xref: /openbmc/qemu/hw/block/m25p80.c (revision b70ce101)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qapi/error.h"
32 
33 #ifndef M25P80_ERR_DEBUG
34 #define M25P80_ERR_DEBUG 0
35 #endif
36 
37 #define DB_PRINT_L(level, ...) do { \
38     if (M25P80_ERR_DEBUG > (level)) { \
39         fprintf(stderr,  ": %s: ", __func__); \
40         fprintf(stderr, ## __VA_ARGS__); \
41     } \
42 } while (0);
43 
44 /* Fields for FlashPartInfo->flags */
45 
46 /* erase capabilities */
47 #define ER_4K 1
48 #define ER_32K 2
49 /* set to allow the page program command to write 0s back to 1. Useful for
50  * modelling EEPROM with SPI flash command set
51  */
52 #define EEPROM 0x100
53 
54 /* 16 MiB max in 3 byte address mode */
55 #define MAX_3BYTES_SIZE 0x1000000
56 
57 #define SPI_NOR_MAX_ID_LEN 6
58 
59 typedef struct FlashPartInfo {
60     const char *part_name;
61     /*
62      * This array stores the ID bytes.
63      * The first three bytes are the JEDIC ID.
64      * JEDEC ID zero means "no ID" (mostly older chips).
65      */
66     uint8_t id[SPI_NOR_MAX_ID_LEN];
67     uint8_t id_len;
68     /* there is confusion between manufacturers as to what a sector is. In this
69      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
70      * command (opcode 0xd8).
71      */
72     uint32_t sector_size;
73     uint32_t n_sectors;
74     uint32_t page_size;
75     uint16_t flags;
76 } FlashPartInfo;
77 
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81     .part_name = _part_name,\
82     .id = {\
83         ((_jedec_id) >> 16) & 0xff,\
84         ((_jedec_id) >> 8) & 0xff,\
85         (_jedec_id) & 0xff,\
86         ((_ext_id) >> 8) & 0xff,\
87         (_ext_id) & 0xff,\
88           },\
89     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90     .sector_size = (_sector_size),\
91     .n_sectors = (_n_sectors),\
92     .page_size = 256,\
93     .flags = (_flags),
94 
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96     .part_name = _part_name,\
97     .id = {\
98         ((_jedec_id) >> 16) & 0xff,\
99         ((_jedec_id) >> 8) & 0xff,\
100         (_jedec_id) & 0xff,\
101         ((_ext_id) >> 16) & 0xff,\
102         ((_ext_id) >> 8) & 0xff,\
103         (_ext_id) & 0xff,\
104           },\
105     .id_len = 6,\
106     .sector_size = (_sector_size),\
107     .n_sectors = (_n_sectors),\
108     .page_size = 256,\
109     .flags = (_flags),\
110 
111 #define JEDEC_NUMONYX 0x20
112 #define JEDEC_WINBOND 0xEF
113 #define JEDEC_SPANSION 0x01
114 
115 /* Numonyx (Micron) Configuration register macros */
116 #define VCFG_DUMMY 0x1
117 #define VCFG_WRAP_SEQUENTIAL 0x2
118 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
119 #define NVCFG_XIP_MODE_MASK (7 << 9)
120 #define VCFG_XIP_MODE_ENABLED (1 << 3)
121 #define CFG_DUMMY_CLK_LEN 4
122 #define NVCFG_DUMMY_CLK_POS 12
123 #define VCFG_DUMMY_CLK_POS 4
124 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
125 #define EVCFG_VPP_ACCELERATOR (1 << 3)
126 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
127 #define NVCFG_DUAL_IO_MASK (1 << 2)
128 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
129 #define NVCFG_QUAD_IO_MASK (1 << 3)
130 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
131 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
132 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
133 
134 /* Numonyx (Micron) Flag Status Register macros */
135 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
136 #define FSR_FLASH_READY (1 << 7)
137 
138 /* Spansion configuration registers macros. */
139 #define SPANSION_QUAD_CFG_POS 0
140 #define SPANSION_QUAD_CFG_LEN 1
141 #define SPANSION_DUMMY_CLK_POS 0
142 #define SPANSION_DUMMY_CLK_LEN 4
143 #define SPANSION_ADDR_LEN_POS 7
144 #define SPANSION_ADDR_LEN_LEN 1
145 
146 /*
147  * Spansion read mode command length in bytes,
148  * the mode is currently not supported.
149 */
150 
151 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
152 
153 static const FlashPartInfo known_devices[] = {
154     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
155     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
156     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
157 
158     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
159     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
160     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
161 
162     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
163     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
164     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
165     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
166 
167     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
168 
169     /* Atmel EEPROMS - it is assumed, that don't care bit in command
170      * is set to 0. Block protection is not supported.
171      */
172     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
173     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
174 
175     /* EON -- en25xxx */
176     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
177     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
178     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
179     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
180     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
181 
182     /* GigaDevice */
183     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
184     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
185 
186     /* Intel/Numonyx -- xxxs33b */
187     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
188     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
189     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
190     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
191 
192     /* Macronix */
193     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
194     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
195     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
196     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
197     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
198     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
199     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
200     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
201     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
202     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
203     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
204     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
205 
206     /* Micron */
207     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
208     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
209     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
210     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
211     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
212     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
213     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
214     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
215     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
216     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
217     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
218     { INFO("mt25ql01g",   0x20ba21,      0,  64 << 10, 2048, ER_4K) },
219     { INFO("mt25qu01g",   0x20bb21,      0,  64 << 10, 2048, ER_4K) },
220 
221     /* Spansion -- single (large) sector size only, at least
222      * for the chips listed here (without boot sectors).
223      */
224     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
225     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
226     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
227     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
228     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
229     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
230     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
231     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
232     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
233     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
234     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
235     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
236     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
237     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
238     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
239     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
240     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
241 
242     /* Spansion --  boot sectors support  */
243     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
244     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
245 
246     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
247     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
248     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
249     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
250     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
251     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
252     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
253     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
254     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
255     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
256 
257     /* ST Microelectronics -- newer production may have feature updates */
258     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
259     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
260     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
261     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
262     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
263     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
264     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
265     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
266     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
267     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
268 
269     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
270     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
271     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
272 
273     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
274     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
275     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
276 
277     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
278     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
279     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
280     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
281 
282     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
283     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
284     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
285     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
286     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
287     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
288     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
289     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
290     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
291     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
292     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
293     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
294     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
295     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
296 };
297 
298 typedef enum {
299     NOP = 0,
300     WRSR = 0x1,
301     WRDI = 0x4,
302     RDSR = 0x5,
303     WREN = 0x6,
304     JEDEC_READ = 0x9f,
305     BULK_ERASE = 0xc7,
306     READ_FSR = 0x70,
307     RDCR = 0x15,
308 
309     READ = 0x03,
310     READ4 = 0x13,
311     FAST_READ = 0x0b,
312     FAST_READ4 = 0x0c,
313     DOR = 0x3b,
314     DOR4 = 0x3c,
315     QOR = 0x6b,
316     QOR4 = 0x6c,
317     DIOR = 0xbb,
318     DIOR4 = 0xbc,
319     QIOR = 0xeb,
320     QIOR4 = 0xec,
321 
322     PP = 0x02,
323     PP4 = 0x12,
324     PP4_4 = 0x3e,
325     DPP = 0xa2,
326     QPP = 0x32,
327 
328     ERASE_4K = 0x20,
329     ERASE4_4K = 0x21,
330     ERASE_32K = 0x52,
331     ERASE4_32K = 0x5c,
332     ERASE_SECTOR = 0xd8,
333     ERASE4_SECTOR = 0xdc,
334 
335     EN_4BYTE_ADDR = 0xB7,
336     EX_4BYTE_ADDR = 0xE9,
337 
338     EXTEND_ADDR_READ = 0xC8,
339     EXTEND_ADDR_WRITE = 0xC5,
340 
341     RESET_ENABLE = 0x66,
342     RESET_MEMORY = 0x99,
343 
344     /*
345      * Micron: 0x35 - enable QPI
346      * Spansion: 0x35 - read control register
347      */
348     RDCR_EQIO = 0x35,
349     RSTQIO = 0xf5,
350 
351     RNVCR = 0xB5,
352     WNVCR = 0xB1,
353 
354     RVCR = 0x85,
355     WVCR = 0x81,
356 
357     REVCR = 0x65,
358     WEVCR = 0x61,
359 } FlashCMD;
360 
361 typedef enum {
362     STATE_IDLE,
363     STATE_PAGE_PROGRAM,
364     STATE_READ,
365     STATE_COLLECTING_DATA,
366     STATE_COLLECTING_VAR_LEN_DATA,
367     STATE_READING_DATA,
368 } CMDState;
369 
370 typedef enum {
371     MAN_SPANSION,
372     MAN_MACRONIX,
373     MAN_NUMONYX,
374     MAN_WINBOND,
375     MAN_GENERIC,
376 } Manufacturer;
377 
378 typedef struct Flash {
379     SSISlave parent_obj;
380 
381     BlockBackend *blk;
382 
383     uint8_t *storage;
384     uint32_t size;
385     int page_size;
386 
387     uint8_t state;
388     uint8_t data[16];
389     uint32_t len;
390     uint32_t pos;
391     uint8_t needed_bytes;
392     uint8_t cmd_in_progress;
393     uint32_t cur_addr;
394     uint32_t nonvolatile_cfg;
395     /* Configuration register for Macronix */
396     uint32_t volatile_cfg;
397     uint32_t enh_volatile_cfg;
398     /* Spansion cfg registers. */
399     uint8_t spansion_cr1nv;
400     uint8_t spansion_cr2nv;
401     uint8_t spansion_cr3nv;
402     uint8_t spansion_cr4nv;
403     uint8_t spansion_cr1v;
404     uint8_t spansion_cr2v;
405     uint8_t spansion_cr3v;
406     uint8_t spansion_cr4v;
407     bool write_enable;
408     bool four_bytes_address_mode;
409     bool reset_enable;
410     bool quad_enable;
411     uint8_t ear;
412 
413     int64_t dirty_page;
414 
415     const FlashPartInfo *pi;
416 
417 } Flash;
418 
419 typedef struct M25P80Class {
420     SSISlaveClass parent_class;
421     FlashPartInfo *pi;
422 } M25P80Class;
423 
424 #define TYPE_M25P80 "m25p80-generic"
425 #define M25P80(obj) \
426      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
427 #define M25P80_CLASS(klass) \
428      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
429 #define M25P80_GET_CLASS(obj) \
430      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
431 
432 static inline Manufacturer get_man(Flash *s)
433 {
434     switch (s->pi->id[0]) {
435     case 0x20:
436         return MAN_NUMONYX;
437     case 0xEF:
438         return MAN_WINBOND;
439     case 0x01:
440         return MAN_SPANSION;
441     case 0xC2:
442         return MAN_MACRONIX;
443     default:
444         return MAN_GENERIC;
445     }
446 }
447 
448 static void blk_sync_complete(void *opaque, int ret)
449 {
450     QEMUIOVector *iov = opaque;
451 
452     qemu_iovec_destroy(iov);
453     g_free(iov);
454 
455     /* do nothing. Masters do not directly interact with the backing store,
456      * only the working copy so no mutexing required.
457      */
458 }
459 
460 static void flash_sync_page(Flash *s, int page)
461 {
462     QEMUIOVector *iov = g_new(QEMUIOVector, 1);
463 
464     if (!s->blk || blk_is_read_only(s->blk)) {
465         return;
466     }
467 
468     qemu_iovec_init(iov, 1);
469     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
470                    s->pi->page_size);
471     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
472                     blk_sync_complete, iov);
473 }
474 
475 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
476 {
477     QEMUIOVector *iov = g_new(QEMUIOVector, 1);
478 
479     if (!s->blk || blk_is_read_only(s->blk)) {
480         return;
481     }
482 
483     assert(!(len % BDRV_SECTOR_SIZE));
484     qemu_iovec_init(iov, 1);
485     qemu_iovec_add(iov, s->storage + off, len);
486     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
487 }
488 
489 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
490 {
491     uint32_t len;
492     uint8_t capa_to_assert = 0;
493 
494     switch (cmd) {
495     case ERASE_4K:
496     case ERASE4_4K:
497         len = 4 << 10;
498         capa_to_assert = ER_4K;
499         break;
500     case ERASE_32K:
501     case ERASE4_32K:
502         len = 32 << 10;
503         capa_to_assert = ER_32K;
504         break;
505     case ERASE_SECTOR:
506     case ERASE4_SECTOR:
507         len = s->pi->sector_size;
508         break;
509     case BULK_ERASE:
510         len = s->size;
511         break;
512     default:
513         abort();
514     }
515 
516     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
517     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
518         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
519                       " device\n", len);
520     }
521 
522     if (!s->write_enable) {
523         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
524         return;
525     }
526     memset(s->storage + offset, 0xff, len);
527     flash_sync_area(s, offset, len);
528 }
529 
530 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
531 {
532     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
533         flash_sync_page(s, s->dirty_page);
534         s->dirty_page = newpage;
535     }
536 }
537 
538 static inline
539 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
540 {
541     uint32_t page = addr / s->pi->page_size;
542     uint8_t prev = s->storage[s->cur_addr];
543 
544     if (!s->write_enable) {
545         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
546     }
547 
548     if ((prev ^ data) & data) {
549         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
550                    " -> %" PRIx8 "\n", addr, prev, data);
551     }
552 
553     if (s->pi->flags & EEPROM) {
554         s->storage[s->cur_addr] = data;
555     } else {
556         s->storage[s->cur_addr] &= data;
557     }
558 
559     flash_sync_dirty(s, page);
560     s->dirty_page = page;
561 }
562 
563 static inline int get_addr_length(Flash *s)
564 {
565    /* check if eeprom is in use */
566     if (s->pi->flags == EEPROM) {
567         return 2;
568     }
569 
570    switch (s->cmd_in_progress) {
571    case PP4:
572    case PP4_4:
573    case READ4:
574    case QIOR4:
575    case ERASE4_4K:
576    case ERASE4_32K:
577    case ERASE4_SECTOR:
578    case FAST_READ4:
579    case DOR4:
580    case QOR4:
581    case DIOR4:
582        return 4;
583    default:
584        return s->four_bytes_address_mode ? 4 : 3;
585    }
586 }
587 
588 static void complete_collecting_data(Flash *s)
589 {
590     int i, n;
591 
592     n = get_addr_length(s);
593     s->cur_addr = (n == 3 ? s->ear : 0);
594     for (i = 0; i < n; ++i) {
595         s->cur_addr <<= 8;
596         s->cur_addr |= s->data[i];
597     }
598 
599     s->cur_addr &= s->size - 1;
600 
601     s->state = STATE_IDLE;
602 
603     switch (s->cmd_in_progress) {
604     case DPP:
605     case QPP:
606     case PP:
607     case PP4:
608     case PP4_4:
609         s->state = STATE_PAGE_PROGRAM;
610         break;
611     case READ:
612     case READ4:
613     case FAST_READ:
614     case FAST_READ4:
615     case DOR:
616     case DOR4:
617     case QOR:
618     case QOR4:
619     case DIOR:
620     case DIOR4:
621     case QIOR:
622     case QIOR4:
623         s->state = STATE_READ;
624         break;
625     case ERASE_4K:
626     case ERASE4_4K:
627     case ERASE_32K:
628     case ERASE4_32K:
629     case ERASE_SECTOR:
630     case ERASE4_SECTOR:
631         flash_erase(s, s->cur_addr, s->cmd_in_progress);
632         break;
633     case WRSR:
634         switch (get_man(s)) {
635         case MAN_SPANSION:
636             s->quad_enable = !!(s->data[1] & 0x02);
637             break;
638         case MAN_MACRONIX:
639             s->quad_enable = extract32(s->data[0], 6, 1);
640             if (s->len > 1) {
641                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
642             }
643             break;
644         default:
645             break;
646         }
647         if (s->write_enable) {
648             s->write_enable = false;
649         }
650         break;
651     case EXTEND_ADDR_WRITE:
652         s->ear = s->data[0];
653         break;
654     case WNVCR:
655         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
656         break;
657     case WVCR:
658         s->volatile_cfg = s->data[0];
659         break;
660     case WEVCR:
661         s->enh_volatile_cfg = s->data[0];
662         break;
663     default:
664         break;
665     }
666 }
667 
668 static void reset_memory(Flash *s)
669 {
670     s->cmd_in_progress = NOP;
671     s->cur_addr = 0;
672     s->ear = 0;
673     s->four_bytes_address_mode = false;
674     s->len = 0;
675     s->needed_bytes = 0;
676     s->pos = 0;
677     s->state = STATE_IDLE;
678     s->write_enable = false;
679     s->reset_enable = false;
680     s->quad_enable = false;
681 
682     switch (get_man(s)) {
683     case MAN_NUMONYX:
684         s->volatile_cfg = 0;
685         s->volatile_cfg |= VCFG_DUMMY;
686         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
687         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
688                                 != NVCFG_XIP_MODE_DISABLED) {
689             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
690         }
691         s->volatile_cfg |= deposit32(s->volatile_cfg,
692                             VCFG_DUMMY_CLK_POS,
693                             CFG_DUMMY_CLK_LEN,
694                             extract32(s->nonvolatile_cfg,
695                                         NVCFG_DUMMY_CLK_POS,
696                                         CFG_DUMMY_CLK_LEN)
697                             );
698 
699         s->enh_volatile_cfg = 0;
700         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
701         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
702         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
703         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
704             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
705         }
706         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
707             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
708         }
709         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
710             s->four_bytes_address_mode = true;
711         }
712         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
713             s->ear = s->size / MAX_3BYTES_SIZE - 1;
714         }
715         break;
716     case MAN_MACRONIX:
717         s->volatile_cfg = 0x7;
718         break;
719     case MAN_SPANSION:
720         s->spansion_cr1v = s->spansion_cr1nv;
721         s->spansion_cr2v = s->spansion_cr2nv;
722         s->spansion_cr3v = s->spansion_cr3nv;
723         s->spansion_cr4v = s->spansion_cr4nv;
724         s->quad_enable = extract32(s->spansion_cr1v,
725                                    SPANSION_QUAD_CFG_POS,
726                                    SPANSION_QUAD_CFG_LEN
727                                    );
728         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
729                 SPANSION_ADDR_LEN_POS,
730                 SPANSION_ADDR_LEN_LEN
731                 );
732         break;
733     default:
734         break;
735     }
736 
737     DB_PRINT_L(0, "Reset done.\n");
738 }
739 
740 static void decode_fast_read_cmd(Flash *s)
741 {
742     s->needed_bytes = get_addr_length(s);
743     switch (get_man(s)) {
744     /* Dummy cycles - modeled with bytes writes instead of bits */
745     case MAN_WINBOND:
746         s->needed_bytes += 8;
747         break;
748     case MAN_NUMONYX:
749         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
750         break;
751     case MAN_MACRONIX:
752         if (extract32(s->volatile_cfg, 6, 2) == 1) {
753             s->needed_bytes += 6;
754         } else {
755             s->needed_bytes += 8;
756         }
757         break;
758     case MAN_SPANSION:
759         s->needed_bytes += extract32(s->spansion_cr2v,
760                                     SPANSION_DUMMY_CLK_POS,
761                                     SPANSION_DUMMY_CLK_LEN
762                                     );
763         break;
764     default:
765         break;
766     }
767     s->pos = 0;
768     s->len = 0;
769     s->state = STATE_COLLECTING_DATA;
770 }
771 
772 static void decode_dio_read_cmd(Flash *s)
773 {
774     s->needed_bytes = get_addr_length(s);
775     /* Dummy cycles modeled with bytes writes instead of bits */
776     switch (get_man(s)) {
777     case MAN_WINBOND:
778         s->needed_bytes += 8;
779         break;
780     case MAN_SPANSION:
781         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
782         s->needed_bytes += extract32(s->spansion_cr2v,
783                                     SPANSION_DUMMY_CLK_POS,
784                                     SPANSION_DUMMY_CLK_LEN
785                                     );
786         break;
787     case MAN_NUMONYX:
788         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
789         break;
790     case MAN_MACRONIX:
791         switch (extract32(s->volatile_cfg, 6, 2)) {
792         case 1:
793             s->needed_bytes += 6;
794             break;
795         case 2:
796             s->needed_bytes += 8;
797             break;
798         default:
799             s->needed_bytes += 4;
800             break;
801         }
802         break;
803     default:
804         break;
805     }
806     s->pos = 0;
807     s->len = 0;
808     s->state = STATE_COLLECTING_DATA;
809 }
810 
811 static void decode_qio_read_cmd(Flash *s)
812 {
813     s->needed_bytes = get_addr_length(s);
814     /* Dummy cycles modeled with bytes writes instead of bits */
815     switch (get_man(s)) {
816     case MAN_WINBOND:
817         s->needed_bytes += 8;
818         break;
819     case MAN_SPANSION:
820         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
821         s->needed_bytes += extract32(s->spansion_cr2v,
822                                     SPANSION_DUMMY_CLK_POS,
823                                     SPANSION_DUMMY_CLK_LEN
824                                     );
825         break;
826     case MAN_NUMONYX:
827         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
828         break;
829     case MAN_MACRONIX:
830         switch (extract32(s->volatile_cfg, 6, 2)) {
831         case 1:
832             s->needed_bytes += 4;
833             break;
834         case 2:
835             s->needed_bytes += 8;
836             break;
837         default:
838             s->needed_bytes += 6;
839             break;
840         }
841         break;
842     default:
843         break;
844     }
845     s->pos = 0;
846     s->len = 0;
847     s->state = STATE_COLLECTING_DATA;
848 }
849 
850 static void decode_new_cmd(Flash *s, uint32_t value)
851 {
852     s->cmd_in_progress = value;
853     int i;
854     DB_PRINT_L(0, "decoded new command:%x\n", value);
855 
856     if (value != RESET_MEMORY) {
857         s->reset_enable = false;
858     }
859 
860     switch (value) {
861 
862     case ERASE_4K:
863     case ERASE4_4K:
864     case ERASE_32K:
865     case ERASE4_32K:
866     case ERASE_SECTOR:
867     case ERASE4_SECTOR:
868     case READ:
869     case READ4:
870     case DPP:
871     case QPP:
872     case PP:
873     case PP4:
874     case PP4_4:
875         s->needed_bytes = get_addr_length(s);
876         s->pos = 0;
877         s->len = 0;
878         s->state = STATE_COLLECTING_DATA;
879         break;
880 
881     case FAST_READ:
882     case FAST_READ4:
883     case DOR:
884     case DOR4:
885     case QOR:
886     case QOR4:
887         decode_fast_read_cmd(s);
888         break;
889 
890     case DIOR:
891     case DIOR4:
892         decode_dio_read_cmd(s);
893         break;
894 
895     case QIOR:
896     case QIOR4:
897         decode_qio_read_cmd(s);
898         break;
899 
900     case WRSR:
901         if (s->write_enable) {
902             switch (get_man(s)) {
903             case MAN_SPANSION:
904                 s->needed_bytes = 2;
905                 s->state = STATE_COLLECTING_DATA;
906                 break;
907             case MAN_MACRONIX:
908                 s->needed_bytes = 2;
909                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
910                 break;
911             default:
912                 s->needed_bytes = 1;
913                 s->state = STATE_COLLECTING_DATA;
914             }
915             s->pos = 0;
916         }
917         break;
918 
919     case WRDI:
920         s->write_enable = false;
921         break;
922     case WREN:
923         s->write_enable = true;
924         break;
925 
926     case RDSR:
927         s->data[0] = (!!s->write_enable) << 1;
928         if (get_man(s) == MAN_MACRONIX) {
929             s->data[0] |= (!!s->quad_enable) << 6;
930         }
931         s->pos = 0;
932         s->len = 1;
933         s->state = STATE_READING_DATA;
934         break;
935 
936     case READ_FSR:
937         s->data[0] = FSR_FLASH_READY;
938         if (s->four_bytes_address_mode) {
939             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
940         }
941         s->pos = 0;
942         s->len = 1;
943         s->state = STATE_READING_DATA;
944         break;
945 
946     case JEDEC_READ:
947         DB_PRINT_L(0, "populated jedec code\n");
948         for (i = 0; i < s->pi->id_len; i++) {
949             s->data[i] = s->pi->id[i];
950         }
951 
952         s->len = s->pi->id_len;
953         s->pos = 0;
954         s->state = STATE_READING_DATA;
955         break;
956 
957     case RDCR:
958         s->data[0] = s->volatile_cfg & 0xFF;
959         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
960         s->pos = 0;
961         s->len = 1;
962         s->state = STATE_READING_DATA;
963         break;
964 
965     case BULK_ERASE:
966         if (s->write_enable) {
967             DB_PRINT_L(0, "chip erase\n");
968             flash_erase(s, 0, BULK_ERASE);
969         } else {
970             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
971                           "protect!\n");
972         }
973         break;
974     case NOP:
975         break;
976     case EN_4BYTE_ADDR:
977         s->four_bytes_address_mode = true;
978         break;
979     case EX_4BYTE_ADDR:
980         s->four_bytes_address_mode = false;
981         break;
982     case EXTEND_ADDR_READ:
983         s->data[0] = s->ear;
984         s->pos = 0;
985         s->len = 1;
986         s->state = STATE_READING_DATA;
987         break;
988     case EXTEND_ADDR_WRITE:
989         if (s->write_enable) {
990             s->needed_bytes = 1;
991             s->pos = 0;
992             s->len = 0;
993             s->state = STATE_COLLECTING_DATA;
994         }
995         break;
996     case RNVCR:
997         s->data[0] = s->nonvolatile_cfg & 0xFF;
998         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
999         s->pos = 0;
1000         s->len = 2;
1001         s->state = STATE_READING_DATA;
1002         break;
1003     case WNVCR:
1004         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1005             s->needed_bytes = 2;
1006             s->pos = 0;
1007             s->len = 0;
1008             s->state = STATE_COLLECTING_DATA;
1009         }
1010         break;
1011     case RVCR:
1012         s->data[0] = s->volatile_cfg & 0xFF;
1013         s->pos = 0;
1014         s->len = 1;
1015         s->state = STATE_READING_DATA;
1016         break;
1017     case WVCR:
1018         if (s->write_enable) {
1019             s->needed_bytes = 1;
1020             s->pos = 0;
1021             s->len = 0;
1022             s->state = STATE_COLLECTING_DATA;
1023         }
1024         break;
1025     case REVCR:
1026         s->data[0] = s->enh_volatile_cfg & 0xFF;
1027         s->pos = 0;
1028         s->len = 1;
1029         s->state = STATE_READING_DATA;
1030         break;
1031     case WEVCR:
1032         if (s->write_enable) {
1033             s->needed_bytes = 1;
1034             s->pos = 0;
1035             s->len = 0;
1036             s->state = STATE_COLLECTING_DATA;
1037         }
1038         break;
1039     case RESET_ENABLE:
1040         s->reset_enable = true;
1041         break;
1042     case RESET_MEMORY:
1043         if (s->reset_enable) {
1044             reset_memory(s);
1045         }
1046         break;
1047     case RDCR_EQIO:
1048         switch (get_man(s)) {
1049         case MAN_SPANSION:
1050             s->data[0] = (!!s->quad_enable) << 1;
1051             s->pos = 0;
1052             s->len = 1;
1053             s->state = STATE_READING_DATA;
1054             break;
1055         case MAN_MACRONIX:
1056             s->quad_enable = true;
1057             break;
1058         default:
1059             break;
1060         }
1061         break;
1062     case RSTQIO:
1063         s->quad_enable = false;
1064         break;
1065     default:
1066         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1067         break;
1068     }
1069 }
1070 
1071 static int m25p80_cs(SSISlave *ss, bool select)
1072 {
1073     Flash *s = M25P80(ss);
1074 
1075     if (select) {
1076         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1077             complete_collecting_data(s);
1078         }
1079         s->len = 0;
1080         s->pos = 0;
1081         s->state = STATE_IDLE;
1082         flash_sync_dirty(s, -1);
1083     }
1084 
1085     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1086 
1087     return 0;
1088 }
1089 
1090 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1091 {
1092     Flash *s = M25P80(ss);
1093     uint32_t r = 0;
1094 
1095     switch (s->state) {
1096 
1097     case STATE_PAGE_PROGRAM:
1098         DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1099                    s->cur_addr, (uint8_t)tx);
1100         flash_write8(s, s->cur_addr, (uint8_t)tx);
1101         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1102         break;
1103 
1104     case STATE_READ:
1105         r = s->storage[s->cur_addr];
1106         DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1107                    (uint8_t)r);
1108         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1109         break;
1110 
1111     case STATE_COLLECTING_DATA:
1112     case STATE_COLLECTING_VAR_LEN_DATA:
1113         s->data[s->len] = (uint8_t)tx;
1114         s->len++;
1115 
1116         if (s->len == s->needed_bytes) {
1117             complete_collecting_data(s);
1118         }
1119         break;
1120 
1121     case STATE_READING_DATA:
1122         r = s->data[s->pos];
1123         s->pos++;
1124         if (s->pos == s->len) {
1125             s->pos = 0;
1126             s->state = STATE_IDLE;
1127         }
1128         break;
1129 
1130     default:
1131     case STATE_IDLE:
1132         decode_new_cmd(s, (uint8_t)tx);
1133         break;
1134     }
1135 
1136     return r;
1137 }
1138 
1139 static void m25p80_realize(SSISlave *ss, Error **errp)
1140 {
1141     Flash *s = M25P80(ss);
1142     M25P80Class *mc = M25P80_GET_CLASS(s);
1143 
1144     s->pi = mc->pi;
1145 
1146     s->size = s->pi->sector_size * s->pi->n_sectors;
1147     s->dirty_page = -1;
1148 
1149     if (s->blk) {
1150         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1151         s->storage = blk_blockalign(s->blk, s->size);
1152 
1153         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1154             error_setg(errp, "failed to read the initial flash content");
1155             return;
1156         }
1157     } else {
1158         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1159         s->storage = blk_blockalign(NULL, s->size);
1160         memset(s->storage, 0xFF, s->size);
1161     }
1162 }
1163 
1164 static void m25p80_reset(DeviceState *d)
1165 {
1166     Flash *s = M25P80(d);
1167 
1168     reset_memory(s);
1169 }
1170 
1171 static void m25p80_pre_save(void *opaque)
1172 {
1173     flash_sync_dirty((Flash *)opaque, -1);
1174 }
1175 
1176 static Property m25p80_properties[] = {
1177     /* This is default value for Micron flash */
1178     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1179     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1180     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1181     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1182     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1183     DEFINE_PROP_DRIVE("drive", Flash, blk),
1184     DEFINE_PROP_END_OF_LIST(),
1185 };
1186 
1187 static const VMStateDescription vmstate_m25p80 = {
1188     .name = "xilinx_spi",
1189     .version_id = 3,
1190     .minimum_version_id = 1,
1191     .pre_save = m25p80_pre_save,
1192     .fields = (VMStateField[]) {
1193         VMSTATE_UINT8(state, Flash),
1194         VMSTATE_UINT8_ARRAY(data, Flash, 16),
1195         VMSTATE_UINT32(len, Flash),
1196         VMSTATE_UINT32(pos, Flash),
1197         VMSTATE_UINT8(needed_bytes, Flash),
1198         VMSTATE_UINT8(cmd_in_progress, Flash),
1199         VMSTATE_UNUSED(4),
1200         VMSTATE_UINT32(cur_addr, Flash),
1201         VMSTATE_BOOL(write_enable, Flash),
1202         VMSTATE_BOOL_V(reset_enable, Flash, 2),
1203         VMSTATE_UINT8_V(ear, Flash, 2),
1204         VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1205         VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1206         VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1207         VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1208         VMSTATE_BOOL_V(quad_enable, Flash, 3),
1209         VMSTATE_UINT8_V(spansion_cr1nv, Flash, 3),
1210         VMSTATE_UINT8_V(spansion_cr2nv, Flash, 3),
1211         VMSTATE_UINT8_V(spansion_cr3nv, Flash, 3),
1212         VMSTATE_UINT8_V(spansion_cr4nv, Flash, 3),
1213         VMSTATE_END_OF_LIST()
1214     }
1215 };
1216 
1217 static void m25p80_class_init(ObjectClass *klass, void *data)
1218 {
1219     DeviceClass *dc = DEVICE_CLASS(klass);
1220     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1221     M25P80Class *mc = M25P80_CLASS(klass);
1222 
1223     k->realize = m25p80_realize;
1224     k->transfer = m25p80_transfer8;
1225     k->set_cs = m25p80_cs;
1226     k->cs_polarity = SSI_CS_LOW;
1227     dc->vmsd = &vmstate_m25p80;
1228     dc->props = m25p80_properties;
1229     dc->reset = m25p80_reset;
1230     mc->pi = data;
1231 }
1232 
1233 static const TypeInfo m25p80_info = {
1234     .name           = TYPE_M25P80,
1235     .parent         = TYPE_SSI_SLAVE,
1236     .instance_size  = sizeof(Flash),
1237     .class_size     = sizeof(M25P80Class),
1238     .abstract       = true,
1239 };
1240 
1241 static void m25p80_register_types(void)
1242 {
1243     int i;
1244 
1245     type_register_static(&m25p80_info);
1246     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1247         TypeInfo ti = {
1248             .name       = known_devices[i].part_name,
1249             .parent     = TYPE_M25P80,
1250             .class_init = m25p80_class_init,
1251             .class_data = (void *)&known_devices[i],
1252         };
1253         type_register(&ti);
1254     }
1255 }
1256 
1257 type_init(m25p80_register_types)
1258