xref: /openbmc/qemu/hw/block/m25p80.c (revision c63ca4ff)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36 #include "qom/object.h"
37 
38 /* Fields for FlashPartInfo->flags */
39 
40 /* erase capabilities */
41 #define ER_4K 1
42 #define ER_32K 2
43 /* set to allow the page program command to write 0s back to 1. Useful for
44  * modelling EEPROM with SPI flash command set
45  */
46 #define EEPROM 0x100
47 
48 /* 16 MiB max in 3 byte address mode */
49 #define MAX_3BYTES_SIZE 0x1000000
50 
51 #define SPI_NOR_MAX_ID_LEN 6
52 
53 typedef struct FlashPartInfo {
54     const char *part_name;
55     /*
56      * This array stores the ID bytes.
57      * The first three bytes are the JEDIC ID.
58      * JEDEC ID zero means "no ID" (mostly older chips).
59      */
60     uint8_t id[SPI_NOR_MAX_ID_LEN];
61     uint8_t id_len;
62     /* there is confusion between manufacturers as to what a sector is. In this
63      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64      * command (opcode 0xd8).
65      */
66     uint32_t sector_size;
67     uint32_t n_sectors;
68     uint32_t page_size;
69     uint16_t flags;
70     /*
71      * Big sized spi nor are often stacked devices, thus sometime
72      * replace chip erase with die erase.
73      * This field inform how many die is in the chip.
74      */
75     uint8_t die_cnt;
76 } FlashPartInfo;
77 
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81     .part_name = _part_name,\
82     .id = {\
83         ((_jedec_id) >> 16) & 0xff,\
84         ((_jedec_id) >> 8) & 0xff,\
85         (_jedec_id) & 0xff,\
86         ((_ext_id) >> 8) & 0xff,\
87         (_ext_id) & 0xff,\
88           },\
89     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90     .sector_size = (_sector_size),\
91     .n_sectors = (_n_sectors),\
92     .page_size = 256,\
93     .flags = (_flags),\
94     .die_cnt = 0
95 
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97     .part_name = _part_name,\
98     .id = {\
99         ((_jedec_id) >> 16) & 0xff,\
100         ((_jedec_id) >> 8) & 0xff,\
101         (_jedec_id) & 0xff,\
102         ((_ext_id) >> 16) & 0xff,\
103         ((_ext_id) >> 8) & 0xff,\
104         (_ext_id) & 0xff,\
105           },\
106     .id_len = 6,\
107     .sector_size = (_sector_size),\
108     .n_sectors = (_n_sectors),\
109     .page_size = 256,\
110     .flags = (_flags),\
111     .die_cnt = 0
112 
113 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
114                     _flags, _die_cnt)\
115     .part_name = _part_name,\
116     .id = {\
117         ((_jedec_id) >> 16) & 0xff,\
118         ((_jedec_id) >> 8) & 0xff,\
119         (_jedec_id) & 0xff,\
120         ((_ext_id) >> 8) & 0xff,\
121         (_ext_id) & 0xff,\
122           },\
123     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
124     .sector_size = (_sector_size),\
125     .n_sectors = (_n_sectors),\
126     .page_size = 256,\
127     .flags = (_flags),\
128     .die_cnt = _die_cnt
129 
130 #define JEDEC_NUMONYX 0x20
131 #define JEDEC_WINBOND 0xEF
132 #define JEDEC_SPANSION 0x01
133 
134 /* Numonyx (Micron) Configuration register macros */
135 #define VCFG_DUMMY 0x1
136 #define VCFG_WRAP_SEQUENTIAL 0x2
137 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
138 #define NVCFG_XIP_MODE_MASK (7 << 9)
139 #define VCFG_XIP_MODE_DISABLED (1 << 3)
140 #define CFG_DUMMY_CLK_LEN 4
141 #define NVCFG_DUMMY_CLK_POS 12
142 #define VCFG_DUMMY_CLK_POS 4
143 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
144 #define EVCFG_VPP_ACCELERATOR (1 << 3)
145 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
146 #define NVCFG_DUAL_IO_MASK (1 << 2)
147 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
148 #define NVCFG_QUAD_IO_MASK (1 << 3)
149 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
150 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
151 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
152 
153 /* Numonyx (Micron) Flag Status Register macros */
154 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
155 #define FSR_FLASH_READY (1 << 7)
156 
157 /* Spansion configuration registers macros. */
158 #define SPANSION_QUAD_CFG_POS 0
159 #define SPANSION_QUAD_CFG_LEN 1
160 #define SPANSION_DUMMY_CLK_POS 0
161 #define SPANSION_DUMMY_CLK_LEN 4
162 #define SPANSION_ADDR_LEN_POS 7
163 #define SPANSION_ADDR_LEN_LEN 1
164 
165 /*
166  * Spansion read mode command length in bytes,
167  * the mode is currently not supported.
168 */
169 
170 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
171 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
172 
173 static const FlashPartInfo known_devices[] = {
174     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
175     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
176     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
177 
178     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
179     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
180     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
181 
182     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
183     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
184     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
185     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
186 
187     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
188 
189     /* Atmel EEPROMS - it is assumed, that don't care bit in command
190      * is set to 0. Block protection is not supported.
191      */
192     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
193     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
194 
195     /* EON -- en25xxx */
196     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
197     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
198     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
199     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
200     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
201 
202     /* GigaDevice */
203     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
204     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
205 
206     /* Intel/Numonyx -- xxxs33b */
207     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
208     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
209     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
210     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
211 
212     /* Macronix */
213     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
214     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
216     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
218     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
219     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
220     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
221     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
222     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
223     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
224     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
225     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
226     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
227 
228     /* Micron */
229     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
230     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
231     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
232     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
233     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
234     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
235     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
236     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
237     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
238     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
239     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
240     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
241     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
242     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
243     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
244     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
245     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
247     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
248 
249     /* Spansion -- single (large) sector size only, at least
250      * for the chips listed here (without boot sectors).
251      */
252     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
253     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
254     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
255     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
256     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
257     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
258     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
259     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
260     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
261     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
262     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
263     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
264     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
265     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
266     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
267     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
268     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
269 
270     /* Spansion --  boot sectors support  */
271     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
272     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
273 
274     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
275     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
276     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
277     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
278     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
279     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
280     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
281     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
282     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
283     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
284 
285     /* ST Microelectronics -- newer production may have feature updates */
286     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
287     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
288     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
289     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
290     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
291     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
292     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
293     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
294     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
295     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
296 
297     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
298     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
299     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
300 
301     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
302     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
303     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
304 
305     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
306     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
307     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
308     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
309 
310     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
311     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
312     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
313     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
314     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
315     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
316     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
317     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
318     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
319     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
320     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
321     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
322     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
323     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
324     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
325 };
326 
327 typedef enum {
328     NOP = 0,
329     WRSR = 0x1,
330     WRDI = 0x4,
331     RDSR = 0x5,
332     WREN = 0x6,
333     BRRD = 0x16,
334     BRWR = 0x17,
335     JEDEC_READ = 0x9f,
336     BULK_ERASE_60 = 0x60,
337     BULK_ERASE = 0xc7,
338     READ_FSR = 0x70,
339     RDCR = 0x15,
340 
341     READ = 0x03,
342     READ4 = 0x13,
343     FAST_READ = 0x0b,
344     FAST_READ4 = 0x0c,
345     DOR = 0x3b,
346     DOR4 = 0x3c,
347     QOR = 0x6b,
348     QOR4 = 0x6c,
349     DIOR = 0xbb,
350     DIOR4 = 0xbc,
351     QIOR = 0xeb,
352     QIOR4 = 0xec,
353 
354     PP = 0x02,
355     PP4 = 0x12,
356     PP4_4 = 0x3e,
357     DPP = 0xa2,
358     QPP = 0x32,
359     QPP_4 = 0x34,
360     RDID_90 = 0x90,
361     RDID_AB = 0xab,
362 
363     ERASE_4K = 0x20,
364     ERASE4_4K = 0x21,
365     ERASE_32K = 0x52,
366     ERASE4_32K = 0x5c,
367     ERASE_SECTOR = 0xd8,
368     ERASE4_SECTOR = 0xdc,
369 
370     EN_4BYTE_ADDR = 0xB7,
371     EX_4BYTE_ADDR = 0xE9,
372 
373     EXTEND_ADDR_READ = 0xC8,
374     EXTEND_ADDR_WRITE = 0xC5,
375 
376     RESET_ENABLE = 0x66,
377     RESET_MEMORY = 0x99,
378 
379     /*
380      * Micron: 0x35 - enable QPI
381      * Spansion: 0x35 - read control register
382      */
383     RDCR_EQIO = 0x35,
384     RSTQIO = 0xf5,
385 
386     RNVCR = 0xB5,
387     WNVCR = 0xB1,
388 
389     RVCR = 0x85,
390     WVCR = 0x81,
391 
392     REVCR = 0x65,
393     WEVCR = 0x61,
394 
395     DIE_ERASE = 0xC4,
396 } FlashCMD;
397 
398 typedef enum {
399     STATE_IDLE,
400     STATE_PAGE_PROGRAM,
401     STATE_READ,
402     STATE_COLLECTING_DATA,
403     STATE_COLLECTING_VAR_LEN_DATA,
404     STATE_READING_DATA,
405 } CMDState;
406 
407 typedef enum {
408     MAN_SPANSION,
409     MAN_MACRONIX,
410     MAN_NUMONYX,
411     MAN_WINBOND,
412     MAN_SST,
413     MAN_GENERIC,
414 } Manufacturer;
415 
416 typedef enum {
417     MODE_STD = 0,
418     MODE_DIO = 1,
419     MODE_QIO = 2
420 } SPIMode;
421 
422 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
423 
424 struct Flash {
425     SSIPeripheral parent_obj;
426 
427     BlockBackend *blk;
428 
429     uint8_t *storage;
430     uint32_t size;
431     int page_size;
432 
433     uint8_t state;
434     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
435     uint32_t len;
436     uint32_t pos;
437     bool data_read_loop;
438     uint8_t needed_bytes;
439     uint8_t cmd_in_progress;
440     uint32_t cur_addr;
441     uint32_t nonvolatile_cfg;
442     /* Configuration register for Macronix */
443     uint32_t volatile_cfg;
444     uint32_t enh_volatile_cfg;
445     /* Spansion cfg registers. */
446     uint8_t spansion_cr1nv;
447     uint8_t spansion_cr2nv;
448     uint8_t spansion_cr3nv;
449     uint8_t spansion_cr4nv;
450     uint8_t spansion_cr1v;
451     uint8_t spansion_cr2v;
452     uint8_t spansion_cr3v;
453     uint8_t spansion_cr4v;
454     bool write_enable;
455     bool four_bytes_address_mode;
456     bool reset_enable;
457     bool quad_enable;
458     uint8_t ear;
459 
460     int64_t dirty_page;
461 
462     const FlashPartInfo *pi;
463 
464 };
465 
466 struct M25P80Class {
467     SSIPeripheralClass parent_class;
468     FlashPartInfo *pi;
469 };
470 
471 #define TYPE_M25P80 "m25p80-generic"
472 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
473 
474 static inline Manufacturer get_man(Flash *s)
475 {
476     switch (s->pi->id[0]) {
477     case 0x20:
478         return MAN_NUMONYX;
479     case 0xEF:
480         return MAN_WINBOND;
481     case 0x01:
482         return MAN_SPANSION;
483     case 0xC2:
484         return MAN_MACRONIX;
485     case 0xBF:
486         return MAN_SST;
487     default:
488         return MAN_GENERIC;
489     }
490 }
491 
492 static void blk_sync_complete(void *opaque, int ret)
493 {
494     QEMUIOVector *iov = opaque;
495 
496     qemu_iovec_destroy(iov);
497     g_free(iov);
498 
499     /* do nothing. Masters do not directly interact with the backing store,
500      * only the working copy so no mutexing required.
501      */
502 }
503 
504 static void flash_sync_page(Flash *s, int page)
505 {
506     QEMUIOVector *iov;
507 
508     if (!s->blk || blk_is_read_only(s->blk)) {
509         return;
510     }
511 
512     iov = g_new(QEMUIOVector, 1);
513     qemu_iovec_init(iov, 1);
514     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
515                    s->pi->page_size);
516     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
517                     blk_sync_complete, iov);
518 }
519 
520 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
521 {
522     QEMUIOVector *iov;
523 
524     if (!s->blk || blk_is_read_only(s->blk)) {
525         return;
526     }
527 
528     assert(!(len % BDRV_SECTOR_SIZE));
529     iov = g_new(QEMUIOVector, 1);
530     qemu_iovec_init(iov, 1);
531     qemu_iovec_add(iov, s->storage + off, len);
532     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
533 }
534 
535 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
536 {
537     uint32_t len;
538     uint8_t capa_to_assert = 0;
539 
540     switch (cmd) {
541     case ERASE_4K:
542     case ERASE4_4K:
543         len = 4 * KiB;
544         capa_to_assert = ER_4K;
545         break;
546     case ERASE_32K:
547     case ERASE4_32K:
548         len = 32 * KiB;
549         capa_to_assert = ER_32K;
550         break;
551     case ERASE_SECTOR:
552     case ERASE4_SECTOR:
553         len = s->pi->sector_size;
554         break;
555     case BULK_ERASE:
556         len = s->size;
557         break;
558     case DIE_ERASE:
559         if (s->pi->die_cnt) {
560             len = s->size / s->pi->die_cnt;
561             offset = offset & (~(len - 1));
562         } else {
563             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
564                           " by device\n");
565             return;
566         }
567         break;
568     default:
569         abort();
570     }
571 
572     trace_m25p80_flash_erase(s, offset, len);
573 
574     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
575         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
576                       " device\n", len);
577     }
578 
579     if (!s->write_enable) {
580         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
581         return;
582     }
583     memset(s->storage + offset, 0xff, len);
584     flash_sync_area(s, offset, len);
585 }
586 
587 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
588 {
589     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
590         flash_sync_page(s, s->dirty_page);
591         s->dirty_page = newpage;
592     }
593 }
594 
595 static inline
596 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
597 {
598     uint32_t page = addr / s->pi->page_size;
599     uint8_t prev = s->storage[s->cur_addr];
600 
601     if (!s->write_enable) {
602         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
603     }
604 
605     if ((prev ^ data) & data) {
606         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
607     }
608 
609     if (s->pi->flags & EEPROM) {
610         s->storage[s->cur_addr] = data;
611     } else {
612         s->storage[s->cur_addr] &= data;
613     }
614 
615     flash_sync_dirty(s, page);
616     s->dirty_page = page;
617 }
618 
619 static inline int get_addr_length(Flash *s)
620 {
621    /* check if eeprom is in use */
622     if (s->pi->flags == EEPROM) {
623         return 2;
624     }
625 
626    switch (s->cmd_in_progress) {
627    case PP4:
628    case PP4_4:
629    case QPP_4:
630    case READ4:
631    case QIOR4:
632    case ERASE4_4K:
633    case ERASE4_32K:
634    case ERASE4_SECTOR:
635    case FAST_READ4:
636    case DOR4:
637    case QOR4:
638    case DIOR4:
639        return 4;
640    default:
641        return s->four_bytes_address_mode ? 4 : 3;
642    }
643 }
644 
645 static void complete_collecting_data(Flash *s)
646 {
647     int i, n;
648 
649     n = get_addr_length(s);
650     s->cur_addr = (n == 3 ? s->ear : 0);
651     for (i = 0; i < n; ++i) {
652         s->cur_addr <<= 8;
653         s->cur_addr |= s->data[i];
654     }
655 
656     s->cur_addr &= s->size - 1;
657 
658     s->state = STATE_IDLE;
659 
660     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
661                                      s->cur_addr);
662 
663     switch (s->cmd_in_progress) {
664     case DPP:
665     case QPP:
666     case QPP_4:
667     case PP:
668     case PP4:
669     case PP4_4:
670         s->state = STATE_PAGE_PROGRAM;
671         break;
672     case READ:
673     case READ4:
674     case FAST_READ:
675     case FAST_READ4:
676     case DOR:
677     case DOR4:
678     case QOR:
679     case QOR4:
680     case DIOR:
681     case DIOR4:
682     case QIOR:
683     case QIOR4:
684         s->state = STATE_READ;
685         break;
686     case ERASE_4K:
687     case ERASE4_4K:
688     case ERASE_32K:
689     case ERASE4_32K:
690     case ERASE_SECTOR:
691     case ERASE4_SECTOR:
692     case DIE_ERASE:
693         flash_erase(s, s->cur_addr, s->cmd_in_progress);
694         break;
695     case WRSR:
696         switch (get_man(s)) {
697         case MAN_SPANSION:
698             s->quad_enable = !!(s->data[1] & 0x02);
699             break;
700         case MAN_MACRONIX:
701             s->quad_enable = extract32(s->data[0], 6, 1);
702             if (s->len > 1) {
703                 s->volatile_cfg = s->data[1];
704                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
705             }
706             break;
707         default:
708             break;
709         }
710         if (s->write_enable) {
711             s->write_enable = false;
712         }
713         break;
714     case BRWR:
715     case EXTEND_ADDR_WRITE:
716         s->ear = s->data[0];
717         break;
718     case WNVCR:
719         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
720         break;
721     case WVCR:
722         s->volatile_cfg = s->data[0];
723         break;
724     case WEVCR:
725         s->enh_volatile_cfg = s->data[0];
726         break;
727     case RDID_90:
728     case RDID_AB:
729         if (get_man(s) == MAN_SST) {
730             if (s->cur_addr <= 1) {
731                 if (s->cur_addr) {
732                     s->data[0] = s->pi->id[2];
733                     s->data[1] = s->pi->id[0];
734                 } else {
735                     s->data[0] = s->pi->id[0];
736                     s->data[1] = s->pi->id[2];
737                 }
738                 s->pos = 0;
739                 s->len = 2;
740                 s->data_read_loop = true;
741                 s->state = STATE_READING_DATA;
742             } else {
743                 qemu_log_mask(LOG_GUEST_ERROR,
744                               "M25P80: Invalid read id address\n");
745             }
746         } else {
747             qemu_log_mask(LOG_GUEST_ERROR,
748                           "M25P80: Read id (command 0x90/0xAB) is not supported"
749                           " by device\n");
750         }
751         break;
752     default:
753         break;
754     }
755 }
756 
757 static void reset_memory(Flash *s)
758 {
759     s->cmd_in_progress = NOP;
760     s->cur_addr = 0;
761     s->ear = 0;
762     s->four_bytes_address_mode = false;
763     s->len = 0;
764     s->needed_bytes = 0;
765     s->pos = 0;
766     s->state = STATE_IDLE;
767     s->write_enable = false;
768     s->reset_enable = false;
769     s->quad_enable = false;
770 
771     switch (get_man(s)) {
772     case MAN_NUMONYX:
773         s->volatile_cfg = 0;
774         s->volatile_cfg |= VCFG_DUMMY;
775         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
776         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
777                                 == NVCFG_XIP_MODE_DISABLED) {
778             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
779         }
780         s->volatile_cfg |= deposit32(s->volatile_cfg,
781                             VCFG_DUMMY_CLK_POS,
782                             CFG_DUMMY_CLK_LEN,
783                             extract32(s->nonvolatile_cfg,
784                                         NVCFG_DUMMY_CLK_POS,
785                                         CFG_DUMMY_CLK_LEN)
786                             );
787 
788         s->enh_volatile_cfg = 0;
789         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
790         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
791         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
792         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
793             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
794         }
795         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
796             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
797         }
798         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
799             s->four_bytes_address_mode = true;
800         }
801         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
802             s->ear = s->size / MAX_3BYTES_SIZE - 1;
803         }
804         break;
805     case MAN_MACRONIX:
806         s->volatile_cfg = 0x7;
807         break;
808     case MAN_SPANSION:
809         s->spansion_cr1v = s->spansion_cr1nv;
810         s->spansion_cr2v = s->spansion_cr2nv;
811         s->spansion_cr3v = s->spansion_cr3nv;
812         s->spansion_cr4v = s->spansion_cr4nv;
813         s->quad_enable = extract32(s->spansion_cr1v,
814                                    SPANSION_QUAD_CFG_POS,
815                                    SPANSION_QUAD_CFG_LEN
816                                    );
817         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
818                 SPANSION_ADDR_LEN_POS,
819                 SPANSION_ADDR_LEN_LEN
820                 );
821         break;
822     default:
823         break;
824     }
825 
826     trace_m25p80_reset_done(s);
827 }
828 
829 static uint8_t numonyx_mode(Flash *s)
830 {
831     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
832         return MODE_QIO;
833     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
834         return MODE_DIO;
835     } else {
836         return MODE_STD;
837     }
838 }
839 
840 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
841 {
842     uint8_t num_dummies;
843     uint8_t mode;
844     assert(get_man(s) == MAN_NUMONYX);
845 
846     mode = numonyx_mode(s);
847     num_dummies = extract32(s->volatile_cfg, 4, 4);
848 
849     if (num_dummies == 0x0 || num_dummies == 0xf) {
850         switch (s->cmd_in_progress) {
851         case QIOR:
852         case QIOR4:
853             num_dummies = 10;
854             break;
855         default:
856             num_dummies = (mode == MODE_QIO) ? 10 : 8;
857             break;
858         }
859     }
860 
861     return num_dummies;
862 }
863 
864 static void decode_fast_read_cmd(Flash *s)
865 {
866     s->needed_bytes = get_addr_length(s);
867     switch (get_man(s)) {
868     /* Dummy cycles - modeled with bytes writes instead of bits */
869     case MAN_WINBOND:
870         s->needed_bytes += 8;
871         break;
872     case MAN_NUMONYX:
873         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
874         break;
875     case MAN_MACRONIX:
876         if (extract32(s->volatile_cfg, 6, 2) == 1) {
877             s->needed_bytes += 6;
878         } else {
879             s->needed_bytes += 8;
880         }
881         break;
882     case MAN_SPANSION:
883         s->needed_bytes += extract32(s->spansion_cr2v,
884                                     SPANSION_DUMMY_CLK_POS,
885                                     SPANSION_DUMMY_CLK_LEN
886                                     );
887         break;
888     default:
889         break;
890     }
891     s->pos = 0;
892     s->len = 0;
893     s->state = STATE_COLLECTING_DATA;
894 }
895 
896 static void decode_dio_read_cmd(Flash *s)
897 {
898     s->needed_bytes = get_addr_length(s);
899     /* Dummy cycles modeled with bytes writes instead of bits */
900     switch (get_man(s)) {
901     case MAN_WINBOND:
902         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
903         break;
904     case MAN_SPANSION:
905         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
906         s->needed_bytes += extract32(s->spansion_cr2v,
907                                     SPANSION_DUMMY_CLK_POS,
908                                     SPANSION_DUMMY_CLK_LEN
909                                     );
910         break;
911     case MAN_NUMONYX:
912         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
913         break;
914     case MAN_MACRONIX:
915         switch (extract32(s->volatile_cfg, 6, 2)) {
916         case 1:
917             s->needed_bytes += 6;
918             break;
919         case 2:
920             s->needed_bytes += 8;
921             break;
922         default:
923             s->needed_bytes += 4;
924             break;
925         }
926         break;
927     default:
928         break;
929     }
930     s->pos = 0;
931     s->len = 0;
932     s->state = STATE_COLLECTING_DATA;
933 }
934 
935 static void decode_qio_read_cmd(Flash *s)
936 {
937     s->needed_bytes = get_addr_length(s);
938     /* Dummy cycles modeled with bytes writes instead of bits */
939     switch (get_man(s)) {
940     case MAN_WINBOND:
941         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
942         s->needed_bytes += 4;
943         break;
944     case MAN_SPANSION:
945         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
946         s->needed_bytes += extract32(s->spansion_cr2v,
947                                     SPANSION_DUMMY_CLK_POS,
948                                     SPANSION_DUMMY_CLK_LEN
949                                     );
950         break;
951     case MAN_NUMONYX:
952         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
953         break;
954     case MAN_MACRONIX:
955         switch (extract32(s->volatile_cfg, 6, 2)) {
956         case 1:
957             s->needed_bytes += 4;
958             break;
959         case 2:
960             s->needed_bytes += 8;
961             break;
962         default:
963             s->needed_bytes += 6;
964             break;
965         }
966         break;
967     default:
968         break;
969     }
970     s->pos = 0;
971     s->len = 0;
972     s->state = STATE_COLLECTING_DATA;
973 }
974 
975 static void decode_new_cmd(Flash *s, uint32_t value)
976 {
977     int i;
978 
979     s->cmd_in_progress = value;
980     trace_m25p80_command_decoded(s, value);
981 
982     if (value != RESET_MEMORY) {
983         s->reset_enable = false;
984     }
985 
986     switch (value) {
987 
988     case ERASE_4K:
989     case ERASE4_4K:
990     case ERASE_32K:
991     case ERASE4_32K:
992     case ERASE_SECTOR:
993     case ERASE4_SECTOR:
994     case PP:
995     case PP4:
996     case DIE_ERASE:
997     case RDID_90:
998     case RDID_AB:
999         s->needed_bytes = get_addr_length(s);
1000         s->pos = 0;
1001         s->len = 0;
1002         s->state = STATE_COLLECTING_DATA;
1003         break;
1004     case READ:
1005     case READ4:
1006         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1007             s->needed_bytes = get_addr_length(s);
1008             s->pos = 0;
1009             s->len = 0;
1010             s->state = STATE_COLLECTING_DATA;
1011         } else {
1012             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1013                           "DIO or QIO mode\n", s->cmd_in_progress);
1014         }
1015         break;
1016     case DPP:
1017         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1018             s->needed_bytes = get_addr_length(s);
1019             s->pos = 0;
1020             s->len = 0;
1021             s->state = STATE_COLLECTING_DATA;
1022         } else {
1023             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1024                           "QIO mode\n", s->cmd_in_progress);
1025         }
1026         break;
1027     case QPP:
1028     case QPP_4:
1029     case PP4_4:
1030         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1031             s->needed_bytes = get_addr_length(s);
1032             s->pos = 0;
1033             s->len = 0;
1034             s->state = STATE_COLLECTING_DATA;
1035         } else {
1036             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1037                           "DIO mode\n", s->cmd_in_progress);
1038         }
1039         break;
1040 
1041     case FAST_READ:
1042     case FAST_READ4:
1043         decode_fast_read_cmd(s);
1044         break;
1045     case DOR:
1046     case DOR4:
1047         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1048             decode_fast_read_cmd(s);
1049         } else {
1050             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1051                           "QIO mode\n", s->cmd_in_progress);
1052         }
1053         break;
1054     case QOR:
1055     case QOR4:
1056         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1057             decode_fast_read_cmd(s);
1058         } else {
1059             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1060                           "DIO mode\n", s->cmd_in_progress);
1061         }
1062         break;
1063 
1064     case DIOR:
1065     case DIOR4:
1066         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1067             decode_dio_read_cmd(s);
1068         } else {
1069             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1070                           "QIO mode\n", s->cmd_in_progress);
1071         }
1072         break;
1073 
1074     case QIOR:
1075     case QIOR4:
1076         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1077             decode_qio_read_cmd(s);
1078         } else {
1079             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1080                           "DIO mode\n", s->cmd_in_progress);
1081         }
1082         break;
1083 
1084     case WRSR:
1085         if (s->write_enable) {
1086             switch (get_man(s)) {
1087             case MAN_SPANSION:
1088                 s->needed_bytes = 2;
1089                 s->state = STATE_COLLECTING_DATA;
1090                 break;
1091             case MAN_MACRONIX:
1092                 s->needed_bytes = 2;
1093                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1094                 break;
1095             default:
1096                 s->needed_bytes = 1;
1097                 s->state = STATE_COLLECTING_DATA;
1098             }
1099             s->pos = 0;
1100         }
1101         break;
1102 
1103     case WRDI:
1104         s->write_enable = false;
1105         break;
1106     case WREN:
1107         s->write_enable = true;
1108         break;
1109 
1110     case RDSR:
1111         s->data[0] = (!!s->write_enable) << 1;
1112         if (get_man(s) == MAN_MACRONIX) {
1113             s->data[0] |= (!!s->quad_enable) << 6;
1114         }
1115         s->pos = 0;
1116         s->len = 1;
1117         s->data_read_loop = true;
1118         s->state = STATE_READING_DATA;
1119         break;
1120 
1121     case READ_FSR:
1122         s->data[0] = FSR_FLASH_READY;
1123         if (s->four_bytes_address_mode) {
1124             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1125         }
1126         s->pos = 0;
1127         s->len = 1;
1128         s->data_read_loop = true;
1129         s->state = STATE_READING_DATA;
1130         break;
1131 
1132     case JEDEC_READ:
1133         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1134             trace_m25p80_populated_jedec(s);
1135             for (i = 0; i < s->pi->id_len; i++) {
1136                 s->data[i] = s->pi->id[i];
1137             }
1138             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1139                 s->data[i] = 0;
1140             }
1141 
1142             s->len = SPI_NOR_MAX_ID_LEN;
1143             s->pos = 0;
1144             s->state = STATE_READING_DATA;
1145         } else {
1146             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1147                           "in DIO or QIO mode\n");
1148         }
1149         break;
1150 
1151     case RDCR:
1152         s->data[0] = s->volatile_cfg & 0xFF;
1153         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1154         s->pos = 0;
1155         s->len = 1;
1156         s->state = STATE_READING_DATA;
1157         break;
1158 
1159     case BULK_ERASE_60:
1160     case BULK_ERASE:
1161         if (s->write_enable) {
1162             trace_m25p80_chip_erase(s);
1163             flash_erase(s, 0, BULK_ERASE);
1164         } else {
1165             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1166                           "protect!\n");
1167         }
1168         break;
1169     case NOP:
1170         break;
1171     case EN_4BYTE_ADDR:
1172         s->four_bytes_address_mode = true;
1173         break;
1174     case EX_4BYTE_ADDR:
1175         s->four_bytes_address_mode = false;
1176         break;
1177     case BRRD:
1178     case EXTEND_ADDR_READ:
1179         s->data[0] = s->ear;
1180         s->pos = 0;
1181         s->len = 1;
1182         s->state = STATE_READING_DATA;
1183         break;
1184     case BRWR:
1185     case EXTEND_ADDR_WRITE:
1186         if (s->write_enable) {
1187             s->needed_bytes = 1;
1188             s->pos = 0;
1189             s->len = 0;
1190             s->state = STATE_COLLECTING_DATA;
1191         }
1192         break;
1193     case RNVCR:
1194         s->data[0] = s->nonvolatile_cfg & 0xFF;
1195         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1196         s->pos = 0;
1197         s->len = 2;
1198         s->state = STATE_READING_DATA;
1199         break;
1200     case WNVCR:
1201         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1202             s->needed_bytes = 2;
1203             s->pos = 0;
1204             s->len = 0;
1205             s->state = STATE_COLLECTING_DATA;
1206         }
1207         break;
1208     case RVCR:
1209         s->data[0] = s->volatile_cfg & 0xFF;
1210         s->pos = 0;
1211         s->len = 1;
1212         s->state = STATE_READING_DATA;
1213         break;
1214     case WVCR:
1215         if (s->write_enable) {
1216             s->needed_bytes = 1;
1217             s->pos = 0;
1218             s->len = 0;
1219             s->state = STATE_COLLECTING_DATA;
1220         }
1221         break;
1222     case REVCR:
1223         s->data[0] = s->enh_volatile_cfg & 0xFF;
1224         s->pos = 0;
1225         s->len = 1;
1226         s->state = STATE_READING_DATA;
1227         break;
1228     case WEVCR:
1229         if (s->write_enable) {
1230             s->needed_bytes = 1;
1231             s->pos = 0;
1232             s->len = 0;
1233             s->state = STATE_COLLECTING_DATA;
1234         }
1235         break;
1236     case RESET_ENABLE:
1237         s->reset_enable = true;
1238         break;
1239     case RESET_MEMORY:
1240         if (s->reset_enable) {
1241             reset_memory(s);
1242         }
1243         break;
1244     case RDCR_EQIO:
1245         switch (get_man(s)) {
1246         case MAN_SPANSION:
1247             s->data[0] = (!!s->quad_enable) << 1;
1248             s->pos = 0;
1249             s->len = 1;
1250             s->state = STATE_READING_DATA;
1251             break;
1252         case MAN_MACRONIX:
1253             s->quad_enable = true;
1254             break;
1255         default:
1256             break;
1257         }
1258         break;
1259     case RSTQIO:
1260         s->quad_enable = false;
1261         break;
1262     default:
1263         s->pos = 0;
1264         s->len = 1;
1265         s->state = STATE_READING_DATA;
1266         s->data_read_loop = true;
1267         s->data[0] = 0;
1268         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1269         break;
1270     }
1271 }
1272 
1273 static int m25p80_cs(SSIPeripheral *ss, bool select)
1274 {
1275     Flash *s = M25P80(ss);
1276 
1277     if (select) {
1278         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1279             complete_collecting_data(s);
1280         }
1281         s->len = 0;
1282         s->pos = 0;
1283         s->state = STATE_IDLE;
1284         flash_sync_dirty(s, -1);
1285         s->data_read_loop = false;
1286     }
1287 
1288     trace_m25p80_select(s, select ? "de" : "");
1289 
1290     return 0;
1291 }
1292 
1293 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1294 {
1295     Flash *s = M25P80(ss);
1296     uint32_t r = 0;
1297 
1298     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1299                           s->cur_addr, (uint8_t)tx);
1300 
1301     switch (s->state) {
1302 
1303     case STATE_PAGE_PROGRAM:
1304         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1305         flash_write8(s, s->cur_addr, (uint8_t)tx);
1306         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1307         break;
1308 
1309     case STATE_READ:
1310         r = s->storage[s->cur_addr];
1311         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1312         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1313         break;
1314 
1315     case STATE_COLLECTING_DATA:
1316     case STATE_COLLECTING_VAR_LEN_DATA:
1317 
1318         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1319             qemu_log_mask(LOG_GUEST_ERROR,
1320                           "M25P80: Write overrun internal data buffer. "
1321                           "SPI controller (QEMU emulator or guest driver) "
1322                           "is misbehaving\n");
1323             s->len = s->pos = 0;
1324             s->state = STATE_IDLE;
1325             break;
1326         }
1327 
1328         s->data[s->len] = (uint8_t)tx;
1329         s->len++;
1330 
1331         if (s->len == s->needed_bytes) {
1332             complete_collecting_data(s);
1333         }
1334         break;
1335 
1336     case STATE_READING_DATA:
1337 
1338         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1339             qemu_log_mask(LOG_GUEST_ERROR,
1340                           "M25P80: Read overrun internal data buffer. "
1341                           "SPI controller (QEMU emulator or guest driver) "
1342                           "is misbehaving\n");
1343             s->len = s->pos = 0;
1344             s->state = STATE_IDLE;
1345             break;
1346         }
1347 
1348         r = s->data[s->pos];
1349         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1350         s->pos++;
1351         if (s->pos == s->len) {
1352             s->pos = 0;
1353             if (!s->data_read_loop) {
1354                 s->state = STATE_IDLE;
1355             }
1356         }
1357         break;
1358 
1359     default:
1360     case STATE_IDLE:
1361         decode_new_cmd(s, (uint8_t)tx);
1362         break;
1363     }
1364 
1365     return r;
1366 }
1367 
1368 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1369 {
1370     Flash *s = M25P80(ss);
1371     M25P80Class *mc = M25P80_GET_CLASS(s);
1372     int ret;
1373 
1374     s->pi = mc->pi;
1375 
1376     s->size = s->pi->sector_size * s->pi->n_sectors;
1377     s->dirty_page = -1;
1378 
1379     if (s->blk) {
1380         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1381                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1382         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1383         if (ret < 0) {
1384             return;
1385         }
1386 
1387         trace_m25p80_binding(s);
1388         s->storage = blk_blockalign(s->blk, s->size);
1389 
1390         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1391             error_setg(errp, "failed to read the initial flash content");
1392             return;
1393         }
1394     } else {
1395         trace_m25p80_binding_no_bdrv(s);
1396         s->storage = blk_blockalign(NULL, s->size);
1397         memset(s->storage, 0xFF, s->size);
1398     }
1399 }
1400 
1401 static void m25p80_reset(DeviceState *d)
1402 {
1403     Flash *s = M25P80(d);
1404 
1405     reset_memory(s);
1406 }
1407 
1408 static int m25p80_pre_save(void *opaque)
1409 {
1410     flash_sync_dirty((Flash *)opaque, -1);
1411 
1412     return 0;
1413 }
1414 
1415 static Property m25p80_properties[] = {
1416     /* This is default value for Micron flash */
1417     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1418     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1419     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1420     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1421     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1422     DEFINE_PROP_DRIVE("drive", Flash, blk),
1423     DEFINE_PROP_END_OF_LIST(),
1424 };
1425 
1426 static int m25p80_pre_load(void *opaque)
1427 {
1428     Flash *s = (Flash *)opaque;
1429 
1430     s->data_read_loop = false;
1431     return 0;
1432 }
1433 
1434 static bool m25p80_data_read_loop_needed(void *opaque)
1435 {
1436     Flash *s = (Flash *)opaque;
1437 
1438     return s->data_read_loop;
1439 }
1440 
1441 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1442     .name = "m25p80/data_read_loop",
1443     .version_id = 1,
1444     .minimum_version_id = 1,
1445     .needed = m25p80_data_read_loop_needed,
1446     .fields = (VMStateField[]) {
1447         VMSTATE_BOOL(data_read_loop, Flash),
1448         VMSTATE_END_OF_LIST()
1449     }
1450 };
1451 
1452 static const VMStateDescription vmstate_m25p80 = {
1453     .name = "m25p80",
1454     .version_id = 0,
1455     .minimum_version_id = 0,
1456     .pre_save = m25p80_pre_save,
1457     .pre_load = m25p80_pre_load,
1458     .fields = (VMStateField[]) {
1459         VMSTATE_UINT8(state, Flash),
1460         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1461         VMSTATE_UINT32(len, Flash),
1462         VMSTATE_UINT32(pos, Flash),
1463         VMSTATE_UINT8(needed_bytes, Flash),
1464         VMSTATE_UINT8(cmd_in_progress, Flash),
1465         VMSTATE_UINT32(cur_addr, Flash),
1466         VMSTATE_BOOL(write_enable, Flash),
1467         VMSTATE_BOOL(reset_enable, Flash),
1468         VMSTATE_UINT8(ear, Flash),
1469         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1470         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1471         VMSTATE_UINT32(volatile_cfg, Flash),
1472         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1473         VMSTATE_BOOL(quad_enable, Flash),
1474         VMSTATE_UINT8(spansion_cr1nv, Flash),
1475         VMSTATE_UINT8(spansion_cr2nv, Flash),
1476         VMSTATE_UINT8(spansion_cr3nv, Flash),
1477         VMSTATE_UINT8(spansion_cr4nv, Flash),
1478         VMSTATE_END_OF_LIST()
1479     },
1480     .subsections = (const VMStateDescription * []) {
1481         &vmstate_m25p80_data_read_loop,
1482         NULL
1483     }
1484 };
1485 
1486 static void m25p80_class_init(ObjectClass *klass, void *data)
1487 {
1488     DeviceClass *dc = DEVICE_CLASS(klass);
1489     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1490     M25P80Class *mc = M25P80_CLASS(klass);
1491 
1492     k->realize = m25p80_realize;
1493     k->transfer = m25p80_transfer8;
1494     k->set_cs = m25p80_cs;
1495     k->cs_polarity = SSI_CS_LOW;
1496     dc->vmsd = &vmstate_m25p80;
1497     device_class_set_props(dc, m25p80_properties);
1498     dc->reset = m25p80_reset;
1499     mc->pi = data;
1500 }
1501 
1502 static const TypeInfo m25p80_info = {
1503     .name           = TYPE_M25P80,
1504     .parent         = TYPE_SSI_PERIPHERAL,
1505     .instance_size  = sizeof(Flash),
1506     .class_size     = sizeof(M25P80Class),
1507     .abstract       = true,
1508 };
1509 
1510 static void m25p80_register_types(void)
1511 {
1512     int i;
1513 
1514     type_register_static(&m25p80_info);
1515     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1516         TypeInfo ti = {
1517             .name       = known_devices[i].part_name,
1518             .parent     = TYPE_M25P80,
1519             .class_init = m25p80_class_init,
1520             .class_data = (void *)&known_devices[i],
1521         };
1522         type_register(&ti);
1523     }
1524 }
1525 
1526 type_init(m25p80_register_types)
1527