xref: /openbmc/qemu/hw/block/m25p80.c (revision 64c9a921)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define EEPROM 0x100
48 
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
51 
52 #define SPI_NOR_MAX_ID_LEN 6
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* Macronix */
214     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
215     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
216     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
217     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
218     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
219     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
220     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
221     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
222     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
223     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
224     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
225     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
226     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
227     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
228 
229     /* Micron */
230     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
231     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
232     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
233     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
234     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
235     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
236     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
237     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
238     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
239     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
240     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
241     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
242     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
243     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
244     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
245     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
247     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
248     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
249 
250     /* Spansion -- single (large) sector size only, at least
251      * for the chips listed here (without boot sectors).
252      */
253     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
254     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
255     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
256     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
257     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
258     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
259     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
260     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
261     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
262     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
263     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
264     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
265     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
266     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
267     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
268     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
269     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
270 
271     /* Spansion --  boot sectors support  */
272     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
273     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
274 
275     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
276     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
277     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
278     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
279     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
280     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
281     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
282     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
283     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
284     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
285 
286     /* ST Microelectronics -- newer production may have feature updates */
287     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
288     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
289     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
290     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
291     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
292     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
293     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
294     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
295     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
296     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
297 
298     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
299     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
300     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
301 
302     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
303     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
304     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
305 
306     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
307     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
308     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
309     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
310 
311     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
312     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
313     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
314     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
315     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
316     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
317     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
318     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
319     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
320     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
321     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
322     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
323     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
324     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
325     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
326 };
327 
328 typedef enum {
329     NOP = 0,
330     WRSR = 0x1,
331     WRDI = 0x4,
332     RDSR = 0x5,
333     WREN = 0x6,
334     BRRD = 0x16,
335     BRWR = 0x17,
336     JEDEC_READ = 0x9f,
337     BULK_ERASE_60 = 0x60,
338     BULK_ERASE = 0xc7,
339     READ_FSR = 0x70,
340     RDCR = 0x15,
341 
342     READ = 0x03,
343     READ4 = 0x13,
344     FAST_READ = 0x0b,
345     FAST_READ4 = 0x0c,
346     DOR = 0x3b,
347     DOR4 = 0x3c,
348     QOR = 0x6b,
349     QOR4 = 0x6c,
350     DIOR = 0xbb,
351     DIOR4 = 0xbc,
352     QIOR = 0xeb,
353     QIOR4 = 0xec,
354 
355     PP = 0x02,
356     PP4 = 0x12,
357     PP4_4 = 0x3e,
358     DPP = 0xa2,
359     QPP = 0x32,
360     QPP_4 = 0x34,
361     RDID_90 = 0x90,
362     RDID_AB = 0xab,
363     AAI_WP = 0xad,
364 
365     ERASE_4K = 0x20,
366     ERASE4_4K = 0x21,
367     ERASE_32K = 0x52,
368     ERASE4_32K = 0x5c,
369     ERASE_SECTOR = 0xd8,
370     ERASE4_SECTOR = 0xdc,
371 
372     EN_4BYTE_ADDR = 0xB7,
373     EX_4BYTE_ADDR = 0xE9,
374 
375     EXTEND_ADDR_READ = 0xC8,
376     EXTEND_ADDR_WRITE = 0xC5,
377 
378     RESET_ENABLE = 0x66,
379     RESET_MEMORY = 0x99,
380 
381     /*
382      * Micron: 0x35 - enable QPI
383      * Spansion: 0x35 - read control register
384      */
385     RDCR_EQIO = 0x35,
386     RSTQIO = 0xf5,
387 
388     RNVCR = 0xB5,
389     WNVCR = 0xB1,
390 
391     RVCR = 0x85,
392     WVCR = 0x81,
393 
394     REVCR = 0x65,
395     WEVCR = 0x61,
396 
397     DIE_ERASE = 0xC4,
398 } FlashCMD;
399 
400 typedef enum {
401     STATE_IDLE,
402     STATE_PAGE_PROGRAM,
403     STATE_READ,
404     STATE_COLLECTING_DATA,
405     STATE_COLLECTING_VAR_LEN_DATA,
406     STATE_READING_DATA,
407 } CMDState;
408 
409 typedef enum {
410     MAN_SPANSION,
411     MAN_MACRONIX,
412     MAN_NUMONYX,
413     MAN_WINBOND,
414     MAN_SST,
415     MAN_GENERIC,
416 } Manufacturer;
417 
418 typedef enum {
419     MODE_STD = 0,
420     MODE_DIO = 1,
421     MODE_QIO = 2
422 } SPIMode;
423 
424 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
425 
426 struct Flash {
427     SSIPeripheral parent_obj;
428 
429     BlockBackend *blk;
430 
431     uint8_t *storage;
432     uint32_t size;
433     int page_size;
434 
435     uint8_t state;
436     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
437     uint32_t len;
438     uint32_t pos;
439     bool data_read_loop;
440     uint8_t needed_bytes;
441     uint8_t cmd_in_progress;
442     uint32_t cur_addr;
443     uint32_t nonvolatile_cfg;
444     /* Configuration register for Macronix */
445     uint32_t volatile_cfg;
446     uint32_t enh_volatile_cfg;
447     /* Spansion cfg registers. */
448     uint8_t spansion_cr1nv;
449     uint8_t spansion_cr2nv;
450     uint8_t spansion_cr3nv;
451     uint8_t spansion_cr4nv;
452     uint8_t spansion_cr1v;
453     uint8_t spansion_cr2v;
454     uint8_t spansion_cr3v;
455     uint8_t spansion_cr4v;
456     bool write_enable;
457     bool four_bytes_address_mode;
458     bool reset_enable;
459     bool quad_enable;
460     bool aai_enable;
461     uint8_t ear;
462 
463     int64_t dirty_page;
464 
465     const FlashPartInfo *pi;
466 
467 };
468 
469 struct M25P80Class {
470     SSIPeripheralClass parent_class;
471     FlashPartInfo *pi;
472 };
473 
474 #define TYPE_M25P80 "m25p80-generic"
475 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
476 
477 static inline Manufacturer get_man(Flash *s)
478 {
479     switch (s->pi->id[0]) {
480     case 0x20:
481         return MAN_NUMONYX;
482     case 0xEF:
483         return MAN_WINBOND;
484     case 0x01:
485         return MAN_SPANSION;
486     case 0xC2:
487         return MAN_MACRONIX;
488     case 0xBF:
489         return MAN_SST;
490     default:
491         return MAN_GENERIC;
492     }
493 }
494 
495 static void blk_sync_complete(void *opaque, int ret)
496 {
497     QEMUIOVector *iov = opaque;
498 
499     qemu_iovec_destroy(iov);
500     g_free(iov);
501 
502     /* do nothing. Masters do not directly interact with the backing store,
503      * only the working copy so no mutexing required.
504      */
505 }
506 
507 static void flash_sync_page(Flash *s, int page)
508 {
509     QEMUIOVector *iov;
510 
511     if (!s->blk || !blk_is_writable(s->blk)) {
512         return;
513     }
514 
515     iov = g_new(QEMUIOVector, 1);
516     qemu_iovec_init(iov, 1);
517     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
518                    s->pi->page_size);
519     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
520                     blk_sync_complete, iov);
521 }
522 
523 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
524 {
525     QEMUIOVector *iov;
526 
527     if (!s->blk || !blk_is_writable(s->blk)) {
528         return;
529     }
530 
531     assert(!(len % BDRV_SECTOR_SIZE));
532     iov = g_new(QEMUIOVector, 1);
533     qemu_iovec_init(iov, 1);
534     qemu_iovec_add(iov, s->storage + off, len);
535     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
536 }
537 
538 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
539 {
540     uint32_t len;
541     uint8_t capa_to_assert = 0;
542 
543     switch (cmd) {
544     case ERASE_4K:
545     case ERASE4_4K:
546         len = 4 * KiB;
547         capa_to_assert = ER_4K;
548         break;
549     case ERASE_32K:
550     case ERASE4_32K:
551         len = 32 * KiB;
552         capa_to_assert = ER_32K;
553         break;
554     case ERASE_SECTOR:
555     case ERASE4_SECTOR:
556         len = s->pi->sector_size;
557         break;
558     case BULK_ERASE:
559         len = s->size;
560         break;
561     case DIE_ERASE:
562         if (s->pi->die_cnt) {
563             len = s->size / s->pi->die_cnt;
564             offset = offset & (~(len - 1));
565         } else {
566             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
567                           " by device\n");
568             return;
569         }
570         break;
571     default:
572         abort();
573     }
574 
575     trace_m25p80_flash_erase(s, offset, len);
576 
577     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
578         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
579                       " device\n", len);
580     }
581 
582     if (!s->write_enable) {
583         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
584         return;
585     }
586     memset(s->storage + offset, 0xff, len);
587     flash_sync_area(s, offset, len);
588 }
589 
590 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
591 {
592     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
593         flash_sync_page(s, s->dirty_page);
594         s->dirty_page = newpage;
595     }
596 }
597 
598 static inline
599 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
600 {
601     uint32_t page = addr / s->pi->page_size;
602     uint8_t prev = s->storage[s->cur_addr];
603 
604     if (!s->write_enable) {
605         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
606         return;
607     }
608 
609     if ((prev ^ data) & data) {
610         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
611     }
612 
613     if (s->pi->flags & EEPROM) {
614         s->storage[s->cur_addr] = data;
615     } else {
616         s->storage[s->cur_addr] &= data;
617     }
618 
619     flash_sync_dirty(s, page);
620     s->dirty_page = page;
621 }
622 
623 static inline int get_addr_length(Flash *s)
624 {
625    /* check if eeprom is in use */
626     if (s->pi->flags == EEPROM) {
627         return 2;
628     }
629 
630    switch (s->cmd_in_progress) {
631    case PP4:
632    case PP4_4:
633    case QPP_4:
634    case READ4:
635    case QIOR4:
636    case ERASE4_4K:
637    case ERASE4_32K:
638    case ERASE4_SECTOR:
639    case FAST_READ4:
640    case DOR4:
641    case QOR4:
642    case DIOR4:
643        return 4;
644    default:
645        return s->four_bytes_address_mode ? 4 : 3;
646    }
647 }
648 
649 static void complete_collecting_data(Flash *s)
650 {
651     int i, n;
652 
653     n = get_addr_length(s);
654     s->cur_addr = (n == 3 ? s->ear : 0);
655     for (i = 0; i < n; ++i) {
656         s->cur_addr <<= 8;
657         s->cur_addr |= s->data[i];
658     }
659 
660     s->cur_addr &= s->size - 1;
661 
662     s->state = STATE_IDLE;
663 
664     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
665                                      s->cur_addr);
666 
667     switch (s->cmd_in_progress) {
668     case DPP:
669     case QPP:
670     case QPP_4:
671     case PP:
672     case PP4:
673     case PP4_4:
674         s->state = STATE_PAGE_PROGRAM;
675         break;
676     case AAI_WP:
677         /* AAI programming starts from the even address */
678         s->cur_addr &= ~BIT(0);
679         s->state = STATE_PAGE_PROGRAM;
680         break;
681     case READ:
682     case READ4:
683     case FAST_READ:
684     case FAST_READ4:
685     case DOR:
686     case DOR4:
687     case QOR:
688     case QOR4:
689     case DIOR:
690     case DIOR4:
691     case QIOR:
692     case QIOR4:
693         s->state = STATE_READ;
694         break;
695     case ERASE_4K:
696     case ERASE4_4K:
697     case ERASE_32K:
698     case ERASE4_32K:
699     case ERASE_SECTOR:
700     case ERASE4_SECTOR:
701     case DIE_ERASE:
702         flash_erase(s, s->cur_addr, s->cmd_in_progress);
703         break;
704     case WRSR:
705         switch (get_man(s)) {
706         case MAN_SPANSION:
707             s->quad_enable = !!(s->data[1] & 0x02);
708             break;
709         case MAN_MACRONIX:
710             s->quad_enable = extract32(s->data[0], 6, 1);
711             if (s->len > 1) {
712                 s->volatile_cfg = s->data[1];
713                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
714             }
715             break;
716         default:
717             break;
718         }
719         if (s->write_enable) {
720             s->write_enable = false;
721         }
722         break;
723     case BRWR:
724     case EXTEND_ADDR_WRITE:
725         s->ear = s->data[0];
726         break;
727     case WNVCR:
728         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
729         break;
730     case WVCR:
731         s->volatile_cfg = s->data[0];
732         break;
733     case WEVCR:
734         s->enh_volatile_cfg = s->data[0];
735         break;
736     case RDID_90:
737     case RDID_AB:
738         if (get_man(s) == MAN_SST) {
739             if (s->cur_addr <= 1) {
740                 if (s->cur_addr) {
741                     s->data[0] = s->pi->id[2];
742                     s->data[1] = s->pi->id[0];
743                 } else {
744                     s->data[0] = s->pi->id[0];
745                     s->data[1] = s->pi->id[2];
746                 }
747                 s->pos = 0;
748                 s->len = 2;
749                 s->data_read_loop = true;
750                 s->state = STATE_READING_DATA;
751             } else {
752                 qemu_log_mask(LOG_GUEST_ERROR,
753                               "M25P80: Invalid read id address\n");
754             }
755         } else {
756             qemu_log_mask(LOG_GUEST_ERROR,
757                           "M25P80: Read id (command 0x90/0xAB) is not supported"
758                           " by device\n");
759         }
760         break;
761     default:
762         break;
763     }
764 }
765 
766 static void reset_memory(Flash *s)
767 {
768     s->cmd_in_progress = NOP;
769     s->cur_addr = 0;
770     s->ear = 0;
771     s->four_bytes_address_mode = false;
772     s->len = 0;
773     s->needed_bytes = 0;
774     s->pos = 0;
775     s->state = STATE_IDLE;
776     s->write_enable = false;
777     s->reset_enable = false;
778     s->quad_enable = false;
779     s->aai_enable = false;
780 
781     switch (get_man(s)) {
782     case MAN_NUMONYX:
783         s->volatile_cfg = 0;
784         s->volatile_cfg |= VCFG_DUMMY;
785         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
786         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
787                                 == NVCFG_XIP_MODE_DISABLED) {
788             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
789         }
790         s->volatile_cfg |= deposit32(s->volatile_cfg,
791                             VCFG_DUMMY_CLK_POS,
792                             CFG_DUMMY_CLK_LEN,
793                             extract32(s->nonvolatile_cfg,
794                                         NVCFG_DUMMY_CLK_POS,
795                                         CFG_DUMMY_CLK_LEN)
796                             );
797 
798         s->enh_volatile_cfg = 0;
799         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
800         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
801         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
802         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
803             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
804         }
805         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
806             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
807         }
808         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
809             s->four_bytes_address_mode = true;
810         }
811         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
812             s->ear = s->size / MAX_3BYTES_SIZE - 1;
813         }
814         break;
815     case MAN_MACRONIX:
816         s->volatile_cfg = 0x7;
817         break;
818     case MAN_SPANSION:
819         s->spansion_cr1v = s->spansion_cr1nv;
820         s->spansion_cr2v = s->spansion_cr2nv;
821         s->spansion_cr3v = s->spansion_cr3nv;
822         s->spansion_cr4v = s->spansion_cr4nv;
823         s->quad_enable = extract32(s->spansion_cr1v,
824                                    SPANSION_QUAD_CFG_POS,
825                                    SPANSION_QUAD_CFG_LEN
826                                    );
827         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
828                 SPANSION_ADDR_LEN_POS,
829                 SPANSION_ADDR_LEN_LEN
830                 );
831         break;
832     default:
833         break;
834     }
835 
836     trace_m25p80_reset_done(s);
837 }
838 
839 static uint8_t numonyx_mode(Flash *s)
840 {
841     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
842         return MODE_QIO;
843     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
844         return MODE_DIO;
845     } else {
846         return MODE_STD;
847     }
848 }
849 
850 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
851 {
852     uint8_t num_dummies;
853     uint8_t mode;
854     assert(get_man(s) == MAN_NUMONYX);
855 
856     mode = numonyx_mode(s);
857     num_dummies = extract32(s->volatile_cfg, 4, 4);
858 
859     if (num_dummies == 0x0 || num_dummies == 0xf) {
860         switch (s->cmd_in_progress) {
861         case QIOR:
862         case QIOR4:
863             num_dummies = 10;
864             break;
865         default:
866             num_dummies = (mode == MODE_QIO) ? 10 : 8;
867             break;
868         }
869     }
870 
871     return num_dummies;
872 }
873 
874 static void decode_fast_read_cmd(Flash *s)
875 {
876     s->needed_bytes = get_addr_length(s);
877     switch (get_man(s)) {
878     /* Dummy cycles - modeled with bytes writes instead of bits */
879     case MAN_WINBOND:
880         s->needed_bytes += 8;
881         break;
882     case MAN_NUMONYX:
883         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
884         break;
885     case MAN_MACRONIX:
886         if (extract32(s->volatile_cfg, 6, 2) == 1) {
887             s->needed_bytes += 6;
888         } else {
889             s->needed_bytes += 8;
890         }
891         break;
892     case MAN_SPANSION:
893         s->needed_bytes += extract32(s->spansion_cr2v,
894                                     SPANSION_DUMMY_CLK_POS,
895                                     SPANSION_DUMMY_CLK_LEN
896                                     );
897         break;
898     default:
899         break;
900     }
901     s->pos = 0;
902     s->len = 0;
903     s->state = STATE_COLLECTING_DATA;
904 }
905 
906 static void decode_dio_read_cmd(Flash *s)
907 {
908     s->needed_bytes = get_addr_length(s);
909     /* Dummy cycles modeled with bytes writes instead of bits */
910     switch (get_man(s)) {
911     case MAN_WINBOND:
912         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
913         break;
914     case MAN_SPANSION:
915         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
916         s->needed_bytes += extract32(s->spansion_cr2v,
917                                     SPANSION_DUMMY_CLK_POS,
918                                     SPANSION_DUMMY_CLK_LEN
919                                     );
920         break;
921     case MAN_NUMONYX:
922         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
923         break;
924     case MAN_MACRONIX:
925         switch (extract32(s->volatile_cfg, 6, 2)) {
926         case 1:
927             s->needed_bytes += 6;
928             break;
929         case 2:
930             s->needed_bytes += 8;
931             break;
932         default:
933             s->needed_bytes += 4;
934             break;
935         }
936         break;
937     default:
938         break;
939     }
940     s->pos = 0;
941     s->len = 0;
942     s->state = STATE_COLLECTING_DATA;
943 }
944 
945 static void decode_qio_read_cmd(Flash *s)
946 {
947     s->needed_bytes = get_addr_length(s);
948     /* Dummy cycles modeled with bytes writes instead of bits */
949     switch (get_man(s)) {
950     case MAN_WINBOND:
951         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
952         s->needed_bytes += 4;
953         break;
954     case MAN_SPANSION:
955         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
956         s->needed_bytes += extract32(s->spansion_cr2v,
957                                     SPANSION_DUMMY_CLK_POS,
958                                     SPANSION_DUMMY_CLK_LEN
959                                     );
960         break;
961     case MAN_NUMONYX:
962         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
963         break;
964     case MAN_MACRONIX:
965         switch (extract32(s->volatile_cfg, 6, 2)) {
966         case 1:
967             s->needed_bytes += 4;
968             break;
969         case 2:
970             s->needed_bytes += 8;
971             break;
972         default:
973             s->needed_bytes += 6;
974             break;
975         }
976         break;
977     default:
978         break;
979     }
980     s->pos = 0;
981     s->len = 0;
982     s->state = STATE_COLLECTING_DATA;
983 }
984 
985 static bool is_valid_aai_cmd(uint32_t cmd)
986 {
987     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
988 }
989 
990 static void decode_new_cmd(Flash *s, uint32_t value)
991 {
992     int i;
993 
994     s->cmd_in_progress = value;
995     trace_m25p80_command_decoded(s, value);
996 
997     if (value != RESET_MEMORY) {
998         s->reset_enable = false;
999     }
1000 
1001     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1002         qemu_log_mask(LOG_GUEST_ERROR,
1003                       "M25P80: Invalid cmd within AAI programming sequence");
1004     }
1005 
1006     switch (value) {
1007 
1008     case ERASE_4K:
1009     case ERASE4_4K:
1010     case ERASE_32K:
1011     case ERASE4_32K:
1012     case ERASE_SECTOR:
1013     case ERASE4_SECTOR:
1014     case PP:
1015     case PP4:
1016     case DIE_ERASE:
1017     case RDID_90:
1018     case RDID_AB:
1019         s->needed_bytes = get_addr_length(s);
1020         s->pos = 0;
1021         s->len = 0;
1022         s->state = STATE_COLLECTING_DATA;
1023         break;
1024     case READ:
1025     case READ4:
1026         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1027             s->needed_bytes = get_addr_length(s);
1028             s->pos = 0;
1029             s->len = 0;
1030             s->state = STATE_COLLECTING_DATA;
1031         } else {
1032             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1033                           "DIO or QIO mode\n", s->cmd_in_progress);
1034         }
1035         break;
1036     case DPP:
1037         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1038             s->needed_bytes = get_addr_length(s);
1039             s->pos = 0;
1040             s->len = 0;
1041             s->state = STATE_COLLECTING_DATA;
1042         } else {
1043             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1044                           "QIO mode\n", s->cmd_in_progress);
1045         }
1046         break;
1047     case QPP:
1048     case QPP_4:
1049     case PP4_4:
1050         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1051             s->needed_bytes = get_addr_length(s);
1052             s->pos = 0;
1053             s->len = 0;
1054             s->state = STATE_COLLECTING_DATA;
1055         } else {
1056             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1057                           "DIO mode\n", s->cmd_in_progress);
1058         }
1059         break;
1060 
1061     case FAST_READ:
1062     case FAST_READ4:
1063         decode_fast_read_cmd(s);
1064         break;
1065     case DOR:
1066     case DOR4:
1067         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1068             decode_fast_read_cmd(s);
1069         } else {
1070             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1071                           "QIO mode\n", s->cmd_in_progress);
1072         }
1073         break;
1074     case QOR:
1075     case QOR4:
1076         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1077             decode_fast_read_cmd(s);
1078         } else {
1079             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1080                           "DIO mode\n", s->cmd_in_progress);
1081         }
1082         break;
1083 
1084     case DIOR:
1085     case DIOR4:
1086         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1087             decode_dio_read_cmd(s);
1088         } else {
1089             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1090                           "QIO mode\n", s->cmd_in_progress);
1091         }
1092         break;
1093 
1094     case QIOR:
1095     case QIOR4:
1096         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1097             decode_qio_read_cmd(s);
1098         } else {
1099             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1100                           "DIO mode\n", s->cmd_in_progress);
1101         }
1102         break;
1103 
1104     case WRSR:
1105         if (s->write_enable) {
1106             switch (get_man(s)) {
1107             case MAN_SPANSION:
1108                 s->needed_bytes = 2;
1109                 s->state = STATE_COLLECTING_DATA;
1110                 break;
1111             case MAN_MACRONIX:
1112                 s->needed_bytes = 2;
1113                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1114                 break;
1115             default:
1116                 s->needed_bytes = 1;
1117                 s->state = STATE_COLLECTING_DATA;
1118             }
1119             s->pos = 0;
1120         }
1121         break;
1122 
1123     case WRDI:
1124         s->write_enable = false;
1125         if (get_man(s) == MAN_SST) {
1126             s->aai_enable = false;
1127         }
1128         break;
1129     case WREN:
1130         s->write_enable = true;
1131         break;
1132 
1133     case RDSR:
1134         s->data[0] = (!!s->write_enable) << 1;
1135         if (get_man(s) == MAN_MACRONIX) {
1136             s->data[0] |= (!!s->quad_enable) << 6;
1137         }
1138         if (get_man(s) == MAN_SST) {
1139             s->data[0] |= (!!s->aai_enable) << 6;
1140         }
1141 
1142         s->pos = 0;
1143         s->len = 1;
1144         s->data_read_loop = true;
1145         s->state = STATE_READING_DATA;
1146         break;
1147 
1148     case READ_FSR:
1149         s->data[0] = FSR_FLASH_READY;
1150         if (s->four_bytes_address_mode) {
1151             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1152         }
1153         s->pos = 0;
1154         s->len = 1;
1155         s->data_read_loop = true;
1156         s->state = STATE_READING_DATA;
1157         break;
1158 
1159     case JEDEC_READ:
1160         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1161             trace_m25p80_populated_jedec(s);
1162             for (i = 0; i < s->pi->id_len; i++) {
1163                 s->data[i] = s->pi->id[i];
1164             }
1165             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1166                 s->data[i] = 0;
1167             }
1168 
1169             s->len = SPI_NOR_MAX_ID_LEN;
1170             s->pos = 0;
1171             s->state = STATE_READING_DATA;
1172         } else {
1173             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1174                           "in DIO or QIO mode\n");
1175         }
1176         break;
1177 
1178     case RDCR:
1179         s->data[0] = s->volatile_cfg & 0xFF;
1180         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1181         s->pos = 0;
1182         s->len = 1;
1183         s->state = STATE_READING_DATA;
1184         break;
1185 
1186     case BULK_ERASE_60:
1187     case BULK_ERASE:
1188         if (s->write_enable) {
1189             trace_m25p80_chip_erase(s);
1190             flash_erase(s, 0, BULK_ERASE);
1191         } else {
1192             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1193                           "protect!\n");
1194         }
1195         break;
1196     case NOP:
1197         break;
1198     case EN_4BYTE_ADDR:
1199         s->four_bytes_address_mode = true;
1200         break;
1201     case EX_4BYTE_ADDR:
1202         s->four_bytes_address_mode = false;
1203         break;
1204     case BRRD:
1205     case EXTEND_ADDR_READ:
1206         s->data[0] = s->ear;
1207         s->pos = 0;
1208         s->len = 1;
1209         s->state = STATE_READING_DATA;
1210         break;
1211     case BRWR:
1212     case EXTEND_ADDR_WRITE:
1213         if (s->write_enable) {
1214             s->needed_bytes = 1;
1215             s->pos = 0;
1216             s->len = 0;
1217             s->state = STATE_COLLECTING_DATA;
1218         }
1219         break;
1220     case RNVCR:
1221         s->data[0] = s->nonvolatile_cfg & 0xFF;
1222         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1223         s->pos = 0;
1224         s->len = 2;
1225         s->state = STATE_READING_DATA;
1226         break;
1227     case WNVCR:
1228         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1229             s->needed_bytes = 2;
1230             s->pos = 0;
1231             s->len = 0;
1232             s->state = STATE_COLLECTING_DATA;
1233         }
1234         break;
1235     case RVCR:
1236         s->data[0] = s->volatile_cfg & 0xFF;
1237         s->pos = 0;
1238         s->len = 1;
1239         s->state = STATE_READING_DATA;
1240         break;
1241     case WVCR:
1242         if (s->write_enable) {
1243             s->needed_bytes = 1;
1244             s->pos = 0;
1245             s->len = 0;
1246             s->state = STATE_COLLECTING_DATA;
1247         }
1248         break;
1249     case REVCR:
1250         s->data[0] = s->enh_volatile_cfg & 0xFF;
1251         s->pos = 0;
1252         s->len = 1;
1253         s->state = STATE_READING_DATA;
1254         break;
1255     case WEVCR:
1256         if (s->write_enable) {
1257             s->needed_bytes = 1;
1258             s->pos = 0;
1259             s->len = 0;
1260             s->state = STATE_COLLECTING_DATA;
1261         }
1262         break;
1263     case RESET_ENABLE:
1264         s->reset_enable = true;
1265         break;
1266     case RESET_MEMORY:
1267         if (s->reset_enable) {
1268             reset_memory(s);
1269         }
1270         break;
1271     case RDCR_EQIO:
1272         switch (get_man(s)) {
1273         case MAN_SPANSION:
1274             s->data[0] = (!!s->quad_enable) << 1;
1275             s->pos = 0;
1276             s->len = 1;
1277             s->state = STATE_READING_DATA;
1278             break;
1279         case MAN_MACRONIX:
1280             s->quad_enable = true;
1281             break;
1282         default:
1283             break;
1284         }
1285         break;
1286     case RSTQIO:
1287         s->quad_enable = false;
1288         break;
1289     case AAI_WP:
1290         if (get_man(s) == MAN_SST) {
1291             if (s->write_enable) {
1292                 if (s->aai_enable) {
1293                     s->state = STATE_PAGE_PROGRAM;
1294                 } else {
1295                     s->aai_enable = true;
1296                     s->needed_bytes = get_addr_length(s);
1297                     s->state = STATE_COLLECTING_DATA;
1298                 }
1299             } else {
1300                 qemu_log_mask(LOG_GUEST_ERROR,
1301                               "M25P80: AAI_WP with write protect\n");
1302             }
1303         } else {
1304             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1305         }
1306         break;
1307     default:
1308         s->pos = 0;
1309         s->len = 1;
1310         s->state = STATE_READING_DATA;
1311         s->data_read_loop = true;
1312         s->data[0] = 0;
1313         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1314         break;
1315     }
1316 }
1317 
1318 static int m25p80_cs(SSIPeripheral *ss, bool select)
1319 {
1320     Flash *s = M25P80(ss);
1321 
1322     if (select) {
1323         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1324             complete_collecting_data(s);
1325         }
1326         s->len = 0;
1327         s->pos = 0;
1328         s->state = STATE_IDLE;
1329         flash_sync_dirty(s, -1);
1330         s->data_read_loop = false;
1331     }
1332 
1333     trace_m25p80_select(s, select ? "de" : "");
1334 
1335     return 0;
1336 }
1337 
1338 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1339 {
1340     Flash *s = M25P80(ss);
1341     uint32_t r = 0;
1342 
1343     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1344                           s->cur_addr, (uint8_t)tx);
1345 
1346     switch (s->state) {
1347 
1348     case STATE_PAGE_PROGRAM:
1349         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1350         flash_write8(s, s->cur_addr, (uint8_t)tx);
1351         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1352 
1353         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1354             /*
1355              * There is no wrap mode during AAI programming once the highest
1356              * unprotected memory address is reached. The Write-Enable-Latch
1357              * bit is automatically reset, and AAI programming mode aborts.
1358              */
1359             s->write_enable = false;
1360             s->aai_enable = false;
1361         }
1362 
1363         break;
1364 
1365     case STATE_READ:
1366         r = s->storage[s->cur_addr];
1367         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1368         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1369         break;
1370 
1371     case STATE_COLLECTING_DATA:
1372     case STATE_COLLECTING_VAR_LEN_DATA:
1373 
1374         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1375             qemu_log_mask(LOG_GUEST_ERROR,
1376                           "M25P80: Write overrun internal data buffer. "
1377                           "SPI controller (QEMU emulator or guest driver) "
1378                           "is misbehaving\n");
1379             s->len = s->pos = 0;
1380             s->state = STATE_IDLE;
1381             break;
1382         }
1383 
1384         s->data[s->len] = (uint8_t)tx;
1385         s->len++;
1386 
1387         if (s->len == s->needed_bytes) {
1388             complete_collecting_data(s);
1389         }
1390         break;
1391 
1392     case STATE_READING_DATA:
1393 
1394         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1395             qemu_log_mask(LOG_GUEST_ERROR,
1396                           "M25P80: Read overrun internal data buffer. "
1397                           "SPI controller (QEMU emulator or guest driver) "
1398                           "is misbehaving\n");
1399             s->len = s->pos = 0;
1400             s->state = STATE_IDLE;
1401             break;
1402         }
1403 
1404         r = s->data[s->pos];
1405         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1406         s->pos++;
1407         if (s->pos == s->len) {
1408             s->pos = 0;
1409             if (!s->data_read_loop) {
1410                 s->state = STATE_IDLE;
1411             }
1412         }
1413         break;
1414 
1415     default:
1416     case STATE_IDLE:
1417         decode_new_cmd(s, (uint8_t)tx);
1418         break;
1419     }
1420 
1421     return r;
1422 }
1423 
1424 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1425 {
1426     Flash *s = M25P80(ss);
1427     M25P80Class *mc = M25P80_GET_CLASS(s);
1428     int ret;
1429 
1430     s->pi = mc->pi;
1431 
1432     s->size = s->pi->sector_size * s->pi->n_sectors;
1433     s->dirty_page = -1;
1434 
1435     if (s->blk) {
1436         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1437                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1438         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1439         if (ret < 0) {
1440             return;
1441         }
1442 
1443         trace_m25p80_binding(s);
1444         s->storage = blk_blockalign(s->blk, s->size);
1445 
1446         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1447             error_setg(errp, "failed to read the initial flash content");
1448             return;
1449         }
1450     } else {
1451         trace_m25p80_binding_no_bdrv(s);
1452         s->storage = blk_blockalign(NULL, s->size);
1453         memset(s->storage, 0xFF, s->size);
1454     }
1455 }
1456 
1457 static void m25p80_reset(DeviceState *d)
1458 {
1459     Flash *s = M25P80(d);
1460 
1461     reset_memory(s);
1462 }
1463 
1464 static int m25p80_pre_save(void *opaque)
1465 {
1466     flash_sync_dirty((Flash *)opaque, -1);
1467 
1468     return 0;
1469 }
1470 
1471 static Property m25p80_properties[] = {
1472     /* This is default value for Micron flash */
1473     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1474     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1475     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1476     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1477     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1478     DEFINE_PROP_DRIVE("drive", Flash, blk),
1479     DEFINE_PROP_END_OF_LIST(),
1480 };
1481 
1482 static int m25p80_pre_load(void *opaque)
1483 {
1484     Flash *s = (Flash *)opaque;
1485 
1486     s->data_read_loop = false;
1487     return 0;
1488 }
1489 
1490 static bool m25p80_data_read_loop_needed(void *opaque)
1491 {
1492     Flash *s = (Flash *)opaque;
1493 
1494     return s->data_read_loop;
1495 }
1496 
1497 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1498     .name = "m25p80/data_read_loop",
1499     .version_id = 1,
1500     .minimum_version_id = 1,
1501     .needed = m25p80_data_read_loop_needed,
1502     .fields = (VMStateField[]) {
1503         VMSTATE_BOOL(data_read_loop, Flash),
1504         VMSTATE_END_OF_LIST()
1505     }
1506 };
1507 
1508 static bool m25p80_aai_enable_needed(void *opaque)
1509 {
1510     Flash *s = (Flash *)opaque;
1511 
1512     return s->aai_enable;
1513 }
1514 
1515 static const VMStateDescription vmstate_m25p80_aai_enable = {
1516     .name = "m25p80/aai_enable",
1517     .version_id = 1,
1518     .minimum_version_id = 1,
1519     .needed = m25p80_aai_enable_needed,
1520     .fields = (VMStateField[]) {
1521         VMSTATE_BOOL(aai_enable, Flash),
1522         VMSTATE_END_OF_LIST()
1523     }
1524 };
1525 
1526 static const VMStateDescription vmstate_m25p80 = {
1527     .name = "m25p80",
1528     .version_id = 0,
1529     .minimum_version_id = 0,
1530     .pre_save = m25p80_pre_save,
1531     .pre_load = m25p80_pre_load,
1532     .fields = (VMStateField[]) {
1533         VMSTATE_UINT8(state, Flash),
1534         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1535         VMSTATE_UINT32(len, Flash),
1536         VMSTATE_UINT32(pos, Flash),
1537         VMSTATE_UINT8(needed_bytes, Flash),
1538         VMSTATE_UINT8(cmd_in_progress, Flash),
1539         VMSTATE_UINT32(cur_addr, Flash),
1540         VMSTATE_BOOL(write_enable, Flash),
1541         VMSTATE_BOOL(reset_enable, Flash),
1542         VMSTATE_UINT8(ear, Flash),
1543         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1544         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1545         VMSTATE_UINT32(volatile_cfg, Flash),
1546         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1547         VMSTATE_BOOL(quad_enable, Flash),
1548         VMSTATE_UINT8(spansion_cr1nv, Flash),
1549         VMSTATE_UINT8(spansion_cr2nv, Flash),
1550         VMSTATE_UINT8(spansion_cr3nv, Flash),
1551         VMSTATE_UINT8(spansion_cr4nv, Flash),
1552         VMSTATE_END_OF_LIST()
1553     },
1554     .subsections = (const VMStateDescription * []) {
1555         &vmstate_m25p80_data_read_loop,
1556         &vmstate_m25p80_aai_enable,
1557         NULL
1558     }
1559 };
1560 
1561 static void m25p80_class_init(ObjectClass *klass, void *data)
1562 {
1563     DeviceClass *dc = DEVICE_CLASS(klass);
1564     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1565     M25P80Class *mc = M25P80_CLASS(klass);
1566 
1567     k->realize = m25p80_realize;
1568     k->transfer = m25p80_transfer8;
1569     k->set_cs = m25p80_cs;
1570     k->cs_polarity = SSI_CS_LOW;
1571     dc->vmsd = &vmstate_m25p80;
1572     device_class_set_props(dc, m25p80_properties);
1573     dc->reset = m25p80_reset;
1574     mc->pi = data;
1575 }
1576 
1577 static const TypeInfo m25p80_info = {
1578     .name           = TYPE_M25P80,
1579     .parent         = TYPE_SSI_PERIPHERAL,
1580     .instance_size  = sizeof(Flash),
1581     .class_size     = sizeof(M25P80Class),
1582     .abstract       = true,
1583 };
1584 
1585 static void m25p80_register_types(void)
1586 {
1587     int i;
1588 
1589     type_register_static(&m25p80_info);
1590     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1591         TypeInfo ti = {
1592             .name       = known_devices[i].part_name,
1593             .parent     = TYPE_M25P80,
1594             .class_init = m25p80_class_init,
1595             .class_data = (void *)&known_devices[i],
1596         };
1597         type_register(&ti);
1598     }
1599 }
1600 
1601 type_init(m25p80_register_types)
1602