xref: /openbmc/qemu/hw/block/m25p80.c (revision 7cc25f6c)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36 #include "qom/object.h"
37 
38 /* Fields for FlashPartInfo->flags */
39 
40 /* erase capabilities */
41 #define ER_4K 1
42 #define ER_32K 2
43 /* set to allow the page program command to write 0s back to 1. Useful for
44  * modelling EEPROM with SPI flash command set
45  */
46 #define EEPROM 0x100
47 
48 /* 16 MiB max in 3 byte address mode */
49 #define MAX_3BYTES_SIZE 0x1000000
50 
51 #define SPI_NOR_MAX_ID_LEN 6
52 
53 typedef struct FlashPartInfo {
54     const char *part_name;
55     /*
56      * This array stores the ID bytes.
57      * The first three bytes are the JEDIC ID.
58      * JEDEC ID zero means "no ID" (mostly older chips).
59      */
60     uint8_t id[SPI_NOR_MAX_ID_LEN];
61     uint8_t id_len;
62     /* there is confusion between manufacturers as to what a sector is. In this
63      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64      * command (opcode 0xd8).
65      */
66     uint32_t sector_size;
67     uint32_t n_sectors;
68     uint32_t page_size;
69     uint16_t flags;
70     /*
71      * Big sized spi nor are often stacked devices, thus sometime
72      * replace chip erase with die erase.
73      * This field inform how many die is in the chip.
74      */
75     uint8_t die_cnt;
76 } FlashPartInfo;
77 
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81     .part_name = _part_name,\
82     .id = {\
83         ((_jedec_id) >> 16) & 0xff,\
84         ((_jedec_id) >> 8) & 0xff,\
85         (_jedec_id) & 0xff,\
86         ((_ext_id) >> 8) & 0xff,\
87         (_ext_id) & 0xff,\
88           },\
89     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90     .sector_size = (_sector_size),\
91     .n_sectors = (_n_sectors),\
92     .page_size = 256,\
93     .flags = (_flags),\
94     .die_cnt = 0
95 
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97     .part_name = _part_name,\
98     .id = {\
99         ((_jedec_id) >> 16) & 0xff,\
100         ((_jedec_id) >> 8) & 0xff,\
101         (_jedec_id) & 0xff,\
102         ((_ext_id) >> 16) & 0xff,\
103         ((_ext_id) >> 8) & 0xff,\
104         (_ext_id) & 0xff,\
105           },\
106     .id_len = 6,\
107     .sector_size = (_sector_size),\
108     .n_sectors = (_n_sectors),\
109     .page_size = 256,\
110     .flags = (_flags),\
111     .die_cnt = 0
112 
113 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
114                     _flags, _die_cnt)\
115     .part_name = _part_name,\
116     .id = {\
117         ((_jedec_id) >> 16) & 0xff,\
118         ((_jedec_id) >> 8) & 0xff,\
119         (_jedec_id) & 0xff,\
120         ((_ext_id) >> 8) & 0xff,\
121         (_ext_id) & 0xff,\
122           },\
123     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
124     .sector_size = (_sector_size),\
125     .n_sectors = (_n_sectors),\
126     .page_size = 256,\
127     .flags = (_flags),\
128     .die_cnt = _die_cnt
129 
130 #define JEDEC_NUMONYX 0x20
131 #define JEDEC_WINBOND 0xEF
132 #define JEDEC_SPANSION 0x01
133 
134 /* Numonyx (Micron) Configuration register macros */
135 #define VCFG_DUMMY 0x1
136 #define VCFG_WRAP_SEQUENTIAL 0x2
137 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
138 #define NVCFG_XIP_MODE_MASK (7 << 9)
139 #define VCFG_XIP_MODE_ENABLED (1 << 3)
140 #define CFG_DUMMY_CLK_LEN 4
141 #define NVCFG_DUMMY_CLK_POS 12
142 #define VCFG_DUMMY_CLK_POS 4
143 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
144 #define EVCFG_VPP_ACCELERATOR (1 << 3)
145 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
146 #define NVCFG_DUAL_IO_MASK (1 << 2)
147 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
148 #define NVCFG_QUAD_IO_MASK (1 << 3)
149 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
150 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
151 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
152 
153 /* Numonyx (Micron) Flag Status Register macros */
154 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
155 #define FSR_FLASH_READY (1 << 7)
156 
157 /* Spansion configuration registers macros. */
158 #define SPANSION_QUAD_CFG_POS 0
159 #define SPANSION_QUAD_CFG_LEN 1
160 #define SPANSION_DUMMY_CLK_POS 0
161 #define SPANSION_DUMMY_CLK_LEN 4
162 #define SPANSION_ADDR_LEN_POS 7
163 #define SPANSION_ADDR_LEN_LEN 1
164 
165 /*
166  * Spansion read mode command length in bytes,
167  * the mode is currently not supported.
168 */
169 
170 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
171 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
172 
173 static const FlashPartInfo known_devices[] = {
174     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
175     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
176     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
177 
178     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
179     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
180     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
181 
182     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
183     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
184     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
185     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
186 
187     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
188 
189     /* Atmel EEPROMS - it is assumed, that don't care bit in command
190      * is set to 0. Block protection is not supported.
191      */
192     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
193     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
194 
195     /* EON -- en25xxx */
196     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
197     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
198     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
199     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
200     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
201 
202     /* GigaDevice */
203     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
204     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
205 
206     /* Intel/Numonyx -- xxxs33b */
207     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
208     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
209     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
210     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
211 
212     /* Macronix */
213     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
214     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
216     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
218     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
219     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
220     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
221     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
222     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
223     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
224     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
225     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
226     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
227 
228     /* Micron */
229     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
230     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
231     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
232     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
233     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
234     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
235     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
236     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
237     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
238     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
239     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
240     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
241     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
242     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
243     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
244     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
245     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
247     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
248 
249     /* Spansion -- single (large) sector size only, at least
250      * for the chips listed here (without boot sectors).
251      */
252     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
253     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
254     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
255     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
256     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
257     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
258     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
259     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
260     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
261     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
262     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
263     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
264     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
265     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
266     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
267     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
268     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
269 
270     /* Spansion --  boot sectors support  */
271     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
272     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
273 
274     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
275     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
276     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
277     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
278     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
279     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
280     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
281     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
282     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
283     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
284 
285     /* ST Microelectronics -- newer production may have feature updates */
286     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
287     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
288     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
289     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
290     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
291     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
292     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
293     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
294     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
295     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
296 
297     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
298     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
299     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
300 
301     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
302     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
303     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
304 
305     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
306     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
307     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
308     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
309 
310     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
311     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
312     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
313     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
314     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
315     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
316     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
317     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
318     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
319     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
320     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
321     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
322     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
323     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
324     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
325 };
326 
327 typedef enum {
328     NOP = 0,
329     WRSR = 0x1,
330     WRDI = 0x4,
331     RDSR = 0x5,
332     WREN = 0x6,
333     BRRD = 0x16,
334     BRWR = 0x17,
335     JEDEC_READ = 0x9f,
336     BULK_ERASE_60 = 0x60,
337     BULK_ERASE = 0xc7,
338     READ_FSR = 0x70,
339     RDCR = 0x15,
340 
341     READ = 0x03,
342     READ4 = 0x13,
343     FAST_READ = 0x0b,
344     FAST_READ4 = 0x0c,
345     DOR = 0x3b,
346     DOR4 = 0x3c,
347     QOR = 0x6b,
348     QOR4 = 0x6c,
349     DIOR = 0xbb,
350     DIOR4 = 0xbc,
351     QIOR = 0xeb,
352     QIOR4 = 0xec,
353 
354     PP = 0x02,
355     PP4 = 0x12,
356     PP4_4 = 0x3e,
357     DPP = 0xa2,
358     QPP = 0x32,
359     QPP_4 = 0x34,
360     RDID_90 = 0x90,
361     RDID_AB = 0xab,
362 
363     ERASE_4K = 0x20,
364     ERASE4_4K = 0x21,
365     ERASE_32K = 0x52,
366     ERASE4_32K = 0x5c,
367     ERASE_SECTOR = 0xd8,
368     ERASE4_SECTOR = 0xdc,
369 
370     EN_4BYTE_ADDR = 0xB7,
371     EX_4BYTE_ADDR = 0xE9,
372 
373     EXTEND_ADDR_READ = 0xC8,
374     EXTEND_ADDR_WRITE = 0xC5,
375 
376     RESET_ENABLE = 0x66,
377     RESET_MEMORY = 0x99,
378 
379     /*
380      * Micron: 0x35 - enable QPI
381      * Spansion: 0x35 - read control register
382      */
383     RDCR_EQIO = 0x35,
384     RSTQIO = 0xf5,
385 
386     RNVCR = 0xB5,
387     WNVCR = 0xB1,
388 
389     RVCR = 0x85,
390     WVCR = 0x81,
391 
392     REVCR = 0x65,
393     WEVCR = 0x61,
394 
395     DIE_ERASE = 0xC4,
396 } FlashCMD;
397 
398 typedef enum {
399     STATE_IDLE,
400     STATE_PAGE_PROGRAM,
401     STATE_READ,
402     STATE_COLLECTING_DATA,
403     STATE_COLLECTING_VAR_LEN_DATA,
404     STATE_READING_DATA,
405 } CMDState;
406 
407 typedef enum {
408     MAN_SPANSION,
409     MAN_MACRONIX,
410     MAN_NUMONYX,
411     MAN_WINBOND,
412     MAN_SST,
413     MAN_GENERIC,
414 } Manufacturer;
415 
416 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
417 
418 struct Flash {
419     SSIPeripheral parent_obj;
420 
421     BlockBackend *blk;
422 
423     uint8_t *storage;
424     uint32_t size;
425     int page_size;
426 
427     uint8_t state;
428     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
429     uint32_t len;
430     uint32_t pos;
431     bool data_read_loop;
432     uint8_t needed_bytes;
433     uint8_t cmd_in_progress;
434     uint32_t cur_addr;
435     uint32_t nonvolatile_cfg;
436     /* Configuration register for Macronix */
437     uint32_t volatile_cfg;
438     uint32_t enh_volatile_cfg;
439     /* Spansion cfg registers. */
440     uint8_t spansion_cr1nv;
441     uint8_t spansion_cr2nv;
442     uint8_t spansion_cr3nv;
443     uint8_t spansion_cr4nv;
444     uint8_t spansion_cr1v;
445     uint8_t spansion_cr2v;
446     uint8_t spansion_cr3v;
447     uint8_t spansion_cr4v;
448     bool write_enable;
449     bool four_bytes_address_mode;
450     bool reset_enable;
451     bool quad_enable;
452     uint8_t ear;
453 
454     int64_t dirty_page;
455 
456     const FlashPartInfo *pi;
457 
458 };
459 
460 struct M25P80Class {
461     SSIPeripheralClass parent_class;
462     FlashPartInfo *pi;
463 };
464 
465 #define TYPE_M25P80 "m25p80-generic"
466 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
467 
468 static inline Manufacturer get_man(Flash *s)
469 {
470     switch (s->pi->id[0]) {
471     case 0x20:
472         return MAN_NUMONYX;
473     case 0xEF:
474         return MAN_WINBOND;
475     case 0x01:
476         return MAN_SPANSION;
477     case 0xC2:
478         return MAN_MACRONIX;
479     case 0xBF:
480         return MAN_SST;
481     default:
482         return MAN_GENERIC;
483     }
484 }
485 
486 static void blk_sync_complete(void *opaque, int ret)
487 {
488     QEMUIOVector *iov = opaque;
489 
490     qemu_iovec_destroy(iov);
491     g_free(iov);
492 
493     /* do nothing. Masters do not directly interact with the backing store,
494      * only the working copy so no mutexing required.
495      */
496 }
497 
498 static void flash_sync_page(Flash *s, int page)
499 {
500     QEMUIOVector *iov;
501 
502     if (!s->blk || blk_is_read_only(s->blk)) {
503         return;
504     }
505 
506     iov = g_new(QEMUIOVector, 1);
507     qemu_iovec_init(iov, 1);
508     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
509                    s->pi->page_size);
510     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
511                     blk_sync_complete, iov);
512 }
513 
514 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
515 {
516     QEMUIOVector *iov;
517 
518     if (!s->blk || blk_is_read_only(s->blk)) {
519         return;
520     }
521 
522     assert(!(len % BDRV_SECTOR_SIZE));
523     iov = g_new(QEMUIOVector, 1);
524     qemu_iovec_init(iov, 1);
525     qemu_iovec_add(iov, s->storage + off, len);
526     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
527 }
528 
529 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
530 {
531     uint32_t len;
532     uint8_t capa_to_assert = 0;
533 
534     switch (cmd) {
535     case ERASE_4K:
536     case ERASE4_4K:
537         len = 4 * KiB;
538         capa_to_assert = ER_4K;
539         break;
540     case ERASE_32K:
541     case ERASE4_32K:
542         len = 32 * KiB;
543         capa_to_assert = ER_32K;
544         break;
545     case ERASE_SECTOR:
546     case ERASE4_SECTOR:
547         len = s->pi->sector_size;
548         break;
549     case BULK_ERASE:
550         len = s->size;
551         break;
552     case DIE_ERASE:
553         if (s->pi->die_cnt) {
554             len = s->size / s->pi->die_cnt;
555             offset = offset & (~(len - 1));
556         } else {
557             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
558                           " by device\n");
559             return;
560         }
561         break;
562     default:
563         abort();
564     }
565 
566     trace_m25p80_flash_erase(s, offset, len);
567 
568     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
569         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
570                       " device\n", len);
571     }
572 
573     if (!s->write_enable) {
574         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
575         return;
576     }
577     memset(s->storage + offset, 0xff, len);
578     flash_sync_area(s, offset, len);
579 }
580 
581 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
582 {
583     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
584         flash_sync_page(s, s->dirty_page);
585         s->dirty_page = newpage;
586     }
587 }
588 
589 static inline
590 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
591 {
592     uint32_t page = addr / s->pi->page_size;
593     uint8_t prev = s->storage[s->cur_addr];
594 
595     if (!s->write_enable) {
596         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
597     }
598 
599     if ((prev ^ data) & data) {
600         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
601     }
602 
603     if (s->pi->flags & EEPROM) {
604         s->storage[s->cur_addr] = data;
605     } else {
606         s->storage[s->cur_addr] &= data;
607     }
608 
609     flash_sync_dirty(s, page);
610     s->dirty_page = page;
611 }
612 
613 static inline int get_addr_length(Flash *s)
614 {
615    /* check if eeprom is in use */
616     if (s->pi->flags == EEPROM) {
617         return 2;
618     }
619 
620    switch (s->cmd_in_progress) {
621    case PP4:
622    case PP4_4:
623    case QPP_4:
624    case READ4:
625    case QIOR4:
626    case ERASE4_4K:
627    case ERASE4_32K:
628    case ERASE4_SECTOR:
629    case FAST_READ4:
630    case DOR4:
631    case QOR4:
632    case DIOR4:
633        return 4;
634    default:
635        return s->four_bytes_address_mode ? 4 : 3;
636    }
637 }
638 
639 static void complete_collecting_data(Flash *s)
640 {
641     int i, n;
642 
643     n = get_addr_length(s);
644     s->cur_addr = (n == 3 ? s->ear : 0);
645     for (i = 0; i < n; ++i) {
646         s->cur_addr <<= 8;
647         s->cur_addr |= s->data[i];
648     }
649 
650     s->cur_addr &= s->size - 1;
651 
652     s->state = STATE_IDLE;
653 
654     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
655                                      s->cur_addr);
656 
657     switch (s->cmd_in_progress) {
658     case DPP:
659     case QPP:
660     case QPP_4:
661     case PP:
662     case PP4:
663     case PP4_4:
664         s->state = STATE_PAGE_PROGRAM;
665         break;
666     case READ:
667     case READ4:
668     case FAST_READ:
669     case FAST_READ4:
670     case DOR:
671     case DOR4:
672     case QOR:
673     case QOR4:
674     case DIOR:
675     case DIOR4:
676     case QIOR:
677     case QIOR4:
678         s->state = STATE_READ;
679         break;
680     case ERASE_4K:
681     case ERASE4_4K:
682     case ERASE_32K:
683     case ERASE4_32K:
684     case ERASE_SECTOR:
685     case ERASE4_SECTOR:
686     case DIE_ERASE:
687         flash_erase(s, s->cur_addr, s->cmd_in_progress);
688         break;
689     case WRSR:
690         switch (get_man(s)) {
691         case MAN_SPANSION:
692             s->quad_enable = !!(s->data[1] & 0x02);
693             break;
694         case MAN_MACRONIX:
695             s->quad_enable = extract32(s->data[0], 6, 1);
696             if (s->len > 1) {
697                 s->volatile_cfg = s->data[1];
698                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
699             }
700             break;
701         default:
702             break;
703         }
704         if (s->write_enable) {
705             s->write_enable = false;
706         }
707         break;
708     case BRWR:
709     case EXTEND_ADDR_WRITE:
710         s->ear = s->data[0];
711         break;
712     case WNVCR:
713         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
714         break;
715     case WVCR:
716         s->volatile_cfg = s->data[0];
717         break;
718     case WEVCR:
719         s->enh_volatile_cfg = s->data[0];
720         break;
721     case RDID_90:
722     case RDID_AB:
723         if (get_man(s) == MAN_SST) {
724             if (s->cur_addr <= 1) {
725                 if (s->cur_addr) {
726                     s->data[0] = s->pi->id[2];
727                     s->data[1] = s->pi->id[0];
728                 } else {
729                     s->data[0] = s->pi->id[0];
730                     s->data[1] = s->pi->id[2];
731                 }
732                 s->pos = 0;
733                 s->len = 2;
734                 s->data_read_loop = true;
735                 s->state = STATE_READING_DATA;
736             } else {
737                 qemu_log_mask(LOG_GUEST_ERROR,
738                               "M25P80: Invalid read id address\n");
739             }
740         } else {
741             qemu_log_mask(LOG_GUEST_ERROR,
742                           "M25P80: Read id (command 0x90/0xAB) is not supported"
743                           " by device\n");
744         }
745         break;
746     default:
747         break;
748     }
749 }
750 
751 static void reset_memory(Flash *s)
752 {
753     s->cmd_in_progress = NOP;
754     s->cur_addr = 0;
755     s->ear = 0;
756     s->four_bytes_address_mode = false;
757     s->len = 0;
758     s->needed_bytes = 0;
759     s->pos = 0;
760     s->state = STATE_IDLE;
761     s->write_enable = false;
762     s->reset_enable = false;
763     s->quad_enable = false;
764 
765     switch (get_man(s)) {
766     case MAN_NUMONYX:
767         s->volatile_cfg = 0;
768         s->volatile_cfg |= VCFG_DUMMY;
769         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
770         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
771                                 != NVCFG_XIP_MODE_DISABLED) {
772             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
773         }
774         s->volatile_cfg |= deposit32(s->volatile_cfg,
775                             VCFG_DUMMY_CLK_POS,
776                             CFG_DUMMY_CLK_LEN,
777                             extract32(s->nonvolatile_cfg,
778                                         NVCFG_DUMMY_CLK_POS,
779                                         CFG_DUMMY_CLK_LEN)
780                             );
781 
782         s->enh_volatile_cfg = 0;
783         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
784         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
785         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
786         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
787             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
788         }
789         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
790             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
791         }
792         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
793             s->four_bytes_address_mode = true;
794         }
795         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
796             s->ear = s->size / MAX_3BYTES_SIZE - 1;
797         }
798         break;
799     case MAN_MACRONIX:
800         s->volatile_cfg = 0x7;
801         break;
802     case MAN_SPANSION:
803         s->spansion_cr1v = s->spansion_cr1nv;
804         s->spansion_cr2v = s->spansion_cr2nv;
805         s->spansion_cr3v = s->spansion_cr3nv;
806         s->spansion_cr4v = s->spansion_cr4nv;
807         s->quad_enable = extract32(s->spansion_cr1v,
808                                    SPANSION_QUAD_CFG_POS,
809                                    SPANSION_QUAD_CFG_LEN
810                                    );
811         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
812                 SPANSION_ADDR_LEN_POS,
813                 SPANSION_ADDR_LEN_LEN
814                 );
815         break;
816     default:
817         break;
818     }
819 
820     trace_m25p80_reset_done(s);
821 }
822 
823 static void decode_fast_read_cmd(Flash *s)
824 {
825     s->needed_bytes = get_addr_length(s);
826     switch (get_man(s)) {
827     /* Dummy cycles - modeled with bytes writes instead of bits */
828     case MAN_WINBOND:
829         s->needed_bytes += 8;
830         break;
831     case MAN_NUMONYX:
832         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
833         break;
834     case MAN_MACRONIX:
835         if (extract32(s->volatile_cfg, 6, 2) == 1) {
836             s->needed_bytes += 6;
837         } else {
838             s->needed_bytes += 8;
839         }
840         break;
841     case MAN_SPANSION:
842         s->needed_bytes += extract32(s->spansion_cr2v,
843                                     SPANSION_DUMMY_CLK_POS,
844                                     SPANSION_DUMMY_CLK_LEN
845                                     );
846         break;
847     default:
848         break;
849     }
850     s->pos = 0;
851     s->len = 0;
852     s->state = STATE_COLLECTING_DATA;
853 }
854 
855 static void decode_dio_read_cmd(Flash *s)
856 {
857     s->needed_bytes = get_addr_length(s);
858     /* Dummy cycles modeled with bytes writes instead of bits */
859     switch (get_man(s)) {
860     case MAN_WINBOND:
861         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
862         break;
863     case MAN_SPANSION:
864         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
865         s->needed_bytes += extract32(s->spansion_cr2v,
866                                     SPANSION_DUMMY_CLK_POS,
867                                     SPANSION_DUMMY_CLK_LEN
868                                     );
869         break;
870     case MAN_NUMONYX:
871         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
872         break;
873     case MAN_MACRONIX:
874         switch (extract32(s->volatile_cfg, 6, 2)) {
875         case 1:
876             s->needed_bytes += 6;
877             break;
878         case 2:
879             s->needed_bytes += 8;
880             break;
881         default:
882             s->needed_bytes += 4;
883             break;
884         }
885         break;
886     default:
887         break;
888     }
889     s->pos = 0;
890     s->len = 0;
891     s->state = STATE_COLLECTING_DATA;
892 }
893 
894 static void decode_qio_read_cmd(Flash *s)
895 {
896     s->needed_bytes = get_addr_length(s);
897     /* Dummy cycles modeled with bytes writes instead of bits */
898     switch (get_man(s)) {
899     case MAN_WINBOND:
900         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
901         s->needed_bytes += 4;
902         break;
903     case MAN_SPANSION:
904         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
905         s->needed_bytes += extract32(s->spansion_cr2v,
906                                     SPANSION_DUMMY_CLK_POS,
907                                     SPANSION_DUMMY_CLK_LEN
908                                     );
909         break;
910     case MAN_NUMONYX:
911         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
912         break;
913     case MAN_MACRONIX:
914         switch (extract32(s->volatile_cfg, 6, 2)) {
915         case 1:
916             s->needed_bytes += 4;
917             break;
918         case 2:
919             s->needed_bytes += 8;
920             break;
921         default:
922             s->needed_bytes += 6;
923             break;
924         }
925         break;
926     default:
927         break;
928     }
929     s->pos = 0;
930     s->len = 0;
931     s->state = STATE_COLLECTING_DATA;
932 }
933 
934 static void decode_new_cmd(Flash *s, uint32_t value)
935 {
936     int i;
937 
938     s->cmd_in_progress = value;
939     trace_m25p80_command_decoded(s, value);
940 
941     if (value != RESET_MEMORY) {
942         s->reset_enable = false;
943     }
944 
945     switch (value) {
946 
947     case ERASE_4K:
948     case ERASE4_4K:
949     case ERASE_32K:
950     case ERASE4_32K:
951     case ERASE_SECTOR:
952     case ERASE4_SECTOR:
953     case READ:
954     case READ4:
955     case DPP:
956     case QPP:
957     case QPP_4:
958     case PP:
959     case PP4:
960     case PP4_4:
961     case DIE_ERASE:
962     case RDID_90:
963     case RDID_AB:
964         s->needed_bytes = get_addr_length(s);
965         s->pos = 0;
966         s->len = 0;
967         s->state = STATE_COLLECTING_DATA;
968         break;
969 
970     case FAST_READ:
971     case FAST_READ4:
972     case DOR:
973     case DOR4:
974     case QOR:
975     case QOR4:
976         decode_fast_read_cmd(s);
977         break;
978 
979     case DIOR:
980     case DIOR4:
981         decode_dio_read_cmd(s);
982         break;
983 
984     case QIOR:
985     case QIOR4:
986         decode_qio_read_cmd(s);
987         break;
988 
989     case WRSR:
990         if (s->write_enable) {
991             switch (get_man(s)) {
992             case MAN_SPANSION:
993                 s->needed_bytes = 2;
994                 s->state = STATE_COLLECTING_DATA;
995                 break;
996             case MAN_MACRONIX:
997                 s->needed_bytes = 2;
998                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
999                 break;
1000             default:
1001                 s->needed_bytes = 1;
1002                 s->state = STATE_COLLECTING_DATA;
1003             }
1004             s->pos = 0;
1005         }
1006         break;
1007 
1008     case WRDI:
1009         s->write_enable = false;
1010         break;
1011     case WREN:
1012         s->write_enable = true;
1013         break;
1014 
1015     case RDSR:
1016         s->data[0] = (!!s->write_enable) << 1;
1017         if (get_man(s) == MAN_MACRONIX) {
1018             s->data[0] |= (!!s->quad_enable) << 6;
1019         }
1020         s->pos = 0;
1021         s->len = 1;
1022         s->data_read_loop = true;
1023         s->state = STATE_READING_DATA;
1024         break;
1025 
1026     case READ_FSR:
1027         s->data[0] = FSR_FLASH_READY;
1028         if (s->four_bytes_address_mode) {
1029             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1030         }
1031         s->pos = 0;
1032         s->len = 1;
1033         s->data_read_loop = true;
1034         s->state = STATE_READING_DATA;
1035         break;
1036 
1037     case JEDEC_READ:
1038         trace_m25p80_populated_jedec(s);
1039         for (i = 0; i < s->pi->id_len; i++) {
1040             s->data[i] = s->pi->id[i];
1041         }
1042         for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1043             s->data[i] = 0;
1044         }
1045 
1046         s->len = SPI_NOR_MAX_ID_LEN;
1047         s->pos = 0;
1048         s->state = STATE_READING_DATA;
1049         break;
1050 
1051     case RDCR:
1052         s->data[0] = s->volatile_cfg & 0xFF;
1053         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1054         s->pos = 0;
1055         s->len = 1;
1056         s->state = STATE_READING_DATA;
1057         break;
1058 
1059     case BULK_ERASE_60:
1060     case BULK_ERASE:
1061         if (s->write_enable) {
1062             trace_m25p80_chip_erase(s);
1063             flash_erase(s, 0, BULK_ERASE);
1064         } else {
1065             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1066                           "protect!\n");
1067         }
1068         break;
1069     case NOP:
1070         break;
1071     case EN_4BYTE_ADDR:
1072         s->four_bytes_address_mode = true;
1073         break;
1074     case EX_4BYTE_ADDR:
1075         s->four_bytes_address_mode = false;
1076         break;
1077     case BRRD:
1078     case EXTEND_ADDR_READ:
1079         s->data[0] = s->ear;
1080         s->pos = 0;
1081         s->len = 1;
1082         s->state = STATE_READING_DATA;
1083         break;
1084     case BRWR:
1085     case EXTEND_ADDR_WRITE:
1086         if (s->write_enable) {
1087             s->needed_bytes = 1;
1088             s->pos = 0;
1089             s->len = 0;
1090             s->state = STATE_COLLECTING_DATA;
1091         }
1092         break;
1093     case RNVCR:
1094         s->data[0] = s->nonvolatile_cfg & 0xFF;
1095         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1096         s->pos = 0;
1097         s->len = 2;
1098         s->state = STATE_READING_DATA;
1099         break;
1100     case WNVCR:
1101         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1102             s->needed_bytes = 2;
1103             s->pos = 0;
1104             s->len = 0;
1105             s->state = STATE_COLLECTING_DATA;
1106         }
1107         break;
1108     case RVCR:
1109         s->data[0] = s->volatile_cfg & 0xFF;
1110         s->pos = 0;
1111         s->len = 1;
1112         s->state = STATE_READING_DATA;
1113         break;
1114     case WVCR:
1115         if (s->write_enable) {
1116             s->needed_bytes = 1;
1117             s->pos = 0;
1118             s->len = 0;
1119             s->state = STATE_COLLECTING_DATA;
1120         }
1121         break;
1122     case REVCR:
1123         s->data[0] = s->enh_volatile_cfg & 0xFF;
1124         s->pos = 0;
1125         s->len = 1;
1126         s->state = STATE_READING_DATA;
1127         break;
1128     case WEVCR:
1129         if (s->write_enable) {
1130             s->needed_bytes = 1;
1131             s->pos = 0;
1132             s->len = 0;
1133             s->state = STATE_COLLECTING_DATA;
1134         }
1135         break;
1136     case RESET_ENABLE:
1137         s->reset_enable = true;
1138         break;
1139     case RESET_MEMORY:
1140         if (s->reset_enable) {
1141             reset_memory(s);
1142         }
1143         break;
1144     case RDCR_EQIO:
1145         switch (get_man(s)) {
1146         case MAN_SPANSION:
1147             s->data[0] = (!!s->quad_enable) << 1;
1148             s->pos = 0;
1149             s->len = 1;
1150             s->state = STATE_READING_DATA;
1151             break;
1152         case MAN_MACRONIX:
1153             s->quad_enable = true;
1154             break;
1155         default:
1156             break;
1157         }
1158         break;
1159     case RSTQIO:
1160         s->quad_enable = false;
1161         break;
1162     default:
1163         s->pos = 0;
1164         s->len = 1;
1165         s->state = STATE_READING_DATA;
1166         s->data_read_loop = true;
1167         s->data[0] = 0;
1168         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1169         break;
1170     }
1171 }
1172 
1173 static int m25p80_cs(SSIPeripheral *ss, bool select)
1174 {
1175     Flash *s = M25P80(ss);
1176 
1177     if (select) {
1178         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1179             complete_collecting_data(s);
1180         }
1181         s->len = 0;
1182         s->pos = 0;
1183         s->state = STATE_IDLE;
1184         flash_sync_dirty(s, -1);
1185         s->data_read_loop = false;
1186     }
1187 
1188     trace_m25p80_select(s, select ? "de" : "");
1189 
1190     return 0;
1191 }
1192 
1193 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1194 {
1195     Flash *s = M25P80(ss);
1196     uint32_t r = 0;
1197 
1198     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1199                           s->cur_addr, (uint8_t)tx);
1200 
1201     switch (s->state) {
1202 
1203     case STATE_PAGE_PROGRAM:
1204         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1205         flash_write8(s, s->cur_addr, (uint8_t)tx);
1206         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1207         break;
1208 
1209     case STATE_READ:
1210         r = s->storage[s->cur_addr];
1211         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1212         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1213         break;
1214 
1215     case STATE_COLLECTING_DATA:
1216     case STATE_COLLECTING_VAR_LEN_DATA:
1217 
1218         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1219             qemu_log_mask(LOG_GUEST_ERROR,
1220                           "M25P80: Write overrun internal data buffer. "
1221                           "SPI controller (QEMU emulator or guest driver) "
1222                           "is misbehaving\n");
1223             s->len = s->pos = 0;
1224             s->state = STATE_IDLE;
1225             break;
1226         }
1227 
1228         s->data[s->len] = (uint8_t)tx;
1229         s->len++;
1230 
1231         if (s->len == s->needed_bytes) {
1232             complete_collecting_data(s);
1233         }
1234         break;
1235 
1236     case STATE_READING_DATA:
1237 
1238         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1239             qemu_log_mask(LOG_GUEST_ERROR,
1240                           "M25P80: Read overrun internal data buffer. "
1241                           "SPI controller (QEMU emulator or guest driver) "
1242                           "is misbehaving\n");
1243             s->len = s->pos = 0;
1244             s->state = STATE_IDLE;
1245             break;
1246         }
1247 
1248         r = s->data[s->pos];
1249         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1250         s->pos++;
1251         if (s->pos == s->len) {
1252             s->pos = 0;
1253             if (!s->data_read_loop) {
1254                 s->state = STATE_IDLE;
1255             }
1256         }
1257         break;
1258 
1259     default:
1260     case STATE_IDLE:
1261         decode_new_cmd(s, (uint8_t)tx);
1262         break;
1263     }
1264 
1265     return r;
1266 }
1267 
1268 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1269 {
1270     Flash *s = M25P80(ss);
1271     M25P80Class *mc = M25P80_GET_CLASS(s);
1272     int ret;
1273 
1274     s->pi = mc->pi;
1275 
1276     s->size = s->pi->sector_size * s->pi->n_sectors;
1277     s->dirty_page = -1;
1278 
1279     if (s->blk) {
1280         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1281                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1282         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1283         if (ret < 0) {
1284             return;
1285         }
1286 
1287         trace_m25p80_binding(s);
1288         s->storage = blk_blockalign(s->blk, s->size);
1289 
1290         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1291             error_setg(errp, "failed to read the initial flash content");
1292             return;
1293         }
1294     } else {
1295         trace_m25p80_binding_no_bdrv(s);
1296         s->storage = blk_blockalign(NULL, s->size);
1297         memset(s->storage, 0xFF, s->size);
1298     }
1299 }
1300 
1301 static void m25p80_reset(DeviceState *d)
1302 {
1303     Flash *s = M25P80(d);
1304 
1305     reset_memory(s);
1306 }
1307 
1308 static int m25p80_pre_save(void *opaque)
1309 {
1310     flash_sync_dirty((Flash *)opaque, -1);
1311 
1312     return 0;
1313 }
1314 
1315 static Property m25p80_properties[] = {
1316     /* This is default value for Micron flash */
1317     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1318     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1319     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1320     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1321     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1322     DEFINE_PROP_DRIVE("drive", Flash, blk),
1323     DEFINE_PROP_END_OF_LIST(),
1324 };
1325 
1326 static int m25p80_pre_load(void *opaque)
1327 {
1328     Flash *s = (Flash *)opaque;
1329 
1330     s->data_read_loop = false;
1331     return 0;
1332 }
1333 
1334 static bool m25p80_data_read_loop_needed(void *opaque)
1335 {
1336     Flash *s = (Flash *)opaque;
1337 
1338     return s->data_read_loop;
1339 }
1340 
1341 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1342     .name = "m25p80/data_read_loop",
1343     .version_id = 1,
1344     .minimum_version_id = 1,
1345     .needed = m25p80_data_read_loop_needed,
1346     .fields = (VMStateField[]) {
1347         VMSTATE_BOOL(data_read_loop, Flash),
1348         VMSTATE_END_OF_LIST()
1349     }
1350 };
1351 
1352 static const VMStateDescription vmstate_m25p80 = {
1353     .name = "m25p80",
1354     .version_id = 0,
1355     .minimum_version_id = 0,
1356     .pre_save = m25p80_pre_save,
1357     .pre_load = m25p80_pre_load,
1358     .fields = (VMStateField[]) {
1359         VMSTATE_UINT8(state, Flash),
1360         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1361         VMSTATE_UINT32(len, Flash),
1362         VMSTATE_UINT32(pos, Flash),
1363         VMSTATE_UINT8(needed_bytes, Flash),
1364         VMSTATE_UINT8(cmd_in_progress, Flash),
1365         VMSTATE_UINT32(cur_addr, Flash),
1366         VMSTATE_BOOL(write_enable, Flash),
1367         VMSTATE_BOOL(reset_enable, Flash),
1368         VMSTATE_UINT8(ear, Flash),
1369         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1370         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1371         VMSTATE_UINT32(volatile_cfg, Flash),
1372         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1373         VMSTATE_BOOL(quad_enable, Flash),
1374         VMSTATE_UINT8(spansion_cr1nv, Flash),
1375         VMSTATE_UINT8(spansion_cr2nv, Flash),
1376         VMSTATE_UINT8(spansion_cr3nv, Flash),
1377         VMSTATE_UINT8(spansion_cr4nv, Flash),
1378         VMSTATE_END_OF_LIST()
1379     },
1380     .subsections = (const VMStateDescription * []) {
1381         &vmstate_m25p80_data_read_loop,
1382         NULL
1383     }
1384 };
1385 
1386 static void m25p80_class_init(ObjectClass *klass, void *data)
1387 {
1388     DeviceClass *dc = DEVICE_CLASS(klass);
1389     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1390     M25P80Class *mc = M25P80_CLASS(klass);
1391 
1392     k->realize = m25p80_realize;
1393     k->transfer = m25p80_transfer8;
1394     k->set_cs = m25p80_cs;
1395     k->cs_polarity = SSI_CS_LOW;
1396     dc->vmsd = &vmstate_m25p80;
1397     device_class_set_props(dc, m25p80_properties);
1398     dc->reset = m25p80_reset;
1399     mc->pi = data;
1400 }
1401 
1402 static const TypeInfo m25p80_info = {
1403     .name           = TYPE_M25P80,
1404     .parent         = TYPE_SSI_PERIPHERAL,
1405     .instance_size  = sizeof(Flash),
1406     .class_size     = sizeof(M25P80Class),
1407     .abstract       = true,
1408 };
1409 
1410 static void m25p80_register_types(void)
1411 {
1412     int i;
1413 
1414     type_register_static(&m25p80_info);
1415     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1416         TypeInfo ti = {
1417             .name       = known_devices[i].part_name,
1418             .parent     = TYPE_M25P80,
1419             .class_init = m25p80_class_init,
1420             .class_data = (void *)&known_devices[i],
1421         };
1422         type_register(&ti);
1423     }
1424 }
1425 
1426 type_init(m25p80_register_types)
1427