xref: /openbmc/qemu/hw/block/m25p80.c (revision ce35e229)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define EEPROM 0x100
48 
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
51 
52 #define SPI_NOR_MAX_ID_LEN 6
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* Macronix */
214     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
215     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
216     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
217     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
218     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
219     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
220     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
221     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
222     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
223     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
224     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
225     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
226     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
227     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
228 
229     /* Micron */
230     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
231     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
232     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
233     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
234     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
235     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
236     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
237     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
238     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
239     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
240     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
241     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
242     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
243     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
244     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
245     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
247     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
248     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
249 
250     /* Spansion -- single (large) sector size only, at least
251      * for the chips listed here (without boot sectors).
252      */
253     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
254     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
255     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
256     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
257     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
258     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
259     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
260     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
261     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
262     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
263     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
264     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
265     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
266     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
267     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
268     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
269     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
270 
271     /* Spansion --  boot sectors support  */
272     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
273     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
274 
275     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
276     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
277     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
278     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
279     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
280     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
281     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
282     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
283     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
284     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
285 
286     /* ST Microelectronics -- newer production may have feature updates */
287     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
288     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
289     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
290     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
291     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
292     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
293     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
294     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
295     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
296     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
297 
298     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
299     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
300     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
301 
302     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
303     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
304     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
305 
306     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
307     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
308     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
309     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
310 
311     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
312     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
313     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
314     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
315     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
316     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
317     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
318     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
319     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
320     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
321     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
322     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
323     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
324     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
325     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
326 };
327 
328 typedef enum {
329     NOP = 0,
330     WRSR = 0x1,
331     WRDI = 0x4,
332     RDSR = 0x5,
333     WREN = 0x6,
334     BRRD = 0x16,
335     BRWR = 0x17,
336     JEDEC_READ = 0x9f,
337     BULK_ERASE_60 = 0x60,
338     BULK_ERASE = 0xc7,
339     READ_FSR = 0x70,
340     RDCR = 0x15,
341 
342     READ = 0x03,
343     READ4 = 0x13,
344     FAST_READ = 0x0b,
345     FAST_READ4 = 0x0c,
346     DOR = 0x3b,
347     DOR4 = 0x3c,
348     QOR = 0x6b,
349     QOR4 = 0x6c,
350     DIOR = 0xbb,
351     DIOR4 = 0xbc,
352     QIOR = 0xeb,
353     QIOR4 = 0xec,
354 
355     PP = 0x02,
356     PP4 = 0x12,
357     PP4_4 = 0x3e,
358     DPP = 0xa2,
359     QPP = 0x32,
360     QPP_4 = 0x34,
361     RDID_90 = 0x90,
362     RDID_AB = 0xab,
363 
364     ERASE_4K = 0x20,
365     ERASE4_4K = 0x21,
366     ERASE_32K = 0x52,
367     ERASE4_32K = 0x5c,
368     ERASE_SECTOR = 0xd8,
369     ERASE4_SECTOR = 0xdc,
370 
371     EN_4BYTE_ADDR = 0xB7,
372     EX_4BYTE_ADDR = 0xE9,
373 
374     EXTEND_ADDR_READ = 0xC8,
375     EXTEND_ADDR_WRITE = 0xC5,
376 
377     RESET_ENABLE = 0x66,
378     RESET_MEMORY = 0x99,
379 
380     /*
381      * Micron: 0x35 - enable QPI
382      * Spansion: 0x35 - read control register
383      */
384     RDCR_EQIO = 0x35,
385     RSTQIO = 0xf5,
386 
387     RNVCR = 0xB5,
388     WNVCR = 0xB1,
389 
390     RVCR = 0x85,
391     WVCR = 0x81,
392 
393     REVCR = 0x65,
394     WEVCR = 0x61,
395 
396     DIE_ERASE = 0xC4,
397 } FlashCMD;
398 
399 typedef enum {
400     STATE_IDLE,
401     STATE_PAGE_PROGRAM,
402     STATE_READ,
403     STATE_COLLECTING_DATA,
404     STATE_COLLECTING_VAR_LEN_DATA,
405     STATE_READING_DATA,
406 } CMDState;
407 
408 typedef enum {
409     MAN_SPANSION,
410     MAN_MACRONIX,
411     MAN_NUMONYX,
412     MAN_WINBOND,
413     MAN_SST,
414     MAN_GENERIC,
415 } Manufacturer;
416 
417 typedef enum {
418     MODE_STD = 0,
419     MODE_DIO = 1,
420     MODE_QIO = 2
421 } SPIMode;
422 
423 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
424 
425 struct Flash {
426     SSIPeripheral parent_obj;
427 
428     BlockBackend *blk;
429 
430     uint8_t *storage;
431     uint32_t size;
432     int page_size;
433 
434     uint8_t state;
435     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
436     uint32_t len;
437     uint32_t pos;
438     bool data_read_loop;
439     uint8_t needed_bytes;
440     uint8_t cmd_in_progress;
441     uint32_t cur_addr;
442     uint32_t nonvolatile_cfg;
443     /* Configuration register for Macronix */
444     uint32_t volatile_cfg;
445     uint32_t enh_volatile_cfg;
446     /* Spansion cfg registers. */
447     uint8_t spansion_cr1nv;
448     uint8_t spansion_cr2nv;
449     uint8_t spansion_cr3nv;
450     uint8_t spansion_cr4nv;
451     uint8_t spansion_cr1v;
452     uint8_t spansion_cr2v;
453     uint8_t spansion_cr3v;
454     uint8_t spansion_cr4v;
455     bool write_enable;
456     bool four_bytes_address_mode;
457     bool reset_enable;
458     bool quad_enable;
459     uint8_t ear;
460 
461     int64_t dirty_page;
462 
463     const FlashPartInfo *pi;
464 
465 };
466 
467 struct M25P80Class {
468     SSIPeripheralClass parent_class;
469     FlashPartInfo *pi;
470 };
471 
472 #define TYPE_M25P80 "m25p80-generic"
473 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
474 
475 static inline Manufacturer get_man(Flash *s)
476 {
477     switch (s->pi->id[0]) {
478     case 0x20:
479         return MAN_NUMONYX;
480     case 0xEF:
481         return MAN_WINBOND;
482     case 0x01:
483         return MAN_SPANSION;
484     case 0xC2:
485         return MAN_MACRONIX;
486     case 0xBF:
487         return MAN_SST;
488     default:
489         return MAN_GENERIC;
490     }
491 }
492 
493 static void blk_sync_complete(void *opaque, int ret)
494 {
495     QEMUIOVector *iov = opaque;
496 
497     qemu_iovec_destroy(iov);
498     g_free(iov);
499 
500     /* do nothing. Masters do not directly interact with the backing store,
501      * only the working copy so no mutexing required.
502      */
503 }
504 
505 static void flash_sync_page(Flash *s, int page)
506 {
507     QEMUIOVector *iov;
508 
509     if (!s->blk || blk_is_read_only(s->blk)) {
510         return;
511     }
512 
513     iov = g_new(QEMUIOVector, 1);
514     qemu_iovec_init(iov, 1);
515     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
516                    s->pi->page_size);
517     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
518                     blk_sync_complete, iov);
519 }
520 
521 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
522 {
523     QEMUIOVector *iov;
524 
525     if (!s->blk || blk_is_read_only(s->blk)) {
526         return;
527     }
528 
529     assert(!(len % BDRV_SECTOR_SIZE));
530     iov = g_new(QEMUIOVector, 1);
531     qemu_iovec_init(iov, 1);
532     qemu_iovec_add(iov, s->storage + off, len);
533     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
534 }
535 
536 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
537 {
538     uint32_t len;
539     uint8_t capa_to_assert = 0;
540 
541     switch (cmd) {
542     case ERASE_4K:
543     case ERASE4_4K:
544         len = 4 * KiB;
545         capa_to_assert = ER_4K;
546         break;
547     case ERASE_32K:
548     case ERASE4_32K:
549         len = 32 * KiB;
550         capa_to_assert = ER_32K;
551         break;
552     case ERASE_SECTOR:
553     case ERASE4_SECTOR:
554         len = s->pi->sector_size;
555         break;
556     case BULK_ERASE:
557         len = s->size;
558         break;
559     case DIE_ERASE:
560         if (s->pi->die_cnt) {
561             len = s->size / s->pi->die_cnt;
562             offset = offset & (~(len - 1));
563         } else {
564             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
565                           " by device\n");
566             return;
567         }
568         break;
569     default:
570         abort();
571     }
572 
573     trace_m25p80_flash_erase(s, offset, len);
574 
575     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
576         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
577                       " device\n", len);
578     }
579 
580     if (!s->write_enable) {
581         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
582         return;
583     }
584     memset(s->storage + offset, 0xff, len);
585     flash_sync_area(s, offset, len);
586 }
587 
588 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
589 {
590     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
591         flash_sync_page(s, s->dirty_page);
592         s->dirty_page = newpage;
593     }
594 }
595 
596 static inline
597 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
598 {
599     uint32_t page = addr / s->pi->page_size;
600     uint8_t prev = s->storage[s->cur_addr];
601 
602     if (!s->write_enable) {
603         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
604     }
605 
606     if ((prev ^ data) & data) {
607         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
608     }
609 
610     if (s->pi->flags & EEPROM) {
611         s->storage[s->cur_addr] = data;
612     } else {
613         s->storage[s->cur_addr] &= data;
614     }
615 
616     flash_sync_dirty(s, page);
617     s->dirty_page = page;
618 }
619 
620 static inline int get_addr_length(Flash *s)
621 {
622    /* check if eeprom is in use */
623     if (s->pi->flags == EEPROM) {
624         return 2;
625     }
626 
627    switch (s->cmd_in_progress) {
628    case PP4:
629    case PP4_4:
630    case QPP_4:
631    case READ4:
632    case QIOR4:
633    case ERASE4_4K:
634    case ERASE4_32K:
635    case ERASE4_SECTOR:
636    case FAST_READ4:
637    case DOR4:
638    case QOR4:
639    case DIOR4:
640        return 4;
641    default:
642        return s->four_bytes_address_mode ? 4 : 3;
643    }
644 }
645 
646 static void complete_collecting_data(Flash *s)
647 {
648     int i, n;
649 
650     n = get_addr_length(s);
651     s->cur_addr = (n == 3 ? s->ear : 0);
652     for (i = 0; i < n; ++i) {
653         s->cur_addr <<= 8;
654         s->cur_addr |= s->data[i];
655     }
656 
657     s->cur_addr &= s->size - 1;
658 
659     s->state = STATE_IDLE;
660 
661     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
662                                      s->cur_addr);
663 
664     switch (s->cmd_in_progress) {
665     case DPP:
666     case QPP:
667     case QPP_4:
668     case PP:
669     case PP4:
670     case PP4_4:
671         s->state = STATE_PAGE_PROGRAM;
672         break;
673     case READ:
674     case READ4:
675     case FAST_READ:
676     case FAST_READ4:
677     case DOR:
678     case DOR4:
679     case QOR:
680     case QOR4:
681     case DIOR:
682     case DIOR4:
683     case QIOR:
684     case QIOR4:
685         s->state = STATE_READ;
686         break;
687     case ERASE_4K:
688     case ERASE4_4K:
689     case ERASE_32K:
690     case ERASE4_32K:
691     case ERASE_SECTOR:
692     case ERASE4_SECTOR:
693     case DIE_ERASE:
694         flash_erase(s, s->cur_addr, s->cmd_in_progress);
695         break;
696     case WRSR:
697         switch (get_man(s)) {
698         case MAN_SPANSION:
699             s->quad_enable = !!(s->data[1] & 0x02);
700             break;
701         case MAN_MACRONIX:
702             s->quad_enable = extract32(s->data[0], 6, 1);
703             if (s->len > 1) {
704                 s->volatile_cfg = s->data[1];
705                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
706             }
707             break;
708         default:
709             break;
710         }
711         if (s->write_enable) {
712             s->write_enable = false;
713         }
714         break;
715     case BRWR:
716     case EXTEND_ADDR_WRITE:
717         s->ear = s->data[0];
718         break;
719     case WNVCR:
720         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
721         break;
722     case WVCR:
723         s->volatile_cfg = s->data[0];
724         break;
725     case WEVCR:
726         s->enh_volatile_cfg = s->data[0];
727         break;
728     case RDID_90:
729     case RDID_AB:
730         if (get_man(s) == MAN_SST) {
731             if (s->cur_addr <= 1) {
732                 if (s->cur_addr) {
733                     s->data[0] = s->pi->id[2];
734                     s->data[1] = s->pi->id[0];
735                 } else {
736                     s->data[0] = s->pi->id[0];
737                     s->data[1] = s->pi->id[2];
738                 }
739                 s->pos = 0;
740                 s->len = 2;
741                 s->data_read_loop = true;
742                 s->state = STATE_READING_DATA;
743             } else {
744                 qemu_log_mask(LOG_GUEST_ERROR,
745                               "M25P80: Invalid read id address\n");
746             }
747         } else {
748             qemu_log_mask(LOG_GUEST_ERROR,
749                           "M25P80: Read id (command 0x90/0xAB) is not supported"
750                           " by device\n");
751         }
752         break;
753     default:
754         break;
755     }
756 }
757 
758 static void reset_memory(Flash *s)
759 {
760     s->cmd_in_progress = NOP;
761     s->cur_addr = 0;
762     s->ear = 0;
763     s->four_bytes_address_mode = false;
764     s->len = 0;
765     s->needed_bytes = 0;
766     s->pos = 0;
767     s->state = STATE_IDLE;
768     s->write_enable = false;
769     s->reset_enable = false;
770     s->quad_enable = false;
771 
772     switch (get_man(s)) {
773     case MAN_NUMONYX:
774         s->volatile_cfg = 0;
775         s->volatile_cfg |= VCFG_DUMMY;
776         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
777         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
778                                 == NVCFG_XIP_MODE_DISABLED) {
779             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
780         }
781         s->volatile_cfg |= deposit32(s->volatile_cfg,
782                             VCFG_DUMMY_CLK_POS,
783                             CFG_DUMMY_CLK_LEN,
784                             extract32(s->nonvolatile_cfg,
785                                         NVCFG_DUMMY_CLK_POS,
786                                         CFG_DUMMY_CLK_LEN)
787                             );
788 
789         s->enh_volatile_cfg = 0;
790         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
791         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
792         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
793         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
794             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
795         }
796         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
797             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
798         }
799         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
800             s->four_bytes_address_mode = true;
801         }
802         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
803             s->ear = s->size / MAX_3BYTES_SIZE - 1;
804         }
805         break;
806     case MAN_MACRONIX:
807         s->volatile_cfg = 0x7;
808         break;
809     case MAN_SPANSION:
810         s->spansion_cr1v = s->spansion_cr1nv;
811         s->spansion_cr2v = s->spansion_cr2nv;
812         s->spansion_cr3v = s->spansion_cr3nv;
813         s->spansion_cr4v = s->spansion_cr4nv;
814         s->quad_enable = extract32(s->spansion_cr1v,
815                                    SPANSION_QUAD_CFG_POS,
816                                    SPANSION_QUAD_CFG_LEN
817                                    );
818         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
819                 SPANSION_ADDR_LEN_POS,
820                 SPANSION_ADDR_LEN_LEN
821                 );
822         break;
823     default:
824         break;
825     }
826 
827     trace_m25p80_reset_done(s);
828 }
829 
830 static uint8_t numonyx_mode(Flash *s)
831 {
832     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
833         return MODE_QIO;
834     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
835         return MODE_DIO;
836     } else {
837         return MODE_STD;
838     }
839 }
840 
841 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
842 {
843     uint8_t num_dummies;
844     uint8_t mode;
845     assert(get_man(s) == MAN_NUMONYX);
846 
847     mode = numonyx_mode(s);
848     num_dummies = extract32(s->volatile_cfg, 4, 4);
849 
850     if (num_dummies == 0x0 || num_dummies == 0xf) {
851         switch (s->cmd_in_progress) {
852         case QIOR:
853         case QIOR4:
854             num_dummies = 10;
855             break;
856         default:
857             num_dummies = (mode == MODE_QIO) ? 10 : 8;
858             break;
859         }
860     }
861 
862     return num_dummies;
863 }
864 
865 static void decode_fast_read_cmd(Flash *s)
866 {
867     s->needed_bytes = get_addr_length(s);
868     switch (get_man(s)) {
869     /* Dummy cycles - modeled with bytes writes instead of bits */
870     case MAN_WINBOND:
871         s->needed_bytes += 8;
872         break;
873     case MAN_NUMONYX:
874         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
875         break;
876     case MAN_MACRONIX:
877         if (extract32(s->volatile_cfg, 6, 2) == 1) {
878             s->needed_bytes += 6;
879         } else {
880             s->needed_bytes += 8;
881         }
882         break;
883     case MAN_SPANSION:
884         s->needed_bytes += extract32(s->spansion_cr2v,
885                                     SPANSION_DUMMY_CLK_POS,
886                                     SPANSION_DUMMY_CLK_LEN
887                                     );
888         break;
889     default:
890         break;
891     }
892     s->pos = 0;
893     s->len = 0;
894     s->state = STATE_COLLECTING_DATA;
895 }
896 
897 static void decode_dio_read_cmd(Flash *s)
898 {
899     s->needed_bytes = get_addr_length(s);
900     /* Dummy cycles modeled with bytes writes instead of bits */
901     switch (get_man(s)) {
902     case MAN_WINBOND:
903         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
904         break;
905     case MAN_SPANSION:
906         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
907         s->needed_bytes += extract32(s->spansion_cr2v,
908                                     SPANSION_DUMMY_CLK_POS,
909                                     SPANSION_DUMMY_CLK_LEN
910                                     );
911         break;
912     case MAN_NUMONYX:
913         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
914         break;
915     case MAN_MACRONIX:
916         switch (extract32(s->volatile_cfg, 6, 2)) {
917         case 1:
918             s->needed_bytes += 6;
919             break;
920         case 2:
921             s->needed_bytes += 8;
922             break;
923         default:
924             s->needed_bytes += 4;
925             break;
926         }
927         break;
928     default:
929         break;
930     }
931     s->pos = 0;
932     s->len = 0;
933     s->state = STATE_COLLECTING_DATA;
934 }
935 
936 static void decode_qio_read_cmd(Flash *s)
937 {
938     s->needed_bytes = get_addr_length(s);
939     /* Dummy cycles modeled with bytes writes instead of bits */
940     switch (get_man(s)) {
941     case MAN_WINBOND:
942         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
943         s->needed_bytes += 4;
944         break;
945     case MAN_SPANSION:
946         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
947         s->needed_bytes += extract32(s->spansion_cr2v,
948                                     SPANSION_DUMMY_CLK_POS,
949                                     SPANSION_DUMMY_CLK_LEN
950                                     );
951         break;
952     case MAN_NUMONYX:
953         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
954         break;
955     case MAN_MACRONIX:
956         switch (extract32(s->volatile_cfg, 6, 2)) {
957         case 1:
958             s->needed_bytes += 4;
959             break;
960         case 2:
961             s->needed_bytes += 8;
962             break;
963         default:
964             s->needed_bytes += 6;
965             break;
966         }
967         break;
968     default:
969         break;
970     }
971     s->pos = 0;
972     s->len = 0;
973     s->state = STATE_COLLECTING_DATA;
974 }
975 
976 static void decode_new_cmd(Flash *s, uint32_t value)
977 {
978     int i;
979 
980     s->cmd_in_progress = value;
981     trace_m25p80_command_decoded(s, value);
982 
983     if (value != RESET_MEMORY) {
984         s->reset_enable = false;
985     }
986 
987     switch (value) {
988 
989     case ERASE_4K:
990     case ERASE4_4K:
991     case ERASE_32K:
992     case ERASE4_32K:
993     case ERASE_SECTOR:
994     case ERASE4_SECTOR:
995     case PP:
996     case PP4:
997     case DIE_ERASE:
998     case RDID_90:
999     case RDID_AB:
1000         s->needed_bytes = get_addr_length(s);
1001         s->pos = 0;
1002         s->len = 0;
1003         s->state = STATE_COLLECTING_DATA;
1004         break;
1005     case READ:
1006     case READ4:
1007         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1008             s->needed_bytes = get_addr_length(s);
1009             s->pos = 0;
1010             s->len = 0;
1011             s->state = STATE_COLLECTING_DATA;
1012         } else {
1013             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1014                           "DIO or QIO mode\n", s->cmd_in_progress);
1015         }
1016         break;
1017     case DPP:
1018         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1019             s->needed_bytes = get_addr_length(s);
1020             s->pos = 0;
1021             s->len = 0;
1022             s->state = STATE_COLLECTING_DATA;
1023         } else {
1024             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1025                           "QIO mode\n", s->cmd_in_progress);
1026         }
1027         break;
1028     case QPP:
1029     case QPP_4:
1030     case PP4_4:
1031         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1032             s->needed_bytes = get_addr_length(s);
1033             s->pos = 0;
1034             s->len = 0;
1035             s->state = STATE_COLLECTING_DATA;
1036         } else {
1037             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1038                           "DIO mode\n", s->cmd_in_progress);
1039         }
1040         break;
1041 
1042     case FAST_READ:
1043     case FAST_READ4:
1044         decode_fast_read_cmd(s);
1045         break;
1046     case DOR:
1047     case DOR4:
1048         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1049             decode_fast_read_cmd(s);
1050         } else {
1051             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1052                           "QIO mode\n", s->cmd_in_progress);
1053         }
1054         break;
1055     case QOR:
1056     case QOR4:
1057         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1058             decode_fast_read_cmd(s);
1059         } else {
1060             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1061                           "DIO mode\n", s->cmd_in_progress);
1062         }
1063         break;
1064 
1065     case DIOR:
1066     case DIOR4:
1067         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1068             decode_dio_read_cmd(s);
1069         } else {
1070             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1071                           "QIO mode\n", s->cmd_in_progress);
1072         }
1073         break;
1074 
1075     case QIOR:
1076     case QIOR4:
1077         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1078             decode_qio_read_cmd(s);
1079         } else {
1080             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1081                           "DIO mode\n", s->cmd_in_progress);
1082         }
1083         break;
1084 
1085     case WRSR:
1086         if (s->write_enable) {
1087             switch (get_man(s)) {
1088             case MAN_SPANSION:
1089                 s->needed_bytes = 2;
1090                 s->state = STATE_COLLECTING_DATA;
1091                 break;
1092             case MAN_MACRONIX:
1093                 s->needed_bytes = 2;
1094                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1095                 break;
1096             default:
1097                 s->needed_bytes = 1;
1098                 s->state = STATE_COLLECTING_DATA;
1099             }
1100             s->pos = 0;
1101         }
1102         break;
1103 
1104     case WRDI:
1105         s->write_enable = false;
1106         break;
1107     case WREN:
1108         s->write_enable = true;
1109         break;
1110 
1111     case RDSR:
1112         s->data[0] = (!!s->write_enable) << 1;
1113         if (get_man(s) == MAN_MACRONIX) {
1114             s->data[0] |= (!!s->quad_enable) << 6;
1115         }
1116         s->pos = 0;
1117         s->len = 1;
1118         s->data_read_loop = true;
1119         s->state = STATE_READING_DATA;
1120         break;
1121 
1122     case READ_FSR:
1123         s->data[0] = FSR_FLASH_READY;
1124         if (s->four_bytes_address_mode) {
1125             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1126         }
1127         s->pos = 0;
1128         s->len = 1;
1129         s->data_read_loop = true;
1130         s->state = STATE_READING_DATA;
1131         break;
1132 
1133     case JEDEC_READ:
1134         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1135             trace_m25p80_populated_jedec(s);
1136             for (i = 0; i < s->pi->id_len; i++) {
1137                 s->data[i] = s->pi->id[i];
1138             }
1139             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1140                 s->data[i] = 0;
1141             }
1142 
1143             s->len = SPI_NOR_MAX_ID_LEN;
1144             s->pos = 0;
1145             s->state = STATE_READING_DATA;
1146         } else {
1147             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1148                           "in DIO or QIO mode\n");
1149         }
1150         break;
1151 
1152     case RDCR:
1153         s->data[0] = s->volatile_cfg & 0xFF;
1154         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1155         s->pos = 0;
1156         s->len = 1;
1157         s->state = STATE_READING_DATA;
1158         break;
1159 
1160     case BULK_ERASE_60:
1161     case BULK_ERASE:
1162         if (s->write_enable) {
1163             trace_m25p80_chip_erase(s);
1164             flash_erase(s, 0, BULK_ERASE);
1165         } else {
1166             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1167                           "protect!\n");
1168         }
1169         break;
1170     case NOP:
1171         break;
1172     case EN_4BYTE_ADDR:
1173         s->four_bytes_address_mode = true;
1174         break;
1175     case EX_4BYTE_ADDR:
1176         s->four_bytes_address_mode = false;
1177         break;
1178     case BRRD:
1179     case EXTEND_ADDR_READ:
1180         s->data[0] = s->ear;
1181         s->pos = 0;
1182         s->len = 1;
1183         s->state = STATE_READING_DATA;
1184         break;
1185     case BRWR:
1186     case EXTEND_ADDR_WRITE:
1187         if (s->write_enable) {
1188             s->needed_bytes = 1;
1189             s->pos = 0;
1190             s->len = 0;
1191             s->state = STATE_COLLECTING_DATA;
1192         }
1193         break;
1194     case RNVCR:
1195         s->data[0] = s->nonvolatile_cfg & 0xFF;
1196         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1197         s->pos = 0;
1198         s->len = 2;
1199         s->state = STATE_READING_DATA;
1200         break;
1201     case WNVCR:
1202         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1203             s->needed_bytes = 2;
1204             s->pos = 0;
1205             s->len = 0;
1206             s->state = STATE_COLLECTING_DATA;
1207         }
1208         break;
1209     case RVCR:
1210         s->data[0] = s->volatile_cfg & 0xFF;
1211         s->pos = 0;
1212         s->len = 1;
1213         s->state = STATE_READING_DATA;
1214         break;
1215     case WVCR:
1216         if (s->write_enable) {
1217             s->needed_bytes = 1;
1218             s->pos = 0;
1219             s->len = 0;
1220             s->state = STATE_COLLECTING_DATA;
1221         }
1222         break;
1223     case REVCR:
1224         s->data[0] = s->enh_volatile_cfg & 0xFF;
1225         s->pos = 0;
1226         s->len = 1;
1227         s->state = STATE_READING_DATA;
1228         break;
1229     case WEVCR:
1230         if (s->write_enable) {
1231             s->needed_bytes = 1;
1232             s->pos = 0;
1233             s->len = 0;
1234             s->state = STATE_COLLECTING_DATA;
1235         }
1236         break;
1237     case RESET_ENABLE:
1238         s->reset_enable = true;
1239         break;
1240     case RESET_MEMORY:
1241         if (s->reset_enable) {
1242             reset_memory(s);
1243         }
1244         break;
1245     case RDCR_EQIO:
1246         switch (get_man(s)) {
1247         case MAN_SPANSION:
1248             s->data[0] = (!!s->quad_enable) << 1;
1249             s->pos = 0;
1250             s->len = 1;
1251             s->state = STATE_READING_DATA;
1252             break;
1253         case MAN_MACRONIX:
1254             s->quad_enable = true;
1255             break;
1256         default:
1257             break;
1258         }
1259         break;
1260     case RSTQIO:
1261         s->quad_enable = false;
1262         break;
1263     default:
1264         s->pos = 0;
1265         s->len = 1;
1266         s->state = STATE_READING_DATA;
1267         s->data_read_loop = true;
1268         s->data[0] = 0;
1269         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1270         break;
1271     }
1272 }
1273 
1274 static int m25p80_cs(SSIPeripheral *ss, bool select)
1275 {
1276     Flash *s = M25P80(ss);
1277 
1278     if (select) {
1279         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1280             complete_collecting_data(s);
1281         }
1282         s->len = 0;
1283         s->pos = 0;
1284         s->state = STATE_IDLE;
1285         flash_sync_dirty(s, -1);
1286         s->data_read_loop = false;
1287     }
1288 
1289     trace_m25p80_select(s, select ? "de" : "");
1290 
1291     return 0;
1292 }
1293 
1294 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1295 {
1296     Flash *s = M25P80(ss);
1297     uint32_t r = 0;
1298 
1299     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1300                           s->cur_addr, (uint8_t)tx);
1301 
1302     switch (s->state) {
1303 
1304     case STATE_PAGE_PROGRAM:
1305         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1306         flash_write8(s, s->cur_addr, (uint8_t)tx);
1307         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1308         break;
1309 
1310     case STATE_READ:
1311         r = s->storage[s->cur_addr];
1312         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1313         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1314         break;
1315 
1316     case STATE_COLLECTING_DATA:
1317     case STATE_COLLECTING_VAR_LEN_DATA:
1318 
1319         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1320             qemu_log_mask(LOG_GUEST_ERROR,
1321                           "M25P80: Write overrun internal data buffer. "
1322                           "SPI controller (QEMU emulator or guest driver) "
1323                           "is misbehaving\n");
1324             s->len = s->pos = 0;
1325             s->state = STATE_IDLE;
1326             break;
1327         }
1328 
1329         s->data[s->len] = (uint8_t)tx;
1330         s->len++;
1331 
1332         if (s->len == s->needed_bytes) {
1333             complete_collecting_data(s);
1334         }
1335         break;
1336 
1337     case STATE_READING_DATA:
1338 
1339         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1340             qemu_log_mask(LOG_GUEST_ERROR,
1341                           "M25P80: Read overrun internal data buffer. "
1342                           "SPI controller (QEMU emulator or guest driver) "
1343                           "is misbehaving\n");
1344             s->len = s->pos = 0;
1345             s->state = STATE_IDLE;
1346             break;
1347         }
1348 
1349         r = s->data[s->pos];
1350         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1351         s->pos++;
1352         if (s->pos == s->len) {
1353             s->pos = 0;
1354             if (!s->data_read_loop) {
1355                 s->state = STATE_IDLE;
1356             }
1357         }
1358         break;
1359 
1360     default:
1361     case STATE_IDLE:
1362         decode_new_cmd(s, (uint8_t)tx);
1363         break;
1364     }
1365 
1366     return r;
1367 }
1368 
1369 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1370 {
1371     Flash *s = M25P80(ss);
1372     M25P80Class *mc = M25P80_GET_CLASS(s);
1373     int ret;
1374 
1375     s->pi = mc->pi;
1376 
1377     s->size = s->pi->sector_size * s->pi->n_sectors;
1378     s->dirty_page = -1;
1379 
1380     if (s->blk) {
1381         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1382                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1383         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1384         if (ret < 0) {
1385             return;
1386         }
1387 
1388         trace_m25p80_binding(s);
1389         s->storage = blk_blockalign(s->blk, s->size);
1390 
1391         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1392             error_setg(errp, "failed to read the initial flash content");
1393             return;
1394         }
1395     } else {
1396         trace_m25p80_binding_no_bdrv(s);
1397         s->storage = blk_blockalign(NULL, s->size);
1398         memset(s->storage, 0xFF, s->size);
1399     }
1400 }
1401 
1402 static void m25p80_reset(DeviceState *d)
1403 {
1404     Flash *s = M25P80(d);
1405 
1406     reset_memory(s);
1407 }
1408 
1409 static int m25p80_pre_save(void *opaque)
1410 {
1411     flash_sync_dirty((Flash *)opaque, -1);
1412 
1413     return 0;
1414 }
1415 
1416 static Property m25p80_properties[] = {
1417     /* This is default value for Micron flash */
1418     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1419     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1420     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1421     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1422     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1423     DEFINE_PROP_DRIVE("drive", Flash, blk),
1424     DEFINE_PROP_END_OF_LIST(),
1425 };
1426 
1427 static int m25p80_pre_load(void *opaque)
1428 {
1429     Flash *s = (Flash *)opaque;
1430 
1431     s->data_read_loop = false;
1432     return 0;
1433 }
1434 
1435 static bool m25p80_data_read_loop_needed(void *opaque)
1436 {
1437     Flash *s = (Flash *)opaque;
1438 
1439     return s->data_read_loop;
1440 }
1441 
1442 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1443     .name = "m25p80/data_read_loop",
1444     .version_id = 1,
1445     .minimum_version_id = 1,
1446     .needed = m25p80_data_read_loop_needed,
1447     .fields = (VMStateField[]) {
1448         VMSTATE_BOOL(data_read_loop, Flash),
1449         VMSTATE_END_OF_LIST()
1450     }
1451 };
1452 
1453 static const VMStateDescription vmstate_m25p80 = {
1454     .name = "m25p80",
1455     .version_id = 0,
1456     .minimum_version_id = 0,
1457     .pre_save = m25p80_pre_save,
1458     .pre_load = m25p80_pre_load,
1459     .fields = (VMStateField[]) {
1460         VMSTATE_UINT8(state, Flash),
1461         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1462         VMSTATE_UINT32(len, Flash),
1463         VMSTATE_UINT32(pos, Flash),
1464         VMSTATE_UINT8(needed_bytes, Flash),
1465         VMSTATE_UINT8(cmd_in_progress, Flash),
1466         VMSTATE_UINT32(cur_addr, Flash),
1467         VMSTATE_BOOL(write_enable, Flash),
1468         VMSTATE_BOOL(reset_enable, Flash),
1469         VMSTATE_UINT8(ear, Flash),
1470         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1471         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1472         VMSTATE_UINT32(volatile_cfg, Flash),
1473         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1474         VMSTATE_BOOL(quad_enable, Flash),
1475         VMSTATE_UINT8(spansion_cr1nv, Flash),
1476         VMSTATE_UINT8(spansion_cr2nv, Flash),
1477         VMSTATE_UINT8(spansion_cr3nv, Flash),
1478         VMSTATE_UINT8(spansion_cr4nv, Flash),
1479         VMSTATE_END_OF_LIST()
1480     },
1481     .subsections = (const VMStateDescription * []) {
1482         &vmstate_m25p80_data_read_loop,
1483         NULL
1484     }
1485 };
1486 
1487 static void m25p80_class_init(ObjectClass *klass, void *data)
1488 {
1489     DeviceClass *dc = DEVICE_CLASS(klass);
1490     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1491     M25P80Class *mc = M25P80_CLASS(klass);
1492 
1493     k->realize = m25p80_realize;
1494     k->transfer = m25p80_transfer8;
1495     k->set_cs = m25p80_cs;
1496     k->cs_polarity = SSI_CS_LOW;
1497     dc->vmsd = &vmstate_m25p80;
1498     device_class_set_props(dc, m25p80_properties);
1499     dc->reset = m25p80_reset;
1500     mc->pi = data;
1501 }
1502 
1503 static const TypeInfo m25p80_info = {
1504     .name           = TYPE_M25P80,
1505     .parent         = TYPE_SSI_PERIPHERAL,
1506     .instance_size  = sizeof(Flash),
1507     .class_size     = sizeof(M25P80Class),
1508     .abstract       = true,
1509 };
1510 
1511 static void m25p80_register_types(void)
1512 {
1513     int i;
1514 
1515     type_register_static(&m25p80_info);
1516     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1517         TypeInfo ti = {
1518             .name       = known_devices[i].part_name,
1519             .parent     = TYPE_M25P80,
1520             .class_init = m25p80_class_init,
1521             .class_data = (void *)&known_devices[i],
1522         };
1523         type_register(&ti);
1524     }
1525 }
1526 
1527 type_init(m25p80_register_types)
1528