
612 }
613 
614 static inline
615 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
616 {
617     uint32_t page = addr / s->pi->page_size;
618     uint8_t prev = s->storage[s->cur_addr];
619 
620     if (!s->write_enable) {
621         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
622         return;
623     }
624 
625     if ((prev ^ data) & data) {
626         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
627     }
628 
629     if (s->pi->flags & EEPROM) {
630         s->storage[s->cur_addr] = data;
631     } else {
632         s->storage[s->cur_addr] &= data;
633     }
634 
635     flash_sync_dirty(s, page);
636     s->dirty_page = page;
637 }
638 
639 static inline int get_addr_length(Flash *s)
640 {
641    /* check if eeprom is in use */
642     if (s->pi->flags == EEPROM) {
643         return 2;
644     }
645 
646    switch (s->cmd_in_progress) {
647    case PP4:
648    case PP4_4:
649    case QPP_4:
650    case READ4:
651    case QIOR4:
652    case ERASE4_4K:
653    case ERASE4_32K:
654    case ERASE4_SECTOR:
655    case FAST_READ4:
656    case DOR4:
657    case QOR4:
658    case DIOR4:
659        return 4;
660    default:
661        return s->four_bytes_address_mode ? 4 : 3;
662    }
663 }
664 
665 static void complete_collecting_data(Flash *s)
666 {
667     int i, n;
668 
669     n = get_addr_length(s);
670     s->cur_addr = (n == 3 ? s->ear : 0);
671     for (i = 0; i < n; ++i) {
672         s->cur_addr <<= 8;
673         s->cur_addr |= s->data[i];
674     }
675 
676     s->cur_addr &= s->size - 1;
677 
678     s->state = STATE_IDLE;
679 
680     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
681                                      s->cur_addr);
682 
683     switch (s->cmd_in_progress) {
684     case DPP:
685     case QPP:
686     case QPP_4:
687     case PP:
688     case PP4:
689     case PP4_4:
690         s->state = STATE_PAGE_PROGRAM;
691         break;
692     case AAI_WP:
693         /* AAI programming starts from the even address */
694         s->cur_addr &= ~BIT(0);
695         s->state = STATE_PAGE_PROGRAM;
696         break;
697     case READ:
698     case READ4:
699     case FAST_READ:
700     case FAST_READ4:
701     case DOR:
702     case DOR4:
703     case QOR:
704     case QOR4:
705     case DIOR:
706     case DIOR4:
707     case QIOR:
708     case QIOR4:
709         s->state = STATE_READ;
710         break;
711     case ERASE_4K:
712     case ERASE4_4K:
713     case ERASE_32K:
714     case ERASE4_32K:
715     case ERASE_SECTOR:
716     case ERASE4_SECTOR:
717     case DIE_ERASE:
718         flash_erase(s, s->cur_addr, s->cmd_in_progress);
719         break;
720     case WRSR:
721         switch (get_man(s)) {
722         case MAN_SPANSION:
723             s->quad_enable = !!(s->data[1] & 0x02);
724             break;
725         case MAN_ISSI:
726             s->quad_enable = extract32(s->data[0], 6, 1);
727             break;
728         case MAN_MACRONIX:
729             s->quad_enable = extract32(s->data[0], 6, 1);
730             if (s->len > 1) {
731                 s->volatile_cfg = s->data[1];
732                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
733             }
734             break;
735         default:
736             break;
737         }
738         if (s->write_enable) {
739             s->write_enable = false;
740         }
741         break;
742     case BRWR:
743     case EXTEND_ADDR_WRITE:
744         s->ear = s->data[0];
745         break;
746     case WNVCR:
747         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
748         break;
749     case WVCR:
750         s->volatile_cfg = s->data[0];
751         break;
752     case WEVCR:
753         s->enh_volatile_cfg = s->data[0];
754         break;
755     case RDID_90:
756     case RDID_AB:
757         if (get_man(s) == MAN_SST) {
758             if (s->cur_addr <= 1) {
759                 if (s->cur_addr) {
760                     s->data[0] = s->pi->id[2];
761                     s->data[1] = s->pi->id[0];
762                 } else {
763                     s->data[0] = s->pi->id[0];
764                     s->data[1] = s->pi->id[2];
765                 }
766                 s->pos = 0;
767                 s->len = 2;
768                 s->data_read_loop = true;
769                 s->state = STATE_READING_DATA;
770             } else {
771                 qemu_log_mask(LOG_GUEST_ERROR,
772                               "M25P80: Invalid read id address\n");
773             }
774         } else {
775             qemu_log_mask(LOG_GUEST_ERROR,
776                           "M25P80: Read id (command 0x90/0xAB) is not supported"
777                           " by device\n");
778         }
779         break;
780     default:
781         break;
782     }
783 }
784 
785 static void reset_memory(Flash *s)
786 {
787     s->cmd_in_progress = NOP;
788     s->cur_addr = 0;
789     s->ear = 0;
790     s->four_bytes_address_mode = false;
791     s->len = 0;
792     s->needed_bytes = 0;
793     s->pos = 0;
794     s->state = STATE_IDLE;
795     s->write_enable = false;
796     s->reset_enable = false;
797     s->quad_enable = false;
798     s->aai_enable = false;
799 
800     switch (get_man(s)) {
801     case MAN_NUMONYX:
802         s->volatile_cfg = 0;
803         s->volatile_cfg |= VCFG_DUMMY;
804         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
805         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
806                                 == NVCFG_XIP_MODE_DISABLED) {
807             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
808         }
809         s->volatile_cfg |= deposit32(s->volatile_cfg,
810                             VCFG_DUMMY_CLK_POS,
811                             CFG_DUMMY_CLK_LEN,
812                             extract32(s->nonvolatile_cfg,
813                                         NVCFG_DUMMY_CLK_POS,
814                                         CFG_DUMMY_CLK_LEN)
815                             );
816 
817         s->enh_volatile_cfg = 0;
818         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
819         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
820         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
821         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
822             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
823         }
824         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
825             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
826         }
827         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
828             s->four_bytes_address_mode = true;
829         }
830         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
831             s->ear = s->size / MAX_3BYTES_SIZE - 1;
832         }
833         break;
834     case MAN_MACRONIX:
835         s->volatile_cfg = 0x7;
836         break;
837     case MAN_SPANSION:
838         s->spansion_cr1v = s->spansion_cr1nv;
839         s->spansion_cr2v = s->spansion_cr2nv;
840         s->spansion_cr3v = s->spansion_cr3nv;
841         s->spansion_cr4v = s->spansion_cr4nv;
842         s->quad_enable = extract32(s->spansion_cr1v,
843                                    SPANSION_QUAD_CFG_POS,
844                                    SPANSION_QUAD_CFG_LEN
845                                    );
846         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
847                 SPANSION_ADDR_LEN_POS,
848                 SPANSION_ADDR_LEN_LEN
849                 );
850         break;
851     default:
852         break;
853     }
854 
855     trace_m25p80_reset_done(s);
856 }
857 
858 static uint8_t numonyx_mode(Flash *s)
859 {
860     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
861         return MODE_QIO;
862     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
863         return MODE_DIO;
864     } else {
865         return MODE_STD;
866     }
867 }
868 
869 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
870 {
871     uint8_t num_dummies;
872     uint8_t mode;
873     assert(get_man(s) == MAN_NUMONYX);
874 
875     mode = numonyx_mode(s);
876     num_dummies = extract32(s->volatile_cfg, 4, 4);
877 
878     if (num_dummies == 0x0 || num_dummies == 0xf) {
879         switch (s->cmd_in_progress) {
880         case QIOR:
881         case QIOR4:
882             num_dummies = 10;
883             break;
884         default:
885             num_dummies = (mode == MODE_QIO) ? 10 : 8;
886             break;
887         }
888     }
889 
890     return num_dummies;
891 }
892 
893 static void decode_fast_read_cmd(Flash *s)
894 {
895     s->needed_bytes = get_addr_length(s);
896     switch (get_man(s)) {
897     /* Dummy cycles - modeled with bytes writes instead of bits */
898     case MAN_SST:
899         s->needed_bytes += 1;
900         break;
901     case MAN_WINBOND:
902         s->needed_bytes += 8;
903         break;
904     case MAN_NUMONYX:
905         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
906         break;
907     case MAN_MACRONIX:
908         if (extract32(s->volatile_cfg, 6, 2) == 1) {
909             s->needed_bytes += 6;
910         } else {
911             s->needed_bytes += 8;
912         }
913         break;
914     case MAN_SPANSION:
915         s->needed_bytes += extract32(s->spansion_cr2v,
916                                     SPANSION_DUMMY_CLK_POS,
917                                     SPANSION_DUMMY_CLK_LEN
918                                     );
919         break;
920     case MAN_ISSI:
921         /*
922          * The Fast Read instruction code is followed by address bytes and
923          * dummy cycles, transmitted via the SI line.
924          *
925          * The number of dummy cycles is configurable but this is currently
926          * unmodeled, hence the default value 8 is used.
927          *
928          * QPI (Quad Peripheral Interface) mode has different default value
929          * of dummy cycles, but this is unsupported at the time being.
930          */
931         s->needed_bytes += 1;
932         break;
933     default:
934         break;
935     }
936     s->pos = 0;
937     s->len = 0;
938     s->state = STATE_COLLECTING_DATA;
939 }
940 
941 static void decode_dio_read_cmd(Flash *s)
942 {
943     s->needed_bytes = get_addr_length(s);
944     /* Dummy cycles modeled with bytes writes instead of bits */
945     switch (get_man(s)) {
946     case MAN_WINBOND:
947         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
948         break;
949     case MAN_SPANSION:
950         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
951         s->needed_bytes += extract32(s->spansion_cr2v,
952                                     SPANSION_DUMMY_CLK_POS,
953                                     SPANSION_DUMMY_CLK_LEN
954                                     );
955         break;
956     case MAN_NUMONYX:
957         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
958         break;
959     case MAN_MACRONIX:
960         switch (extract32(s->volatile_cfg, 6, 2)) {
961         case 1:
962             s->needed_bytes += 6;
963             break;
964         case 2:
965             s->needed_bytes += 8;
966             break;
967         default:
968             s->needed_bytes += 4;
969             break;
970         }
971         break;
972     case MAN_ISSI:
973         /*
974          * The Fast Read Dual I/O instruction code is followed by address bytes
975          * and dummy cycles, transmitted via the IO1 and IO0 line.
976          *
977          * The number of dummy cycles is configurable but this is currently
978          * unmodeled, hence the default value 4 is used.
979          */
980         s->needed_bytes += 1;
981         break;
982     default:
983         break;
984     }
985     s->pos = 0;
986     s->len = 0;
987     s->state = STATE_COLLECTING_DATA;
988 }
989 
990 static void decode_qio_read_cmd(Flash *s)
991 {
992     s->needed_bytes = get_addr_length(s);
993     /* Dummy cycles modeled with bytes writes instead of bits */
994     switch (get_man(s)) {
995     case MAN_WINBOND:
996         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
997         s->needed_bytes += 4;
998         break;
999     case MAN_SPANSION:
1000         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1001         s->needed_bytes += extract32(s->spansion_cr2v,
1002                                     SPANSION_DUMMY_CLK_POS,
1003                                     SPANSION_DUMMY_CLK_LEN
1004                                     );
1005         break;
1006     case MAN_NUMONYX:
1007         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1008         break;
1009     case MAN_MACRONIX:
1010         switch (extract32(s->volatile_cfg, 6, 2)) {
1011         case 1:
1012             s->needed_bytes += 4;
1013             break;
1014         case 2:
1015             s->needed_bytes += 8;
1016             break;
1017         default:
1018             s->needed_bytes += 6;
1019             break;
1020         }
1021         break;
1022     case MAN_ISSI:
1023         /*
1024          * The Fast Read Quad I/O instruction code is followed by address bytes
1025          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1026          *
1027          * The number of dummy cycles is configurable but this is currently
1028          * unmodeled, hence the default value 6 is used.
1029          *
1030          * QPI (Quad Peripheral Interface) mode has different default value
1031          * of dummy cycles, but this is unsupported at the time being.
1032          */
1033         s->needed_bytes += 3;
1034         break;
1035     default:
1036         break;
1037     }
1038     s->pos = 0;
1039     s->len = 0;
1040     s->state = STATE_COLLECTING_DATA;
1041 }
1042 
1043 static bool is_valid_aai_cmd(uint32_t cmd)
1044 {
1045     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1046 }
1047 
1048 static void decode_new_cmd(Flash *s, uint32_t value)
1049 {
1050     int i;
1051 
1052     s->cmd_in_progress = value;
1053     trace_m25p80_command_decoded(s, value);
1054 
1055     if (value != RESET_MEMORY) {
1056         s->reset_enable = false;
1057     }
1058 
1059     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1060         qemu_log_mask(LOG_GUEST_ERROR,
1061                       "M25P80: Invalid cmd within AAI programming sequence");
1062     }
1063 
1064     switch (value) {
1065 
1066     case ERASE_4K:
1067     case ERASE4_4K:
1068     case ERASE_32K:
1069     case ERASE4_32K:
1070     case ERASE_SECTOR:
1071     case ERASE4_SECTOR:
1072     case PP:
1073     case PP4:
1074     case DIE_ERASE:
1075     case RDID_90:
1076     case RDID_AB:
1077         s->needed_bytes = get_addr_length(s);
1078         s->pos = 0;
1079         s->len = 0;
1080         s->state = STATE_COLLECTING_DATA;
1081         break;
1082     case READ:
1083     case READ4:
1084         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1085             s->needed_bytes = get_addr_length(s);
1086             s->pos = 0;
1087             s->len = 0;
1088             s->state = STATE_COLLECTING_DATA;
1089         } else {
1090             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1091                           "DIO or QIO mode\n", s->cmd_in_progress);
1092         }
1093         break;
1094     case DPP:
1095         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1096             s->needed_bytes = get_addr_length(s);
1097             s->pos = 0;
1098             s->len = 0;
1099             s->state = STATE_COLLECTING_DATA;
1100         } else {
1101             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1102                           "QIO mode\n", s->cmd_in_progress);
1103         }
1104         break;
1105     case QPP:
1106     case QPP_4:
1107     case PP4_4:
1108         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1109             s->needed_bytes = get_addr_length(s);
1110             s->pos = 0;
1111             s->len = 0;
1112             s->state = STATE_COLLECTING_DATA;
1113         } else {
1114             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1115                           "DIO mode\n", s->cmd_in_progress);
1116         }
1117         break;
1118 
1119     case FAST_READ:
1120     case FAST_READ4:
1121         decode_fast_read_cmd(s);
1122         break;
1123     case DOR:
1124     case DOR4:
1125         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1126             decode_fast_read_cmd(s);
1127         } else {
1128             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1129                           "QIO mode\n", s->cmd_in_progress);
1130         }
1131         break;
1132     case QOR:
1133     case QOR4:
1134         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1135             decode_fast_read_cmd(s);
1136         } else {
1137             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1138                           "DIO mode\n", s->cmd_in_progress);
1139         }
1140         break;
1141 
1142     case DIOR:
1143     case DIOR4:
1144         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1145             decode_dio_read_cmd(s);
1146         } else {
1147             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1148                           "QIO mode\n", s->cmd_in_progress);
1149         }
1150         break;
1151 
1152     case QIOR:
1153     case QIOR4:
1154         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1155             decode_qio_read_cmd(s);
1156         } else {
1157             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1158                           "DIO mode\n", s->cmd_in_progress);
1159         }
1160         break;
1161 
1162     case WRSR:
1163         if (s->write_enable) {
1164             switch (get_man(s)) {
1165             case MAN_SPANSION:
1166                 s->needed_bytes = 2;
1167                 s->state = STATE_COLLECTING_DATA;
1168                 break;
1169             case MAN_MACRONIX:
1170                 s->needed_bytes = 2;
1171                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1172                 break;
1173             default:
1174                 s->needed_bytes = 1;
1175                 s->state = STATE_COLLECTING_DATA;
1176             }
1177             s->pos = 0;
1178         }
1179         break;
1180 
1181     case WRDI:
1182         s->write_enable = false;
1183         if (get_man(s) == MAN_SST) {
1184             s->aai_enable = false;
1185         }
1186         break;
1187     case WREN:
1188         s->write_enable = true;
1189         break;
1190 
1191     case RDSR:
1192         s->data[0] = (!!s->write_enable) << 1;
1193         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1194             s->data[0] |= (!!s->quad_enable) << 6;
1195         }
1196         if (get_man(s) == MAN_SST) {
1197             s->data[0] |= (!!s->aai_enable) << 6;
1198         }
1199 
1200         s->pos = 0;
1201         s->len = 1;
1202         s->data_read_loop = true;
1203         s->state = STATE_READING_DATA;
1204         break;
1205 
1206     case READ_FSR:
1207         s->data[0] = FSR_FLASH_READY;
1208         if (s->four_bytes_address_mode) {
1209             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1210         }
1211         s->pos = 0;
1212         s->len = 1;
1213         s->data_read_loop = true;
1214         s->state = STATE_READING_DATA;
1215         break;
1216 
1217     case JEDEC_READ:
1218         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1219             trace_m25p80_populated_jedec(s);
1220             for (i = 0; i < s->pi->id_len; i++) {
1221                 s->data[i] = s->pi->id[i];
1222             }
1223             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1224                 s->data[i] = 0;
1225             }
1226 
1227             s->len = SPI_NOR_MAX_ID_LEN;
1228             s->pos = 0;
1229             s->state = STATE_READING_DATA;
1230         } else {
1231             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1232                           "in DIO or QIO mode\n");
1233         }
1234         break;
1235 
1236     case RDCR:
1237         s->data[0] = s->volatile_cfg & 0xFF;
1238         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1239         s->pos = 0;
1240         s->len = 1;
1241         s->state = STATE_READING_DATA;
1242         break;
1243 
1244     case BULK_ERASE_60:
1245     case BULK_ERASE:
1246         if (s->write_enable) {
1247             trace_m25p80_chip_erase(s);
1248             flash_erase(s, 0, BULK_ERASE);
1249         } else {
1250             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1251                           "protect!\n");
1252         }
1253         break;
1254     case NOP:
1255         break;
1256     case EN_4BYTE_ADDR:
1257         s->four_bytes_address_mode = true;
1258         break;
1259     case EX_4BYTE_ADDR:
1260         s->four_bytes_address_mode = false;
1261         break;
1262     case BRRD:
1263     case EXTEND_ADDR_READ:
1264         s->data[0] = s->ear;
1265         s->pos = 0;
1266         s->len = 1;
1267         s->state = STATE_READING_DATA;
1268         break;
1269     case BRWR:
1270     case EXTEND_ADDR_WRITE:
1271         if (s->write_enable) {
1272             s->needed_bytes = 1;
1273             s->pos = 0;
1274             s->len = 0;
1275             s->state = STATE_COLLECTING_DATA;
1276         }
1277         break;
1278     case RNVCR:
1279         s->data[0] = s->nonvolatile_cfg & 0xFF;
1280         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1281         s->pos = 0;
1282         s->len = 2;
1283         s->state = STATE_READING_DATA;
1284         break;
1285     case WNVCR:
1286         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1287             s->needed_bytes = 2;
1288             s->pos = 0;
1289             s->len = 0;
1290             s->state = STATE_COLLECTING_DATA;
1291         }
1292         break;
1293     case RVCR:
1294         s->data[0] = s->volatile_cfg & 0xFF;
1295         s->pos = 0;
1296         s->len = 1;
1297         s->state = STATE_READING_DATA;
1298         break;
1299     case WVCR:
1300         if (s->write_enable) {
1301             s->needed_bytes = 1;
1302             s->pos = 0;
1303             s->len = 0;
1304             s->state = STATE_COLLECTING_DATA;
1305         }
1306         break;
1307     case REVCR:
1308         s->data[0] = s->enh_volatile_cfg & 0xFF;
1309         s->pos = 0;
1310         s->len = 1;
1311         s->state = STATE_READING_DATA;
1312         break;
1313     case WEVCR:
1314         if (s->write_enable) {
1315             s->needed_bytes = 1;
1316             s->pos = 0;
1317             s->len = 0;
1318             s->state = STATE_COLLECTING_DATA;
1319         }
1320         break;
1321     case RESET_ENABLE:
1322         s->reset_enable = true;
1323         break;
1324     case RESET_MEMORY:
1325         if (s->reset_enable) {
1326             reset_memory(s);
1327         }
1328         break;
1329     case RDCR_EQIO:
1330         switch (get_man(s)) {
1331         case MAN_SPANSION:
1332             s->data[0] = (!!s->quad_enable) << 1;
1333             s->pos = 0;
1334             s->len = 1;
1335             s->state = STATE_READING_DATA;
1336             break;
1337         case MAN_MACRONIX:
1338             s->quad_enable = true;
1339             break;
1340         default:
1341             break;
1342         }
1343         break;
1344     case RSTQIO:
1345         s->quad_enable = false;
1346         break;
1347     case AAI_WP:
1348         if (get_man(s) == MAN_SST) {
1349             if (s->write_enable) {
1350                 if (s->aai_enable) {
1351                     s->state = STATE_PAGE_PROGRAM;
1352                 } else {
1353                     s->aai_enable = true;
1354                     s->needed_bytes = get_addr_length(s);
1355                     s->state = STATE_COLLECTING_DATA;
1356                 }
1357             } else {
1358                 qemu_log_mask(LOG_GUEST_ERROR,
1359                               "M25P80: AAI_WP with write protect\n");
1360             }
1361         } else {
1362             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1363         }
1364         break;
1365     default:
1366         s->pos = 0;
1367         s->len = 1;
1368         s->state = STATE_READING_DATA;
1369         s->data_read_loop = true;
1370         s->data[0] = 0;
1371         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1372         break;
1373     }
1374 }
1375 
1376 static int m25p80_cs(SSIPeripheral *ss, bool select)
1377 {
1378     Flash *s = M25P80(ss);
1379 
1380     if (select) {
1381         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1382             complete_collecting_data(s);
1383         }
1384         s->len = 0;
1385         s->pos = 0;
1386         s->state = STATE_IDLE;
1387         flash_sync_dirty(s, -1);
1388         s->data_read_loop = false;
1389     }
1390 
1391     trace_m25p80_select(s, select ? "de" : "");
1392 
1393     return 0;
1394 }
1395 
1396 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1397 {
1398     Flash *s = M25P80(ss);
1399     uint32_t r = 0;
1400 
1401     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1402                           s->cur_addr, (uint8_t)tx);
1403 
1404     switch (s->state) {
1405 
1406     case STATE_PAGE_PROGRAM:
1407         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1408         flash_write8(s, s->cur_addr, (uint8_t)tx);
1409         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1410 
1411         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1412             /*
1413              * There is no wrap mode during AAI programming once the highest
1414              * unprotected memory address is reached. The Write-Enable-Latch
1415              * bit is automatically reset, and AAI programming mode aborts.
1416              */
1417             s->write_enable = false;
1418             s->aai_enable = false;
1419         }
1420 
1421         break;
1422 
1423     case STATE_READ:
1424         r = s->storage[s->cur_addr];
1425         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1426         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1427         break;
1428 
1429     case STATE_COLLECTING_DATA:
1430     case STATE_COLLECTING_VAR_LEN_DATA:
1431 
1432         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1433             qemu_log_mask(LOG_GUEST_ERROR,
1434                           "M25P80: Write overrun internal data buffer. "
1435                           "SPI controller (QEMU emulator or guest driver) "
1436                           "is misbehaving\n");
1437             s->len = s->pos = 0;
1438             s->state = STATE_IDLE;
1439             break;
1440         }
1441 
1442         s->data[s->len] = (uint8_t)tx;
1443         s->len++;
1444 
1445         if (s->len == s->needed_bytes) {
1446             complete_collecting_data(s);
1447         }
1448         break;
1449 
1450     case STATE_READING_DATA:
1451 
1452         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1453             qemu_log_mask(LOG_GUEST_ERROR,
1454                           "M25P80: Read overrun internal data buffer. "
1455                           "SPI controller (QEMU emulator or guest driver) "
1456                           "is misbehaving\n");
1457             s->len = s->pos = 0;
1458             s->state = STATE_IDLE;
1459             break;
1460         }
1461 
1462         r = s->data[s->pos];
1463         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1464         s->pos++;
1465         if (s->pos == s->len) {
1466             s->pos = 0;
1467             if (!s->data_read_loop) {
1468                 s->state = STATE_IDLE;
1469             }
1470         }
1471         break;
1472 
1473     default:
1474     case STATE_IDLE:
1475         decode_new_cmd(s, (uint8_t)tx);
1476         break;
1477     }
1478 
1479     return r;
1480 }
1481 
1482 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1483 {
1484     Flash *s = M25P80(ss);
1485     M25P80Class *mc = M25P80_GET_CLASS(s);
1486     int ret;
1487 
1488     s->pi = mc->pi;
1489 
1490     s->size = s->pi->sector_size * s->pi->n_sectors;
1491     s->dirty_page = -1;
1492 
1493     if (s->blk) {
1494         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1495                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1496         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1497         if (ret < 0) {
1498             return;
1499         }
1500 
1501         trace_m25p80_binding(s);
1502         s->storage = blk_blockalign(s->blk, s->size);
1503 
1504         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1505             error_setg(errp, "failed to read the initial flash content");
1506             return;
1507         }
1508     } else {
1509         trace_m25p80_binding_no_bdrv(s);
1510         s->storage = blk_blockalign(NULL, s->size);
1511         memset(s->storage, 0xFF, s->size);
1512     }
1513 }
1514 
1515 static void m25p80_reset(DeviceState *d)
1516 {
1517     Flash *s = M25P80(d);
1518 
1519     reset_memory(s);
1520 }
1521 
1522 static int m25p80_pre_save(void *opaque)
1523 {
1524     flash_sync_dirty((Flash *)opaque, -1);
1525 
1526     return 0;
1527 }
1528 
1529 static Property m25p80_properties[] = {
1530     /* This is default value for Micron flash */
1531     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1532     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1533     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1534     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1535     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1536     DEFINE_PROP_DRIVE("drive", Flash, blk),
1537     DEFINE_PROP_END_OF_LIST(),
1538 };
1539 
1540 static int m25p80_pre_load(void *opaque)
1541 {
1542     Flash *s = (Flash *)opaque;
1543 
1544     s->data_read_loop = false;
1545     return 0;
1546 }
1547 
1548 static bool m25p80_data_read_loop_needed(void *opaque)
1549 {
1550     Flash *s = (Flash *)opaque;
1551 
1552     return s->data_read_loop;
1553 }
1554 
1555 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1556     .name = "m25p80/data_read_loop",
1557     .version_id = 1,
1558     .minimum_version_id = 1,
1559     .needed = m25p80_data_read_loop_needed,
1560     .fields = (VMStateField[]) {
1561         VMSTATE_BOOL(data_read_loop, Flash),
1562         VMSTATE_END_OF_LIST()
1563     }
1564 };
1565 
1566 static bool m25p80_aai_enable_needed(void *opaque)
1567 {
1568     Flash *s = (Flash *)opaque;
1569 
1570     return s->aai_enable;
1571 }
1572 
1573 static const VMStateDescription vmstate_m25p80_aai_enable = {
1574     .name = "m25p80/aai_enable",
1575     .version_id = 1,
1576     .minimum_version_id = 1,
1577     .needed = m25p80_aai_enable_needed,
1578     .fields = (VMStateField[]) {
1579         VMSTATE_BOOL(aai_enable, Flash),
1580         VMSTATE_END_OF_LIST()
1581     }
1582 };
1583 
1584 static const VMStateDescription vmstate_m25p80 = {
1585     .name = "m25p80",
1586     .version_id = 0,
1587     .minimum_version_id = 0,
1588     .pre_save = m25p80_pre_save,
1589     .pre_load = m25p80_pre_load,
1590     .fields = (VMStateField[]) {
1591         VMSTATE_UINT8(state, Flash),
1592         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1593         VMSTATE_UINT32(len, Flash),
1594         VMSTATE_UINT32(pos, Flash),
1595         VMSTATE_UINT8(needed_bytes, Flash),
1596         VMSTATE_UINT8(cmd_in_progress, Flash),
1597         VMSTATE_UINT32(cur_addr, Flash),
1598         VMSTATE_BOOL(write_enable, Flash),
1599         VMSTATE_BOOL(reset_enable, Flash),
1600         VMSTATE_UINT8(ear, Flash),
1601         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1602         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1603         VMSTATE_UINT32(volatile_cfg, Flash),
1604         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1605         VMSTATE_BOOL(quad_enable, Flash),
1606         VMSTATE_UINT8(spansion_cr1nv, Flash),
1607         VMSTATE_UINT8(spansion_cr2nv, Flash),
1608         VMSTATE_UINT8(spansion_cr3nv, Flash),
1609         VMSTATE_UINT8(spansion_cr4nv, Flash),
1610         VMSTATE_END_OF_LIST()
1611     },
1612     .subsections = (const VMStateDescription * []) {
1613         &vmstate_m25p80_data_read_loop,
1614         &vmstate_m25p80_aai_enable,
1615         NULL
1616     }
1617 };
1618 
1619 static void m25p80_class_init(ObjectClass *klass, void *data)
1620 {
1621     DeviceClass *dc = DEVICE_CLASS(klass);
1622     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1623     M25P80Class *mc = M25P80_CLASS(klass);
1624 
1625     k->realize = m25p80_realize;
1626     k->transfer = m25p80_transfer8;
1627     k->set_cs = m25p80_cs;
1628     k->cs_polarity = SSI_CS_LOW;
1629     dc->vmsd = &vmstate_m25p80;
1630     device_class_set_props(dc, m25p80_properties);
1631     dc->reset = m25p80_reset;
1632     mc->pi = data;
1633 }
1634 
1635 static const TypeInfo m25p80_info = {
1636     .name           = TYPE_M25P80,
1637     .parent         = TYPE_SSI_PERIPHERAL,
1638     .instance_size  = sizeof(Flash),
1639     .class_size     = sizeof(M25P80Class),
1640     .abstract       = true,
1641 };
1642 
1643 static void m25p80_register_types(void)
1644 {
1645     int i;
1646 
1647     type_register_static(&m25p80_info);
1648     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1649         TypeInfo ti = {
1650             .name       = known_devices[i].part_name,
1651             .parent     = TYPE_M25P80,
1652             .class_init = m25p80_class_init,
1653             .class_data = (void *)&known_devices[i],
1654         };
1655         type_register(&ti);
1656     }
1657 }
1658 
1659 type_init(m25p80_register_types)
1660