xref: /openbmc/qemu/hw/block/m25p80.c (revision ac12b601)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define EEPROM 0x100
48 
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
51 
52 #define SPI_NOR_MAX_ID_LEN 6
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* ISSI */
214     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
216     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
218     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
219     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
220     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
221     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
225 
226     /* Macronix */
227     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
228     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
229     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
230     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
231     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
232     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
233     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
234     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
235     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
236     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
237     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
238     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
239     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
240     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
241 
242     /* Micron */
243     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
244     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
245     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
246     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
247     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
248     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
249     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
250     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
251     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
252     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
253     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
254     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
255     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
256     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
257     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
258     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
259     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
260     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
261     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
262     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
263     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
264 
265     /* Spansion -- single (large) sector size only, at least
266      * for the chips listed here (without boot sectors).
267      */
268     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
269     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
270     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
271     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
272     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
273     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
274     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
275     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
276     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
277     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
278     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
279     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
280     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
281     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
282     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
283     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
284     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
285 
286     /* Spansion --  boot sectors support  */
287     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
288     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
289 
290     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
291     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
292     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
293     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
294     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
295     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
296     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
297     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
298     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
299     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
300 
301     /* ST Microelectronics -- newer production may have feature updates */
302     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
303     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
304     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
305     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
306     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
307     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
308     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
309     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
310     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
311     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
312 
313     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
314     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
315     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
316 
317     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
318     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
319     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
320 
321     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
322     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
323     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
324     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
325 
326     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
327     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
328     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
329     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
330     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
331     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
332     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
333     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
334     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
335     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
336     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
337     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
338     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
339     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
340     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
341 };
342 
343 typedef enum {
344     NOP = 0,
345     WRSR = 0x1,
346     WRDI = 0x4,
347     RDSR = 0x5,
348     WREN = 0x6,
349     BRRD = 0x16,
350     BRWR = 0x17,
351     JEDEC_READ = 0x9f,
352     BULK_ERASE_60 = 0x60,
353     BULK_ERASE = 0xc7,
354     READ_FSR = 0x70,
355     RDCR = 0x15,
356 
357     READ = 0x03,
358     READ4 = 0x13,
359     FAST_READ = 0x0b,
360     FAST_READ4 = 0x0c,
361     DOR = 0x3b,
362     DOR4 = 0x3c,
363     QOR = 0x6b,
364     QOR4 = 0x6c,
365     DIOR = 0xbb,
366     DIOR4 = 0xbc,
367     QIOR = 0xeb,
368     QIOR4 = 0xec,
369 
370     PP = 0x02,
371     PP4 = 0x12,
372     PP4_4 = 0x3e,
373     DPP = 0xa2,
374     QPP = 0x32,
375     QPP_4 = 0x34,
376     RDID_90 = 0x90,
377     RDID_AB = 0xab,
378     AAI_WP = 0xad,
379 
380     ERASE_4K = 0x20,
381     ERASE4_4K = 0x21,
382     ERASE_32K = 0x52,
383     ERASE4_32K = 0x5c,
384     ERASE_SECTOR = 0xd8,
385     ERASE4_SECTOR = 0xdc,
386 
387     EN_4BYTE_ADDR = 0xB7,
388     EX_4BYTE_ADDR = 0xE9,
389 
390     EXTEND_ADDR_READ = 0xC8,
391     EXTEND_ADDR_WRITE = 0xC5,
392 
393     RESET_ENABLE = 0x66,
394     RESET_MEMORY = 0x99,
395 
396     /*
397      * Micron: 0x35 - enable QPI
398      * Spansion: 0x35 - read control register
399      */
400     RDCR_EQIO = 0x35,
401     RSTQIO = 0xf5,
402 
403     RNVCR = 0xB5,
404     WNVCR = 0xB1,
405 
406     RVCR = 0x85,
407     WVCR = 0x81,
408 
409     REVCR = 0x65,
410     WEVCR = 0x61,
411 
412     DIE_ERASE = 0xC4,
413 } FlashCMD;
414 
415 typedef enum {
416     STATE_IDLE,
417     STATE_PAGE_PROGRAM,
418     STATE_READ,
419     STATE_COLLECTING_DATA,
420     STATE_COLLECTING_VAR_LEN_DATA,
421     STATE_READING_DATA,
422 } CMDState;
423 
424 typedef enum {
425     MAN_SPANSION,
426     MAN_MACRONIX,
427     MAN_NUMONYX,
428     MAN_WINBOND,
429     MAN_SST,
430     MAN_ISSI,
431     MAN_GENERIC,
432 } Manufacturer;
433 
434 typedef enum {
435     MODE_STD = 0,
436     MODE_DIO = 1,
437     MODE_QIO = 2
438 } SPIMode;
439 
440 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
441 
442 struct Flash {
443     SSIPeripheral parent_obj;
444 
445     BlockBackend *blk;
446 
447     uint8_t *storage;
448     uint32_t size;
449     int page_size;
450 
451     uint8_t state;
452     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
453     uint32_t len;
454     uint32_t pos;
455     bool data_read_loop;
456     uint8_t needed_bytes;
457     uint8_t cmd_in_progress;
458     uint32_t cur_addr;
459     uint32_t nonvolatile_cfg;
460     /* Configuration register for Macronix */
461     uint32_t volatile_cfg;
462     uint32_t enh_volatile_cfg;
463     /* Spansion cfg registers. */
464     uint8_t spansion_cr1nv;
465     uint8_t spansion_cr2nv;
466     uint8_t spansion_cr3nv;
467     uint8_t spansion_cr4nv;
468     uint8_t spansion_cr1v;
469     uint8_t spansion_cr2v;
470     uint8_t spansion_cr3v;
471     uint8_t spansion_cr4v;
472     bool write_enable;
473     bool four_bytes_address_mode;
474     bool reset_enable;
475     bool quad_enable;
476     bool aai_enable;
477     uint8_t ear;
478 
479     int64_t dirty_page;
480 
481     const FlashPartInfo *pi;
482 
483 };
484 
485 struct M25P80Class {
486     SSIPeripheralClass parent_class;
487     FlashPartInfo *pi;
488 };
489 
490 #define TYPE_M25P80 "m25p80-generic"
491 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
492 
493 static inline Manufacturer get_man(Flash *s)
494 {
495     switch (s->pi->id[0]) {
496     case 0x20:
497         return MAN_NUMONYX;
498     case 0xEF:
499         return MAN_WINBOND;
500     case 0x01:
501         return MAN_SPANSION;
502     case 0xC2:
503         return MAN_MACRONIX;
504     case 0xBF:
505         return MAN_SST;
506     case 0x9D:
507         return MAN_ISSI;
508     default:
509         return MAN_GENERIC;
510     }
511 }
512 
513 static void blk_sync_complete(void *opaque, int ret)
514 {
515     QEMUIOVector *iov = opaque;
516 
517     qemu_iovec_destroy(iov);
518     g_free(iov);
519 
520     /* do nothing. Masters do not directly interact with the backing store,
521      * only the working copy so no mutexing required.
522      */
523 }
524 
525 static void flash_sync_page(Flash *s, int page)
526 {
527     QEMUIOVector *iov;
528 
529     if (!s->blk || !blk_is_writable(s->blk)) {
530         return;
531     }
532 
533     iov = g_new(QEMUIOVector, 1);
534     qemu_iovec_init(iov, 1);
535     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
536                    s->pi->page_size);
537     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
538                     blk_sync_complete, iov);
539 }
540 
541 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
542 {
543     QEMUIOVector *iov;
544 
545     if (!s->blk || !blk_is_writable(s->blk)) {
546         return;
547     }
548 
549     assert(!(len % BDRV_SECTOR_SIZE));
550     iov = g_new(QEMUIOVector, 1);
551     qemu_iovec_init(iov, 1);
552     qemu_iovec_add(iov, s->storage + off, len);
553     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
554 }
555 
556 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
557 {
558     uint32_t len;
559     uint8_t capa_to_assert = 0;
560 
561     switch (cmd) {
562     case ERASE_4K:
563     case ERASE4_4K:
564         len = 4 * KiB;
565         capa_to_assert = ER_4K;
566         break;
567     case ERASE_32K:
568     case ERASE4_32K:
569         len = 32 * KiB;
570         capa_to_assert = ER_32K;
571         break;
572     case ERASE_SECTOR:
573     case ERASE4_SECTOR:
574         len = s->pi->sector_size;
575         break;
576     case BULK_ERASE:
577         len = s->size;
578         break;
579     case DIE_ERASE:
580         if (s->pi->die_cnt) {
581             len = s->size / s->pi->die_cnt;
582             offset = offset & (~(len - 1));
583         } else {
584             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
585                           " by device\n");
586             return;
587         }
588         break;
589     default:
590         abort();
591     }
592 
593     trace_m25p80_flash_erase(s, offset, len);
594 
595     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
596         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
597                       " device\n", len);
598     }
599 
600     if (!s->write_enable) {
601         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
602         return;
603     }
604     memset(s->storage + offset, 0xff, len);
605     flash_sync_area(s, offset, len);
606 }
607 
608 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
609 {
610     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
611         flash_sync_page(s, s->dirty_page);
612         s->dirty_page = newpage;
613     }
614 }
615 
616 static inline
617 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
618 {
619     uint32_t page = addr / s->pi->page_size;
620     uint8_t prev = s->storage[s->cur_addr];
621 
622     if (!s->write_enable) {
623         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
624         return;
625     }
626 
627     if ((prev ^ data) & data) {
628         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
629     }
630 
631     if (s->pi->flags & EEPROM) {
632         s->storage[s->cur_addr] = data;
633     } else {
634         s->storage[s->cur_addr] &= data;
635     }
636 
637     flash_sync_dirty(s, page);
638     s->dirty_page = page;
639 }
640 
641 static inline int get_addr_length(Flash *s)
642 {
643    /* check if eeprom is in use */
644     if (s->pi->flags == EEPROM) {
645         return 2;
646     }
647 
648    switch (s->cmd_in_progress) {
649    case PP4:
650    case PP4_4:
651    case QPP_4:
652    case READ4:
653    case QIOR4:
654    case ERASE4_4K:
655    case ERASE4_32K:
656    case ERASE4_SECTOR:
657    case FAST_READ4:
658    case DOR4:
659    case QOR4:
660    case DIOR4:
661        return 4;
662    default:
663        return s->four_bytes_address_mode ? 4 : 3;
664    }
665 }
666 
667 static void complete_collecting_data(Flash *s)
668 {
669     int i, n;
670 
671     n = get_addr_length(s);
672     s->cur_addr = (n == 3 ? s->ear : 0);
673     for (i = 0; i < n; ++i) {
674         s->cur_addr <<= 8;
675         s->cur_addr |= s->data[i];
676     }
677 
678     s->cur_addr &= s->size - 1;
679 
680     s->state = STATE_IDLE;
681 
682     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
683                                      s->cur_addr);
684 
685     switch (s->cmd_in_progress) {
686     case DPP:
687     case QPP:
688     case QPP_4:
689     case PP:
690     case PP4:
691     case PP4_4:
692         s->state = STATE_PAGE_PROGRAM;
693         break;
694     case AAI_WP:
695         /* AAI programming starts from the even address */
696         s->cur_addr &= ~BIT(0);
697         s->state = STATE_PAGE_PROGRAM;
698         break;
699     case READ:
700     case READ4:
701     case FAST_READ:
702     case FAST_READ4:
703     case DOR:
704     case DOR4:
705     case QOR:
706     case QOR4:
707     case DIOR:
708     case DIOR4:
709     case QIOR:
710     case QIOR4:
711         s->state = STATE_READ;
712         break;
713     case ERASE_4K:
714     case ERASE4_4K:
715     case ERASE_32K:
716     case ERASE4_32K:
717     case ERASE_SECTOR:
718     case ERASE4_SECTOR:
719     case DIE_ERASE:
720         flash_erase(s, s->cur_addr, s->cmd_in_progress);
721         break;
722     case WRSR:
723         switch (get_man(s)) {
724         case MAN_SPANSION:
725             s->quad_enable = !!(s->data[1] & 0x02);
726             break;
727         case MAN_ISSI:
728             s->quad_enable = extract32(s->data[0], 6, 1);
729             break;
730         case MAN_MACRONIX:
731             s->quad_enable = extract32(s->data[0], 6, 1);
732             if (s->len > 1) {
733                 s->volatile_cfg = s->data[1];
734                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
735             }
736             break;
737         default:
738             break;
739         }
740         if (s->write_enable) {
741             s->write_enable = false;
742         }
743         break;
744     case BRWR:
745     case EXTEND_ADDR_WRITE:
746         s->ear = s->data[0];
747         break;
748     case WNVCR:
749         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
750         break;
751     case WVCR:
752         s->volatile_cfg = s->data[0];
753         break;
754     case WEVCR:
755         s->enh_volatile_cfg = s->data[0];
756         break;
757     case RDID_90:
758     case RDID_AB:
759         if (get_man(s) == MAN_SST) {
760             if (s->cur_addr <= 1) {
761                 if (s->cur_addr) {
762                     s->data[0] = s->pi->id[2];
763                     s->data[1] = s->pi->id[0];
764                 } else {
765                     s->data[0] = s->pi->id[0];
766                     s->data[1] = s->pi->id[2];
767                 }
768                 s->pos = 0;
769                 s->len = 2;
770                 s->data_read_loop = true;
771                 s->state = STATE_READING_DATA;
772             } else {
773                 qemu_log_mask(LOG_GUEST_ERROR,
774                               "M25P80: Invalid read id address\n");
775             }
776         } else {
777             qemu_log_mask(LOG_GUEST_ERROR,
778                           "M25P80: Read id (command 0x90/0xAB) is not supported"
779                           " by device\n");
780         }
781         break;
782     default:
783         break;
784     }
785 }
786 
787 static void reset_memory(Flash *s)
788 {
789     s->cmd_in_progress = NOP;
790     s->cur_addr = 0;
791     s->ear = 0;
792     s->four_bytes_address_mode = false;
793     s->len = 0;
794     s->needed_bytes = 0;
795     s->pos = 0;
796     s->state = STATE_IDLE;
797     s->write_enable = false;
798     s->reset_enable = false;
799     s->quad_enable = false;
800     s->aai_enable = false;
801 
802     switch (get_man(s)) {
803     case MAN_NUMONYX:
804         s->volatile_cfg = 0;
805         s->volatile_cfg |= VCFG_DUMMY;
806         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
807         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
808                                 == NVCFG_XIP_MODE_DISABLED) {
809             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
810         }
811         s->volatile_cfg |= deposit32(s->volatile_cfg,
812                             VCFG_DUMMY_CLK_POS,
813                             CFG_DUMMY_CLK_LEN,
814                             extract32(s->nonvolatile_cfg,
815                                         NVCFG_DUMMY_CLK_POS,
816                                         CFG_DUMMY_CLK_LEN)
817                             );
818 
819         s->enh_volatile_cfg = 0;
820         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
821         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
822         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
823         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
824             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
825         }
826         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
827             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
828         }
829         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
830             s->four_bytes_address_mode = true;
831         }
832         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
833             s->ear = s->size / MAX_3BYTES_SIZE - 1;
834         }
835         break;
836     case MAN_MACRONIX:
837         s->volatile_cfg = 0x7;
838         break;
839     case MAN_SPANSION:
840         s->spansion_cr1v = s->spansion_cr1nv;
841         s->spansion_cr2v = s->spansion_cr2nv;
842         s->spansion_cr3v = s->spansion_cr3nv;
843         s->spansion_cr4v = s->spansion_cr4nv;
844         s->quad_enable = extract32(s->spansion_cr1v,
845                                    SPANSION_QUAD_CFG_POS,
846                                    SPANSION_QUAD_CFG_LEN
847                                    );
848         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
849                 SPANSION_ADDR_LEN_POS,
850                 SPANSION_ADDR_LEN_LEN
851                 );
852         break;
853     default:
854         break;
855     }
856 
857     trace_m25p80_reset_done(s);
858 }
859 
860 static uint8_t numonyx_mode(Flash *s)
861 {
862     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
863         return MODE_QIO;
864     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
865         return MODE_DIO;
866     } else {
867         return MODE_STD;
868     }
869 }
870 
871 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
872 {
873     uint8_t num_dummies;
874     uint8_t mode;
875     assert(get_man(s) == MAN_NUMONYX);
876 
877     mode = numonyx_mode(s);
878     num_dummies = extract32(s->volatile_cfg, 4, 4);
879 
880     if (num_dummies == 0x0 || num_dummies == 0xf) {
881         switch (s->cmd_in_progress) {
882         case QIOR:
883         case QIOR4:
884             num_dummies = 10;
885             break;
886         default:
887             num_dummies = (mode == MODE_QIO) ? 10 : 8;
888             break;
889         }
890     }
891 
892     return num_dummies;
893 }
894 
895 static void decode_fast_read_cmd(Flash *s)
896 {
897     s->needed_bytes = get_addr_length(s);
898     switch (get_man(s)) {
899     /* Dummy cycles - modeled with bytes writes instead of bits */
900     case MAN_SST:
901         s->needed_bytes += 1;
902         break;
903     case MAN_WINBOND:
904         s->needed_bytes += 8;
905         break;
906     case MAN_NUMONYX:
907         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
908         break;
909     case MAN_MACRONIX:
910         if (extract32(s->volatile_cfg, 6, 2) == 1) {
911             s->needed_bytes += 6;
912         } else {
913             s->needed_bytes += 8;
914         }
915         break;
916     case MAN_SPANSION:
917         s->needed_bytes += extract32(s->spansion_cr2v,
918                                     SPANSION_DUMMY_CLK_POS,
919                                     SPANSION_DUMMY_CLK_LEN
920                                     );
921         break;
922     case MAN_ISSI:
923         /*
924          * The Fast Read instruction code is followed by address bytes and
925          * dummy cycles, transmitted via the SI line.
926          *
927          * The number of dummy cycles is configurable but this is currently
928          * unmodeled, hence the default value 8 is used.
929          *
930          * QPI (Quad Peripheral Interface) mode has different default value
931          * of dummy cycles, but this is unsupported at the time being.
932          */
933         s->needed_bytes += 1;
934         break;
935     default:
936         break;
937     }
938     s->pos = 0;
939     s->len = 0;
940     s->state = STATE_COLLECTING_DATA;
941 }
942 
943 static void decode_dio_read_cmd(Flash *s)
944 {
945     s->needed_bytes = get_addr_length(s);
946     /* Dummy cycles modeled with bytes writes instead of bits */
947     switch (get_man(s)) {
948     case MAN_WINBOND:
949         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
950         break;
951     case MAN_SPANSION:
952         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
953         s->needed_bytes += extract32(s->spansion_cr2v,
954                                     SPANSION_DUMMY_CLK_POS,
955                                     SPANSION_DUMMY_CLK_LEN
956                                     );
957         break;
958     case MAN_NUMONYX:
959         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
960         break;
961     case MAN_MACRONIX:
962         switch (extract32(s->volatile_cfg, 6, 2)) {
963         case 1:
964             s->needed_bytes += 6;
965             break;
966         case 2:
967             s->needed_bytes += 8;
968             break;
969         default:
970             s->needed_bytes += 4;
971             break;
972         }
973         break;
974     case MAN_ISSI:
975         /*
976          * The Fast Read Dual I/O instruction code is followed by address bytes
977          * and dummy cycles, transmitted via the IO1 and IO0 line.
978          *
979          * The number of dummy cycles is configurable but this is currently
980          * unmodeled, hence the default value 4 is used.
981          */
982         s->needed_bytes += 1;
983         break;
984     default:
985         break;
986     }
987     s->pos = 0;
988     s->len = 0;
989     s->state = STATE_COLLECTING_DATA;
990 }
991 
992 static void decode_qio_read_cmd(Flash *s)
993 {
994     s->needed_bytes = get_addr_length(s);
995     /* Dummy cycles modeled with bytes writes instead of bits */
996     switch (get_man(s)) {
997     case MAN_WINBOND:
998         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
999         s->needed_bytes += 4;
1000         break;
1001     case MAN_SPANSION:
1002         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1003         s->needed_bytes += extract32(s->spansion_cr2v,
1004                                     SPANSION_DUMMY_CLK_POS,
1005                                     SPANSION_DUMMY_CLK_LEN
1006                                     );
1007         break;
1008     case MAN_NUMONYX:
1009         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1010         break;
1011     case MAN_MACRONIX:
1012         switch (extract32(s->volatile_cfg, 6, 2)) {
1013         case 1:
1014             s->needed_bytes += 4;
1015             break;
1016         case 2:
1017             s->needed_bytes += 8;
1018             break;
1019         default:
1020             s->needed_bytes += 6;
1021             break;
1022         }
1023         break;
1024     case MAN_ISSI:
1025         /*
1026          * The Fast Read Quad I/O instruction code is followed by address bytes
1027          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1028          *
1029          * The number of dummy cycles is configurable but this is currently
1030          * unmodeled, hence the default value 6 is used.
1031          *
1032          * QPI (Quad Peripheral Interface) mode has different default value
1033          * of dummy cycles, but this is unsupported at the time being.
1034          */
1035         s->needed_bytes += 3;
1036         break;
1037     default:
1038         break;
1039     }
1040     s->pos = 0;
1041     s->len = 0;
1042     s->state = STATE_COLLECTING_DATA;
1043 }
1044 
1045 static bool is_valid_aai_cmd(uint32_t cmd)
1046 {
1047     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1048 }
1049 
1050 static void decode_new_cmd(Flash *s, uint32_t value)
1051 {
1052     int i;
1053 
1054     s->cmd_in_progress = value;
1055     trace_m25p80_command_decoded(s, value);
1056 
1057     if (value != RESET_MEMORY) {
1058         s->reset_enable = false;
1059     }
1060 
1061     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1062         qemu_log_mask(LOG_GUEST_ERROR,
1063                       "M25P80: Invalid cmd within AAI programming sequence");
1064     }
1065 
1066     switch (value) {
1067 
1068     case ERASE_4K:
1069     case ERASE4_4K:
1070     case ERASE_32K:
1071     case ERASE4_32K:
1072     case ERASE_SECTOR:
1073     case ERASE4_SECTOR:
1074     case PP:
1075     case PP4:
1076     case DIE_ERASE:
1077     case RDID_90:
1078     case RDID_AB:
1079         s->needed_bytes = get_addr_length(s);
1080         s->pos = 0;
1081         s->len = 0;
1082         s->state = STATE_COLLECTING_DATA;
1083         break;
1084     case READ:
1085     case READ4:
1086         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1087             s->needed_bytes = get_addr_length(s);
1088             s->pos = 0;
1089             s->len = 0;
1090             s->state = STATE_COLLECTING_DATA;
1091         } else {
1092             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1093                           "DIO or QIO mode\n", s->cmd_in_progress);
1094         }
1095         break;
1096     case DPP:
1097         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1098             s->needed_bytes = get_addr_length(s);
1099             s->pos = 0;
1100             s->len = 0;
1101             s->state = STATE_COLLECTING_DATA;
1102         } else {
1103             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1104                           "QIO mode\n", s->cmd_in_progress);
1105         }
1106         break;
1107     case QPP:
1108     case QPP_4:
1109     case PP4_4:
1110         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1111             s->needed_bytes = get_addr_length(s);
1112             s->pos = 0;
1113             s->len = 0;
1114             s->state = STATE_COLLECTING_DATA;
1115         } else {
1116             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1117                           "DIO mode\n", s->cmd_in_progress);
1118         }
1119         break;
1120 
1121     case FAST_READ:
1122     case FAST_READ4:
1123         decode_fast_read_cmd(s);
1124         break;
1125     case DOR:
1126     case DOR4:
1127         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1128             decode_fast_read_cmd(s);
1129         } else {
1130             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1131                           "QIO mode\n", s->cmd_in_progress);
1132         }
1133         break;
1134     case QOR:
1135     case QOR4:
1136         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1137             decode_fast_read_cmd(s);
1138         } else {
1139             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1140                           "DIO mode\n", s->cmd_in_progress);
1141         }
1142         break;
1143 
1144     case DIOR:
1145     case DIOR4:
1146         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1147             decode_dio_read_cmd(s);
1148         } else {
1149             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1150                           "QIO mode\n", s->cmd_in_progress);
1151         }
1152         break;
1153 
1154     case QIOR:
1155     case QIOR4:
1156         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1157             decode_qio_read_cmd(s);
1158         } else {
1159             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1160                           "DIO mode\n", s->cmd_in_progress);
1161         }
1162         break;
1163 
1164     case WRSR:
1165         if (s->write_enable) {
1166             switch (get_man(s)) {
1167             case MAN_SPANSION:
1168                 s->needed_bytes = 2;
1169                 s->state = STATE_COLLECTING_DATA;
1170                 break;
1171             case MAN_MACRONIX:
1172                 s->needed_bytes = 2;
1173                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1174                 break;
1175             default:
1176                 s->needed_bytes = 1;
1177                 s->state = STATE_COLLECTING_DATA;
1178             }
1179             s->pos = 0;
1180         }
1181         break;
1182 
1183     case WRDI:
1184         s->write_enable = false;
1185         if (get_man(s) == MAN_SST) {
1186             s->aai_enable = false;
1187         }
1188         break;
1189     case WREN:
1190         s->write_enable = true;
1191         break;
1192 
1193     case RDSR:
1194         s->data[0] = (!!s->write_enable) << 1;
1195         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1196             s->data[0] |= (!!s->quad_enable) << 6;
1197         }
1198         if (get_man(s) == MAN_SST) {
1199             s->data[0] |= (!!s->aai_enable) << 6;
1200         }
1201 
1202         s->pos = 0;
1203         s->len = 1;
1204         s->data_read_loop = true;
1205         s->state = STATE_READING_DATA;
1206         break;
1207 
1208     case READ_FSR:
1209         s->data[0] = FSR_FLASH_READY;
1210         if (s->four_bytes_address_mode) {
1211             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1212         }
1213         s->pos = 0;
1214         s->len = 1;
1215         s->data_read_loop = true;
1216         s->state = STATE_READING_DATA;
1217         break;
1218 
1219     case JEDEC_READ:
1220         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1221             trace_m25p80_populated_jedec(s);
1222             for (i = 0; i < s->pi->id_len; i++) {
1223                 s->data[i] = s->pi->id[i];
1224             }
1225             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1226                 s->data[i] = 0;
1227             }
1228 
1229             s->len = SPI_NOR_MAX_ID_LEN;
1230             s->pos = 0;
1231             s->state = STATE_READING_DATA;
1232         } else {
1233             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1234                           "in DIO or QIO mode\n");
1235         }
1236         break;
1237 
1238     case RDCR:
1239         s->data[0] = s->volatile_cfg & 0xFF;
1240         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1241         s->pos = 0;
1242         s->len = 1;
1243         s->state = STATE_READING_DATA;
1244         break;
1245 
1246     case BULK_ERASE_60:
1247     case BULK_ERASE:
1248         if (s->write_enable) {
1249             trace_m25p80_chip_erase(s);
1250             flash_erase(s, 0, BULK_ERASE);
1251         } else {
1252             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1253                           "protect!\n");
1254         }
1255         break;
1256     case NOP:
1257         break;
1258     case EN_4BYTE_ADDR:
1259         s->four_bytes_address_mode = true;
1260         break;
1261     case EX_4BYTE_ADDR:
1262         s->four_bytes_address_mode = false;
1263         break;
1264     case BRRD:
1265     case EXTEND_ADDR_READ:
1266         s->data[0] = s->ear;
1267         s->pos = 0;
1268         s->len = 1;
1269         s->state = STATE_READING_DATA;
1270         break;
1271     case BRWR:
1272     case EXTEND_ADDR_WRITE:
1273         if (s->write_enable) {
1274             s->needed_bytes = 1;
1275             s->pos = 0;
1276             s->len = 0;
1277             s->state = STATE_COLLECTING_DATA;
1278         }
1279         break;
1280     case RNVCR:
1281         s->data[0] = s->nonvolatile_cfg & 0xFF;
1282         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1283         s->pos = 0;
1284         s->len = 2;
1285         s->state = STATE_READING_DATA;
1286         break;
1287     case WNVCR:
1288         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1289             s->needed_bytes = 2;
1290             s->pos = 0;
1291             s->len = 0;
1292             s->state = STATE_COLLECTING_DATA;
1293         }
1294         break;
1295     case RVCR:
1296         s->data[0] = s->volatile_cfg & 0xFF;
1297         s->pos = 0;
1298         s->len = 1;
1299         s->state = STATE_READING_DATA;
1300         break;
1301     case WVCR:
1302         if (s->write_enable) {
1303             s->needed_bytes = 1;
1304             s->pos = 0;
1305             s->len = 0;
1306             s->state = STATE_COLLECTING_DATA;
1307         }
1308         break;
1309     case REVCR:
1310         s->data[0] = s->enh_volatile_cfg & 0xFF;
1311         s->pos = 0;
1312         s->len = 1;
1313         s->state = STATE_READING_DATA;
1314         break;
1315     case WEVCR:
1316         if (s->write_enable) {
1317             s->needed_bytes = 1;
1318             s->pos = 0;
1319             s->len = 0;
1320             s->state = STATE_COLLECTING_DATA;
1321         }
1322         break;
1323     case RESET_ENABLE:
1324         s->reset_enable = true;
1325         break;
1326     case RESET_MEMORY:
1327         if (s->reset_enable) {
1328             reset_memory(s);
1329         }
1330         break;
1331     case RDCR_EQIO:
1332         switch (get_man(s)) {
1333         case MAN_SPANSION:
1334             s->data[0] = (!!s->quad_enable) << 1;
1335             s->pos = 0;
1336             s->len = 1;
1337             s->state = STATE_READING_DATA;
1338             break;
1339         case MAN_MACRONIX:
1340             s->quad_enable = true;
1341             break;
1342         default:
1343             break;
1344         }
1345         break;
1346     case RSTQIO:
1347         s->quad_enable = false;
1348         break;
1349     case AAI_WP:
1350         if (get_man(s) == MAN_SST) {
1351             if (s->write_enable) {
1352                 if (s->aai_enable) {
1353                     s->state = STATE_PAGE_PROGRAM;
1354                 } else {
1355                     s->aai_enable = true;
1356                     s->needed_bytes = get_addr_length(s);
1357                     s->state = STATE_COLLECTING_DATA;
1358                 }
1359             } else {
1360                 qemu_log_mask(LOG_GUEST_ERROR,
1361                               "M25P80: AAI_WP with write protect\n");
1362             }
1363         } else {
1364             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1365         }
1366         break;
1367     default:
1368         s->pos = 0;
1369         s->len = 1;
1370         s->state = STATE_READING_DATA;
1371         s->data_read_loop = true;
1372         s->data[0] = 0;
1373         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1374         break;
1375     }
1376 }
1377 
1378 static int m25p80_cs(SSIPeripheral *ss, bool select)
1379 {
1380     Flash *s = M25P80(ss);
1381 
1382     if (select) {
1383         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1384             complete_collecting_data(s);
1385         }
1386         s->len = 0;
1387         s->pos = 0;
1388         s->state = STATE_IDLE;
1389         flash_sync_dirty(s, -1);
1390         s->data_read_loop = false;
1391     }
1392 
1393     trace_m25p80_select(s, select ? "de" : "");
1394 
1395     return 0;
1396 }
1397 
1398 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1399 {
1400     Flash *s = M25P80(ss);
1401     uint32_t r = 0;
1402 
1403     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1404                           s->cur_addr, (uint8_t)tx);
1405 
1406     switch (s->state) {
1407 
1408     case STATE_PAGE_PROGRAM:
1409         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1410         flash_write8(s, s->cur_addr, (uint8_t)tx);
1411         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1412 
1413         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1414             /*
1415              * There is no wrap mode during AAI programming once the highest
1416              * unprotected memory address is reached. The Write-Enable-Latch
1417              * bit is automatically reset, and AAI programming mode aborts.
1418              */
1419             s->write_enable = false;
1420             s->aai_enable = false;
1421         }
1422 
1423         break;
1424 
1425     case STATE_READ:
1426         r = s->storage[s->cur_addr];
1427         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1428         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1429         break;
1430 
1431     case STATE_COLLECTING_DATA:
1432     case STATE_COLLECTING_VAR_LEN_DATA:
1433 
1434         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1435             qemu_log_mask(LOG_GUEST_ERROR,
1436                           "M25P80: Write overrun internal data buffer. "
1437                           "SPI controller (QEMU emulator or guest driver) "
1438                           "is misbehaving\n");
1439             s->len = s->pos = 0;
1440             s->state = STATE_IDLE;
1441             break;
1442         }
1443 
1444         s->data[s->len] = (uint8_t)tx;
1445         s->len++;
1446 
1447         if (s->len == s->needed_bytes) {
1448             complete_collecting_data(s);
1449         }
1450         break;
1451 
1452     case STATE_READING_DATA:
1453 
1454         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1455             qemu_log_mask(LOG_GUEST_ERROR,
1456                           "M25P80: Read overrun internal data buffer. "
1457                           "SPI controller (QEMU emulator or guest driver) "
1458                           "is misbehaving\n");
1459             s->len = s->pos = 0;
1460             s->state = STATE_IDLE;
1461             break;
1462         }
1463 
1464         r = s->data[s->pos];
1465         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1466         s->pos++;
1467         if (s->pos == s->len) {
1468             s->pos = 0;
1469             if (!s->data_read_loop) {
1470                 s->state = STATE_IDLE;
1471             }
1472         }
1473         break;
1474 
1475     default:
1476     case STATE_IDLE:
1477         decode_new_cmd(s, (uint8_t)tx);
1478         break;
1479     }
1480 
1481     return r;
1482 }
1483 
1484 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1485 {
1486     Flash *s = M25P80(ss);
1487     M25P80Class *mc = M25P80_GET_CLASS(s);
1488     int ret;
1489 
1490     s->pi = mc->pi;
1491 
1492     s->size = s->pi->sector_size * s->pi->n_sectors;
1493     s->dirty_page = -1;
1494 
1495     if (s->blk) {
1496         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1497                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1498         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1499         if (ret < 0) {
1500             return;
1501         }
1502 
1503         trace_m25p80_binding(s);
1504         s->storage = blk_blockalign(s->blk, s->size);
1505 
1506         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1507             error_setg(errp, "failed to read the initial flash content");
1508             return;
1509         }
1510     } else {
1511         trace_m25p80_binding_no_bdrv(s);
1512         s->storage = blk_blockalign(NULL, s->size);
1513         memset(s->storage, 0xFF, s->size);
1514     }
1515 }
1516 
1517 static void m25p80_reset(DeviceState *d)
1518 {
1519     Flash *s = M25P80(d);
1520 
1521     reset_memory(s);
1522 }
1523 
1524 static int m25p80_pre_save(void *opaque)
1525 {
1526     flash_sync_dirty((Flash *)opaque, -1);
1527 
1528     return 0;
1529 }
1530 
1531 static Property m25p80_properties[] = {
1532     /* This is default value for Micron flash */
1533     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1534     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1535     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1536     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1537     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1538     DEFINE_PROP_DRIVE("drive", Flash, blk),
1539     DEFINE_PROP_END_OF_LIST(),
1540 };
1541 
1542 static int m25p80_pre_load(void *opaque)
1543 {
1544     Flash *s = (Flash *)opaque;
1545 
1546     s->data_read_loop = false;
1547     return 0;
1548 }
1549 
1550 static bool m25p80_data_read_loop_needed(void *opaque)
1551 {
1552     Flash *s = (Flash *)opaque;
1553 
1554     return s->data_read_loop;
1555 }
1556 
1557 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1558     .name = "m25p80/data_read_loop",
1559     .version_id = 1,
1560     .minimum_version_id = 1,
1561     .needed = m25p80_data_read_loop_needed,
1562     .fields = (VMStateField[]) {
1563         VMSTATE_BOOL(data_read_loop, Flash),
1564         VMSTATE_END_OF_LIST()
1565     }
1566 };
1567 
1568 static bool m25p80_aai_enable_needed(void *opaque)
1569 {
1570     Flash *s = (Flash *)opaque;
1571 
1572     return s->aai_enable;
1573 }
1574 
1575 static const VMStateDescription vmstate_m25p80_aai_enable = {
1576     .name = "m25p80/aai_enable",
1577     .version_id = 1,
1578     .minimum_version_id = 1,
1579     .needed = m25p80_aai_enable_needed,
1580     .fields = (VMStateField[]) {
1581         VMSTATE_BOOL(aai_enable, Flash),
1582         VMSTATE_END_OF_LIST()
1583     }
1584 };
1585 
1586 static const VMStateDescription vmstate_m25p80 = {
1587     .name = "m25p80",
1588     .version_id = 0,
1589     .minimum_version_id = 0,
1590     .pre_save = m25p80_pre_save,
1591     .pre_load = m25p80_pre_load,
1592     .fields = (VMStateField[]) {
1593         VMSTATE_UINT8(state, Flash),
1594         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1595         VMSTATE_UINT32(len, Flash),
1596         VMSTATE_UINT32(pos, Flash),
1597         VMSTATE_UINT8(needed_bytes, Flash),
1598         VMSTATE_UINT8(cmd_in_progress, Flash),
1599         VMSTATE_UINT32(cur_addr, Flash),
1600         VMSTATE_BOOL(write_enable, Flash),
1601         VMSTATE_BOOL(reset_enable, Flash),
1602         VMSTATE_UINT8(ear, Flash),
1603         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1604         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1605         VMSTATE_UINT32(volatile_cfg, Flash),
1606         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1607         VMSTATE_BOOL(quad_enable, Flash),
1608         VMSTATE_UINT8(spansion_cr1nv, Flash),
1609         VMSTATE_UINT8(spansion_cr2nv, Flash),
1610         VMSTATE_UINT8(spansion_cr3nv, Flash),
1611         VMSTATE_UINT8(spansion_cr4nv, Flash),
1612         VMSTATE_END_OF_LIST()
1613     },
1614     .subsections = (const VMStateDescription * []) {
1615         &vmstate_m25p80_data_read_loop,
1616         &vmstate_m25p80_aai_enable,
1617         NULL
1618     }
1619 };
1620 
1621 static void m25p80_class_init(ObjectClass *klass, void *data)
1622 {
1623     DeviceClass *dc = DEVICE_CLASS(klass);
1624     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1625     M25P80Class *mc = M25P80_CLASS(klass);
1626 
1627     k->realize = m25p80_realize;
1628     k->transfer = m25p80_transfer8;
1629     k->set_cs = m25p80_cs;
1630     k->cs_polarity = SSI_CS_LOW;
1631     dc->vmsd = &vmstate_m25p80;
1632     device_class_set_props(dc, m25p80_properties);
1633     dc->reset = m25p80_reset;
1634     mc->pi = data;
1635 }
1636 
1637 static const TypeInfo m25p80_info = {
1638     .name           = TYPE_M25P80,
1639     .parent         = TYPE_SSI_PERIPHERAL,
1640     .instance_size  = sizeof(Flash),
1641     .class_size     = sizeof(M25P80Class),
1642     .abstract       = true,
1643 };
1644 
1645 static void m25p80_register_types(void)
1646 {
1647     int i;
1648 
1649     type_register_static(&m25p80_info);
1650     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1651         TypeInfo ti = {
1652             .name       = known_devices[i].part_name,
1653             .parent     = TYPE_M25P80,
1654             .class_init = m25p80_class_init,
1655             .class_data = (void *)&known_devices[i],
1656         };
1657         type_register(&ti);
1658     }
1659 }
1660 
1661 type_init(m25p80_register_types)
1662