1 /* 2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command 3 * set. Known devices table current as of Jun/2012 and taken from linux. 4 * See drivers/mtd/devices/m25p80.c. 5 * 6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com> 7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com> 8 * Copyright (C) 2012 PetaLogix 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 or 13 * (at your option) a later version of the License. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qemu/units.h" 26 #include "sysemu/block-backend.h" 27 #include "hw/qdev-properties.h" 28 #include "hw/qdev-properties-system.h" 29 #include "hw/ssi/ssi.h" 30 #include "migration/vmstate.h" 31 #include "qemu/bitops.h" 32 #include "qemu/log.h" 33 #include "qemu/module.h" 34 #include "qemu/error-report.h" 35 #include "qapi/error.h" 36 #include "trace.h" 37 #include "qom/object.h" 38 39 /* Fields for FlashPartInfo->flags */ 40 41 /* erase capabilities */ 42 #define ER_4K 1 43 #define ER_32K 2 44 /* set to allow the page program command to write 0s back to 1. Useful for 45 * modelling EEPROM with SPI flash command set 46 */ 47 #define EEPROM 0x100 48 49 /* 16 MiB max in 3 byte address mode */ 50 #define MAX_3BYTES_SIZE 0x1000000 51 52 #define SPI_NOR_MAX_ID_LEN 6 53 54 typedef struct FlashPartInfo { 55 const char *part_name; 56 /* 57 * This array stores the ID bytes. 58 * The first three bytes are the JEDIC ID. 59 * JEDEC ID zero means "no ID" (mostly older chips). 60 */ 61 uint8_t id[SPI_NOR_MAX_ID_LEN]; 62 uint8_t id_len; 63 /* there is confusion between manufacturers as to what a sector is. In this 64 * device model, a "sector" is the size that is erased by the ERASE_SECTOR 65 * command (opcode 0xd8). 66 */ 67 uint32_t sector_size; 68 uint32_t n_sectors; 69 uint32_t page_size; 70 uint16_t flags; 71 /* 72 * Big sized spi nor are often stacked devices, thus sometime 73 * replace chip erase with die erase. 74 * This field inform how many die is in the chip. 75 */ 76 uint8_t die_cnt; 77 } FlashPartInfo; 78 79 /* adapted from linux */ 80 /* Used when the "_ext_id" is two bytes at most */ 81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ 82 .part_name = _part_name,\ 83 .id = {\ 84 ((_jedec_id) >> 16) & 0xff,\ 85 ((_jedec_id) >> 8) & 0xff,\ 86 (_jedec_id) & 0xff,\ 87 ((_ext_id) >> 8) & 0xff,\ 88 (_ext_id) & 0xff,\ 89 },\ 90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ 91 .sector_size = (_sector_size),\ 92 .n_sectors = (_n_sectors),\ 93 .page_size = 256,\ 94 .flags = (_flags),\ 95 .die_cnt = 0 96 97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ 98 .part_name = _part_name,\ 99 .id = {\ 100 ((_jedec_id) >> 16) & 0xff,\ 101 ((_jedec_id) >> 8) & 0xff,\ 102 (_jedec_id) & 0xff,\ 103 ((_ext_id) >> 16) & 0xff,\ 104 ((_ext_id) >> 8) & 0xff,\ 105 (_ext_id) & 0xff,\ 106 },\ 107 .id_len = 6,\ 108 .sector_size = (_sector_size),\ 109 .n_sectors = (_n_sectors),\ 110 .page_size = 256,\ 111 .flags = (_flags),\ 112 .die_cnt = 0 113 114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\ 115 _flags, _die_cnt)\ 116 .part_name = _part_name,\ 117 .id = {\ 118 ((_jedec_id) >> 16) & 0xff,\ 119 ((_jedec_id) >> 8) & 0xff,\ 120 (_jedec_id) & 0xff,\ 121 ((_ext_id) >> 8) & 0xff,\ 122 (_ext_id) & 0xff,\ 123 },\ 124 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ 125 .sector_size = (_sector_size),\ 126 .n_sectors = (_n_sectors),\ 127 .page_size = 256,\ 128 .flags = (_flags),\ 129 .die_cnt = _die_cnt 130 131 #define JEDEC_NUMONYX 0x20 132 #define JEDEC_WINBOND 0xEF 133 #define JEDEC_SPANSION 0x01 134 135 /* Numonyx (Micron) Configuration register macros */ 136 #define VCFG_DUMMY 0x1 137 #define VCFG_WRAP_SEQUENTIAL 0x2 138 #define NVCFG_XIP_MODE_DISABLED (7 << 9) 139 #define NVCFG_XIP_MODE_MASK (7 << 9) 140 #define VCFG_XIP_MODE_DISABLED (1 << 3) 141 #define CFG_DUMMY_CLK_LEN 4 142 #define NVCFG_DUMMY_CLK_POS 12 143 #define VCFG_DUMMY_CLK_POS 4 144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7 145 #define EVCFG_VPP_ACCELERATOR (1 << 3) 146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4) 147 #define NVCFG_DUAL_IO_MASK (1 << 2) 148 #define EVCFG_DUAL_IO_DISABLED (1 << 6) 149 #define NVCFG_QUAD_IO_MASK (1 << 3) 150 #define EVCFG_QUAD_IO_DISABLED (1 << 7) 151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0) 152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1) 153 154 /* Numonyx (Micron) Flag Status Register macros */ 155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1 156 #define FSR_FLASH_READY (1 << 7) 157 158 /* Spansion configuration registers macros. */ 159 #define SPANSION_QUAD_CFG_POS 0 160 #define SPANSION_QUAD_CFG_LEN 1 161 #define SPANSION_DUMMY_CLK_POS 0 162 #define SPANSION_DUMMY_CLK_LEN 4 163 #define SPANSION_ADDR_LEN_POS 7 164 #define SPANSION_ADDR_LEN_LEN 1 165 166 /* 167 * Spansion read mode command length in bytes, 168 * the mode is currently not supported. 169 */ 170 171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1 172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1 173 174 static const FlashPartInfo known_devices[] = { 175 /* Atmel -- some are (confusingly) marketed as "DataFlash" */ 176 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) }, 177 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) }, 178 179 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) }, 180 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) }, 181 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) }, 182 183 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) }, 184 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) }, 185 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) }, 186 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) }, 187 188 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) }, 189 190 /* Atmel EEPROMS - it is assumed, that don't care bit in command 191 * is set to 0. Block protection is not supported. 192 */ 193 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) }, 194 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) }, 195 196 /* EON -- en25xxx */ 197 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) }, 198 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) }, 199 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) }, 200 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) }, 201 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) }, 202 203 /* GigaDevice */ 204 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) }, 205 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) }, 206 207 /* Intel/Numonyx -- xxxs33b */ 208 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) }, 209 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) }, 210 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) }, 211 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) }, 212 213 /* ISSI */ 214 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K) }, 215 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K) }, 216 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K) }, 217 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K) }, 218 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K) }, 219 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K) }, 220 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K) }, 221 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K) }, 222 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K) }, 223 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K) }, 224 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K) }, 225 226 /* Macronix */ 227 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) }, 228 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) }, 229 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) }, 230 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) }, 231 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) }, 232 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) }, 233 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) }, 234 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) }, 235 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) }, 236 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) }, 237 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, 238 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, 239 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, 240 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, 241 242 /* Micron */ 243 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) }, 244 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) }, 245 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) }, 246 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) }, 247 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) }, 248 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) }, 249 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) }, 250 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, 251 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) }, 252 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, 253 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) }, 254 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, 255 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, 256 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) }, 257 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) }, 258 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024, 259 ER_4K | ER_32K, 2) }, 260 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, 261 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, 262 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, 263 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, 264 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) }, 265 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) }, 266 267 /* Spansion -- single (large) sector size only, at least 268 * for the chips listed here (without boot sectors). 269 */ 270 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) }, 271 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) }, 272 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) }, 273 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) }, 274 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) }, 275 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) }, 276 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) }, 277 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) }, 278 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) }, 279 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) }, 280 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) }, 281 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) }, 282 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) }, 283 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) }, 284 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) }, 285 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) }, 286 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) }, 287 288 /* Spansion -- boot sectors support */ 289 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) }, 290 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) }, 291 292 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */ 293 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) }, 294 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) }, 295 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) }, 296 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) }, 297 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) }, 298 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) }, 299 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) }, 300 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) }, 301 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) }, 302 303 /* ST Microelectronics -- newer production may have feature updates */ 304 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) }, 305 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) }, 306 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) }, 307 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) }, 308 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) }, 309 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) }, 310 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) }, 311 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) }, 312 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) }, 313 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) }, 314 315 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) }, 316 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) }, 317 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) }, 318 319 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) }, 320 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) }, 321 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) }, 322 323 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) }, 324 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) }, 325 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) }, 326 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) }, 327 328 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */ 329 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) }, 330 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) }, 331 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) }, 332 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) }, 333 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) }, 334 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) }, 335 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) }, 336 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) }, 337 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) }, 338 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) }, 339 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) }, 340 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) }, 341 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) }, 342 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) }, 343 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K) }, 344 }; 345 346 typedef enum { 347 NOP = 0, 348 WRSR = 0x1, 349 WRDI = 0x4, 350 RDSR = 0x5, 351 WREN = 0x6, 352 BRRD = 0x16, 353 BRWR = 0x17, 354 JEDEC_READ = 0x9f, 355 BULK_ERASE_60 = 0x60, 356 BULK_ERASE = 0xc7, 357 READ_FSR = 0x70, 358 RDCR = 0x15, 359 360 READ = 0x03, 361 READ4 = 0x13, 362 FAST_READ = 0x0b, 363 FAST_READ4 = 0x0c, 364 DOR = 0x3b, 365 DOR4 = 0x3c, 366 QOR = 0x6b, 367 QOR4 = 0x6c, 368 DIOR = 0xbb, 369 DIOR4 = 0xbc, 370 QIOR = 0xeb, 371 QIOR4 = 0xec, 372 373 PP = 0x02, 374 PP4 = 0x12, 375 PP4_4 = 0x3e, 376 DPP = 0xa2, 377 QPP = 0x32, 378 QPP_4 = 0x34, 379 RDID_90 = 0x90, 380 RDID_AB = 0xab, 381 AAI_WP = 0xad, 382 383 ERASE_4K = 0x20, 384 ERASE4_4K = 0x21, 385 ERASE_32K = 0x52, 386 ERASE4_32K = 0x5c, 387 ERASE_SECTOR = 0xd8, 388 ERASE4_SECTOR = 0xdc, 389 390 EN_4BYTE_ADDR = 0xB7, 391 EX_4BYTE_ADDR = 0xE9, 392 393 EXTEND_ADDR_READ = 0xC8, 394 EXTEND_ADDR_WRITE = 0xC5, 395 396 RESET_ENABLE = 0x66, 397 RESET_MEMORY = 0x99, 398 399 /* 400 * Micron: 0x35 - enable QPI 401 * Spansion: 0x35 - read control register 402 */ 403 RDCR_EQIO = 0x35, 404 RSTQIO = 0xf5, 405 406 RNVCR = 0xB5, 407 WNVCR = 0xB1, 408 409 RVCR = 0x85, 410 WVCR = 0x81, 411 412 REVCR = 0x65, 413 WEVCR = 0x61, 414 415 DIE_ERASE = 0xC4, 416 } FlashCMD; 417 418 typedef enum { 419 STATE_IDLE, 420 STATE_PAGE_PROGRAM, 421 STATE_READ, 422 STATE_COLLECTING_DATA, 423 STATE_COLLECTING_VAR_LEN_DATA, 424 STATE_READING_DATA, 425 } CMDState; 426 427 typedef enum { 428 MAN_SPANSION, 429 MAN_MACRONIX, 430 MAN_NUMONYX, 431 MAN_WINBOND, 432 MAN_SST, 433 MAN_ISSI, 434 MAN_GENERIC, 435 } Manufacturer; 436 437 typedef enum { 438 MODE_STD = 0, 439 MODE_DIO = 1, 440 MODE_QIO = 2 441 } SPIMode; 442 443 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16 444 445 struct Flash { 446 SSIPeripheral parent_obj; 447 448 BlockBackend *blk; 449 450 uint8_t *storage; 451 uint32_t size; 452 int page_size; 453 454 uint8_t state; 455 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ]; 456 uint32_t len; 457 uint32_t pos; 458 bool data_read_loop; 459 uint8_t needed_bytes; 460 uint8_t cmd_in_progress; 461 uint32_t cur_addr; 462 uint32_t nonvolatile_cfg; 463 /* Configuration register for Macronix */ 464 uint32_t volatile_cfg; 465 uint32_t enh_volatile_cfg; 466 /* Spansion cfg registers. */ 467 uint8_t spansion_cr1nv; 468 uint8_t spansion_cr2nv; 469 uint8_t spansion_cr3nv; 470 uint8_t spansion_cr4nv; 471 uint8_t spansion_cr1v; 472 uint8_t spansion_cr2v; 473 uint8_t spansion_cr3v; 474 uint8_t spansion_cr4v; 475 bool wp_level; 476 bool write_enable; 477 bool four_bytes_address_mode; 478 bool reset_enable; 479 bool quad_enable; 480 bool aai_enable; 481 bool status_register_write_disabled; 482 uint8_t ear; 483 484 int64_t dirty_page; 485 486 const FlashPartInfo *pi; 487 488 }; 489 490 struct M25P80Class { 491 SSIPeripheralClass parent_class; 492 FlashPartInfo *pi; 493 }; 494 495 #define TYPE_M25P80 "m25p80-generic" 496 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80) 497 498 static inline Manufacturer get_man(Flash *s) 499 { 500 switch (s->pi->id[0]) { 501 case 0x20: 502 return MAN_NUMONYX; 503 case 0xEF: 504 return MAN_WINBOND; 505 case 0x01: 506 return MAN_SPANSION; 507 case 0xC2: 508 return MAN_MACRONIX; 509 case 0xBF: 510 return MAN_SST; 511 case 0x9D: 512 return MAN_ISSI; 513 default: 514 return MAN_GENERIC; 515 } 516 } 517 518 static void blk_sync_complete(void *opaque, int ret) 519 { 520 QEMUIOVector *iov = opaque; 521 522 qemu_iovec_destroy(iov); 523 g_free(iov); 524 525 /* do nothing. Masters do not directly interact with the backing store, 526 * only the working copy so no mutexing required. 527 */ 528 } 529 530 static void flash_sync_page(Flash *s, int page) 531 { 532 QEMUIOVector *iov; 533 534 if (!s->blk || !blk_is_writable(s->blk)) { 535 return; 536 } 537 538 iov = g_new(QEMUIOVector, 1); 539 qemu_iovec_init(iov, 1); 540 qemu_iovec_add(iov, s->storage + page * s->pi->page_size, 541 s->pi->page_size); 542 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0, 543 blk_sync_complete, iov); 544 } 545 546 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len) 547 { 548 QEMUIOVector *iov; 549 550 if (!s->blk || !blk_is_writable(s->blk)) { 551 return; 552 } 553 554 assert(!(len % BDRV_SECTOR_SIZE)); 555 iov = g_new(QEMUIOVector, 1); 556 qemu_iovec_init(iov, 1); 557 qemu_iovec_add(iov, s->storage + off, len); 558 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov); 559 } 560 561 static void flash_erase(Flash *s, int offset, FlashCMD cmd) 562 { 563 uint32_t len; 564 uint8_t capa_to_assert = 0; 565 566 switch (cmd) { 567 case ERASE_4K: 568 case ERASE4_4K: 569 len = 4 * KiB; 570 capa_to_assert = ER_4K; 571 break; 572 case ERASE_32K: 573 case ERASE4_32K: 574 len = 32 * KiB; 575 capa_to_assert = ER_32K; 576 break; 577 case ERASE_SECTOR: 578 case ERASE4_SECTOR: 579 len = s->pi->sector_size; 580 break; 581 case BULK_ERASE: 582 len = s->size; 583 break; 584 case DIE_ERASE: 585 if (s->pi->die_cnt) { 586 len = s->size / s->pi->die_cnt; 587 offset = offset & (~(len - 1)); 588 } else { 589 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported" 590 " by device\n"); 591 return; 592 } 593 break; 594 default: 595 abort(); 596 } 597 598 trace_m25p80_flash_erase(s, offset, len); 599 600 if ((s->pi->flags & capa_to_assert) != capa_to_assert) { 601 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by" 602 " device\n", len); 603 } 604 605 if (!s->write_enable) { 606 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n"); 607 return; 608 } 609 memset(s->storage + offset, 0xff, len); 610 flash_sync_area(s, offset, len); 611 } 612 613 static inline void flash_sync_dirty(Flash *s, int64_t newpage) 614 { 615 if (s->dirty_page >= 0 && s->dirty_page != newpage) { 616 flash_sync_page(s, s->dirty_page); 617 s->dirty_page = newpage; 618 } 619 } 620 621 static inline 622 void flash_write8(Flash *s, uint32_t addr, uint8_t data) 623 { 624 uint32_t page = addr / s->pi->page_size; 625 uint8_t prev = s->storage[s->cur_addr]; 626 627 if (!s->write_enable) { 628 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n"); 629 return; 630 } 631 632 if ((prev ^ data) & data) { 633 trace_m25p80_programming_zero_to_one(s, addr, prev, data); 634 } 635 636 if (s->pi->flags & EEPROM) { 637 s->storage[s->cur_addr] = data; 638 } else { 639 s->storage[s->cur_addr] &= data; 640 } 641 642 flash_sync_dirty(s, page); 643 s->dirty_page = page; 644 } 645 646 static inline int get_addr_length(Flash *s) 647 { 648 /* check if eeprom is in use */ 649 if (s->pi->flags == EEPROM) { 650 return 2; 651 } 652 653 switch (s->cmd_in_progress) { 654 case PP4: 655 case PP4_4: 656 case QPP_4: 657 case READ4: 658 case QIOR4: 659 case ERASE4_4K: 660 case ERASE4_32K: 661 case ERASE4_SECTOR: 662 case FAST_READ4: 663 case DOR4: 664 case QOR4: 665 case DIOR4: 666 return 4; 667 default: 668 return s->four_bytes_address_mode ? 4 : 3; 669 } 670 } 671 672 static void complete_collecting_data(Flash *s) 673 { 674 int i, n; 675 676 n = get_addr_length(s); 677 s->cur_addr = (n == 3 ? s->ear : 0); 678 for (i = 0; i < n; ++i) { 679 s->cur_addr <<= 8; 680 s->cur_addr |= s->data[i]; 681 } 682 683 s->cur_addr &= s->size - 1; 684 685 s->state = STATE_IDLE; 686 687 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear, 688 s->cur_addr); 689 690 switch (s->cmd_in_progress) { 691 case DPP: 692 case QPP: 693 case QPP_4: 694 case PP: 695 case PP4: 696 case PP4_4: 697 s->state = STATE_PAGE_PROGRAM; 698 break; 699 case AAI_WP: 700 /* AAI programming starts from the even address */ 701 s->cur_addr &= ~BIT(0); 702 s->state = STATE_PAGE_PROGRAM; 703 break; 704 case READ: 705 case READ4: 706 case FAST_READ: 707 case FAST_READ4: 708 case DOR: 709 case DOR4: 710 case QOR: 711 case QOR4: 712 case DIOR: 713 case DIOR4: 714 case QIOR: 715 case QIOR4: 716 s->state = STATE_READ; 717 break; 718 case ERASE_4K: 719 case ERASE4_4K: 720 case ERASE_32K: 721 case ERASE4_32K: 722 case ERASE_SECTOR: 723 case ERASE4_SECTOR: 724 case DIE_ERASE: 725 flash_erase(s, s->cur_addr, s->cmd_in_progress); 726 break; 727 case WRSR: 728 s->status_register_write_disabled = extract32(s->data[0], 7, 1); 729 730 switch (get_man(s)) { 731 case MAN_SPANSION: 732 s->quad_enable = !!(s->data[1] & 0x02); 733 break; 734 case MAN_ISSI: 735 s->quad_enable = extract32(s->data[0], 6, 1); 736 break; 737 case MAN_MACRONIX: 738 s->quad_enable = extract32(s->data[0], 6, 1); 739 if (s->len > 1) { 740 s->volatile_cfg = s->data[1]; 741 s->four_bytes_address_mode = extract32(s->data[1], 5, 1); 742 } 743 break; 744 default: 745 break; 746 } 747 if (s->write_enable) { 748 s->write_enable = false; 749 } 750 break; 751 case BRWR: 752 case EXTEND_ADDR_WRITE: 753 s->ear = s->data[0]; 754 break; 755 case WNVCR: 756 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8); 757 break; 758 case WVCR: 759 s->volatile_cfg = s->data[0]; 760 break; 761 case WEVCR: 762 s->enh_volatile_cfg = s->data[0]; 763 break; 764 case RDID_90: 765 case RDID_AB: 766 if (get_man(s) == MAN_SST) { 767 if (s->cur_addr <= 1) { 768 if (s->cur_addr) { 769 s->data[0] = s->pi->id[2]; 770 s->data[1] = s->pi->id[0]; 771 } else { 772 s->data[0] = s->pi->id[0]; 773 s->data[1] = s->pi->id[2]; 774 } 775 s->pos = 0; 776 s->len = 2; 777 s->data_read_loop = true; 778 s->state = STATE_READING_DATA; 779 } else { 780 qemu_log_mask(LOG_GUEST_ERROR, 781 "M25P80: Invalid read id address\n"); 782 } 783 } else { 784 qemu_log_mask(LOG_GUEST_ERROR, 785 "M25P80: Read id (command 0x90/0xAB) is not supported" 786 " by device\n"); 787 } 788 break; 789 default: 790 break; 791 } 792 } 793 794 static void reset_memory(Flash *s) 795 { 796 s->cmd_in_progress = NOP; 797 s->cur_addr = 0; 798 s->ear = 0; 799 s->four_bytes_address_mode = false; 800 s->len = 0; 801 s->needed_bytes = 0; 802 s->pos = 0; 803 s->state = STATE_IDLE; 804 s->write_enable = false; 805 s->reset_enable = false; 806 s->quad_enable = false; 807 s->aai_enable = false; 808 809 switch (get_man(s)) { 810 case MAN_NUMONYX: 811 s->volatile_cfg = 0; 812 s->volatile_cfg |= VCFG_DUMMY; 813 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL; 814 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK) 815 == NVCFG_XIP_MODE_DISABLED) { 816 s->volatile_cfg |= VCFG_XIP_MODE_DISABLED; 817 } 818 s->volatile_cfg |= deposit32(s->volatile_cfg, 819 VCFG_DUMMY_CLK_POS, 820 CFG_DUMMY_CLK_LEN, 821 extract32(s->nonvolatile_cfg, 822 NVCFG_DUMMY_CLK_POS, 823 CFG_DUMMY_CLK_LEN) 824 ); 825 826 s->enh_volatile_cfg = 0; 827 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF; 828 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR; 829 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED; 830 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) { 831 s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED; 832 } 833 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) { 834 s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED; 835 } 836 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) { 837 s->four_bytes_address_mode = true; 838 } 839 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) { 840 s->ear = s->size / MAX_3BYTES_SIZE - 1; 841 } 842 break; 843 case MAN_MACRONIX: 844 s->volatile_cfg = 0x7; 845 break; 846 case MAN_SPANSION: 847 s->spansion_cr1v = s->spansion_cr1nv; 848 s->spansion_cr2v = s->spansion_cr2nv; 849 s->spansion_cr3v = s->spansion_cr3nv; 850 s->spansion_cr4v = s->spansion_cr4nv; 851 s->quad_enable = extract32(s->spansion_cr1v, 852 SPANSION_QUAD_CFG_POS, 853 SPANSION_QUAD_CFG_LEN 854 ); 855 s->four_bytes_address_mode = extract32(s->spansion_cr2v, 856 SPANSION_ADDR_LEN_POS, 857 SPANSION_ADDR_LEN_LEN 858 ); 859 break; 860 default: 861 break; 862 } 863 864 trace_m25p80_reset_done(s); 865 } 866 867 static uint8_t numonyx_mode(Flash *s) 868 { 869 if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) { 870 return MODE_QIO; 871 } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) { 872 return MODE_DIO; 873 } else { 874 return MODE_STD; 875 } 876 } 877 878 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s) 879 { 880 uint8_t num_dummies; 881 uint8_t mode; 882 assert(get_man(s) == MAN_NUMONYX); 883 884 mode = numonyx_mode(s); 885 num_dummies = extract32(s->volatile_cfg, 4, 4); 886 887 if (num_dummies == 0x0 || num_dummies == 0xf) { 888 switch (s->cmd_in_progress) { 889 case QIOR: 890 case QIOR4: 891 num_dummies = 10; 892 break; 893 default: 894 num_dummies = (mode == MODE_QIO) ? 10 : 8; 895 break; 896 } 897 } 898 899 return num_dummies; 900 } 901 902 static void decode_fast_read_cmd(Flash *s) 903 { 904 s->needed_bytes = get_addr_length(s); 905 switch (get_man(s)) { 906 /* Dummy cycles - modeled with bytes writes instead of bits */ 907 case MAN_SST: 908 s->needed_bytes += 1; 909 break; 910 case MAN_WINBOND: 911 s->needed_bytes += 8; 912 break; 913 case MAN_NUMONYX: 914 s->needed_bytes += numonyx_extract_cfg_num_dummies(s); 915 break; 916 case MAN_MACRONIX: 917 if (extract32(s->volatile_cfg, 6, 2) == 1) { 918 s->needed_bytes += 6; 919 } else { 920 s->needed_bytes += 8; 921 } 922 break; 923 case MAN_SPANSION: 924 s->needed_bytes += extract32(s->spansion_cr2v, 925 SPANSION_DUMMY_CLK_POS, 926 SPANSION_DUMMY_CLK_LEN 927 ); 928 break; 929 case MAN_ISSI: 930 /* 931 * The Fast Read instruction code is followed by address bytes and 932 * dummy cycles, transmitted via the SI line. 933 * 934 * The number of dummy cycles is configurable but this is currently 935 * unmodeled, hence the default value 8 is used. 936 * 937 * QPI (Quad Peripheral Interface) mode has different default value 938 * of dummy cycles, but this is unsupported at the time being. 939 */ 940 s->needed_bytes += 1; 941 break; 942 default: 943 break; 944 } 945 s->pos = 0; 946 s->len = 0; 947 s->state = STATE_COLLECTING_DATA; 948 } 949 950 static void decode_dio_read_cmd(Flash *s) 951 { 952 s->needed_bytes = get_addr_length(s); 953 /* Dummy cycles modeled with bytes writes instead of bits */ 954 switch (get_man(s)) { 955 case MAN_WINBOND: 956 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; 957 break; 958 case MAN_SPANSION: 959 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; 960 s->needed_bytes += extract32(s->spansion_cr2v, 961 SPANSION_DUMMY_CLK_POS, 962 SPANSION_DUMMY_CLK_LEN 963 ); 964 break; 965 case MAN_NUMONYX: 966 s->needed_bytes += numonyx_extract_cfg_num_dummies(s); 967 break; 968 case MAN_MACRONIX: 969 switch (extract32(s->volatile_cfg, 6, 2)) { 970 case 1: 971 s->needed_bytes += 6; 972 break; 973 case 2: 974 s->needed_bytes += 8; 975 break; 976 default: 977 s->needed_bytes += 4; 978 break; 979 } 980 break; 981 case MAN_ISSI: 982 /* 983 * The Fast Read Dual I/O instruction code is followed by address bytes 984 * and dummy cycles, transmitted via the IO1 and IO0 line. 985 * 986 * The number of dummy cycles is configurable but this is currently 987 * unmodeled, hence the default value 4 is used. 988 */ 989 s->needed_bytes += 1; 990 break; 991 default: 992 break; 993 } 994 s->pos = 0; 995 s->len = 0; 996 s->state = STATE_COLLECTING_DATA; 997 } 998 999 static void decode_qio_read_cmd(Flash *s) 1000 { 1001 s->needed_bytes = get_addr_length(s); 1002 /* Dummy cycles modeled with bytes writes instead of bits */ 1003 switch (get_man(s)) { 1004 case MAN_WINBOND: 1005 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; 1006 s->needed_bytes += 4; 1007 break; 1008 case MAN_SPANSION: 1009 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; 1010 s->needed_bytes += extract32(s->spansion_cr2v, 1011 SPANSION_DUMMY_CLK_POS, 1012 SPANSION_DUMMY_CLK_LEN 1013 ); 1014 break; 1015 case MAN_NUMONYX: 1016 s->needed_bytes += numonyx_extract_cfg_num_dummies(s); 1017 break; 1018 case MAN_MACRONIX: 1019 switch (extract32(s->volatile_cfg, 6, 2)) { 1020 case 1: 1021 s->needed_bytes += 4; 1022 break; 1023 case 2: 1024 s->needed_bytes += 8; 1025 break; 1026 default: 1027 s->needed_bytes += 6; 1028 break; 1029 } 1030 break; 1031 case MAN_ISSI: 1032 /* 1033 * The Fast Read Quad I/O instruction code is followed by address bytes 1034 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line. 1035 * 1036 * The number of dummy cycles is configurable but this is currently 1037 * unmodeled, hence the default value 6 is used. 1038 * 1039 * QPI (Quad Peripheral Interface) mode has different default value 1040 * of dummy cycles, but this is unsupported at the time being. 1041 */ 1042 s->needed_bytes += 3; 1043 break; 1044 default: 1045 break; 1046 } 1047 s->pos = 0; 1048 s->len = 0; 1049 s->state = STATE_COLLECTING_DATA; 1050 } 1051 1052 static bool is_valid_aai_cmd(uint32_t cmd) 1053 { 1054 return cmd == AAI_WP || cmd == WRDI || cmd == RDSR; 1055 } 1056 1057 static void decode_new_cmd(Flash *s, uint32_t value) 1058 { 1059 int i; 1060 1061 s->cmd_in_progress = value; 1062 trace_m25p80_command_decoded(s, value); 1063 1064 if (value != RESET_MEMORY) { 1065 s->reset_enable = false; 1066 } 1067 1068 if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) { 1069 qemu_log_mask(LOG_GUEST_ERROR, 1070 "M25P80: Invalid cmd within AAI programming sequence"); 1071 } 1072 1073 switch (value) { 1074 1075 case ERASE_4K: 1076 case ERASE4_4K: 1077 case ERASE_32K: 1078 case ERASE4_32K: 1079 case ERASE_SECTOR: 1080 case ERASE4_SECTOR: 1081 case PP: 1082 case PP4: 1083 case DIE_ERASE: 1084 case RDID_90: 1085 case RDID_AB: 1086 s->needed_bytes = get_addr_length(s); 1087 s->pos = 0; 1088 s->len = 0; 1089 s->state = STATE_COLLECTING_DATA; 1090 break; 1091 case READ: 1092 case READ4: 1093 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) { 1094 s->needed_bytes = get_addr_length(s); 1095 s->pos = 0; 1096 s->len = 0; 1097 s->state = STATE_COLLECTING_DATA; 1098 } else { 1099 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1100 "DIO or QIO mode\n", s->cmd_in_progress); 1101 } 1102 break; 1103 case DPP: 1104 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { 1105 s->needed_bytes = get_addr_length(s); 1106 s->pos = 0; 1107 s->len = 0; 1108 s->state = STATE_COLLECTING_DATA; 1109 } else { 1110 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1111 "QIO mode\n", s->cmd_in_progress); 1112 } 1113 break; 1114 case QPP: 1115 case QPP_4: 1116 case PP4_4: 1117 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { 1118 s->needed_bytes = get_addr_length(s); 1119 s->pos = 0; 1120 s->len = 0; 1121 s->state = STATE_COLLECTING_DATA; 1122 } else { 1123 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1124 "DIO mode\n", s->cmd_in_progress); 1125 } 1126 break; 1127 1128 case FAST_READ: 1129 case FAST_READ4: 1130 decode_fast_read_cmd(s); 1131 break; 1132 case DOR: 1133 case DOR4: 1134 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { 1135 decode_fast_read_cmd(s); 1136 } else { 1137 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1138 "QIO mode\n", s->cmd_in_progress); 1139 } 1140 break; 1141 case QOR: 1142 case QOR4: 1143 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { 1144 decode_fast_read_cmd(s); 1145 } else { 1146 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1147 "DIO mode\n", s->cmd_in_progress); 1148 } 1149 break; 1150 1151 case DIOR: 1152 case DIOR4: 1153 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { 1154 decode_dio_read_cmd(s); 1155 } else { 1156 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1157 "QIO mode\n", s->cmd_in_progress); 1158 } 1159 break; 1160 1161 case QIOR: 1162 case QIOR4: 1163 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { 1164 decode_qio_read_cmd(s); 1165 } else { 1166 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " 1167 "DIO mode\n", s->cmd_in_progress); 1168 } 1169 break; 1170 1171 case WRSR: 1172 /* 1173 * If WP# is low and status_register_write_disabled is high, 1174 * status register writes are disabled. 1175 * This is also called "hardware protected mode" (HPM). All other 1176 * combinations of the two states are called "software protected mode" 1177 * (SPM), and status register writes are permitted. 1178 */ 1179 if ((s->wp_level == 0 && s->status_register_write_disabled) 1180 || !s->write_enable) { 1181 qemu_log_mask(LOG_GUEST_ERROR, 1182 "M25P80: Status register write is disabled!\n"); 1183 break; 1184 } 1185 1186 switch (get_man(s)) { 1187 case MAN_SPANSION: 1188 s->needed_bytes = 2; 1189 s->state = STATE_COLLECTING_DATA; 1190 break; 1191 case MAN_MACRONIX: 1192 s->needed_bytes = 2; 1193 s->state = STATE_COLLECTING_VAR_LEN_DATA; 1194 break; 1195 default: 1196 s->needed_bytes = 1; 1197 s->state = STATE_COLLECTING_DATA; 1198 } 1199 s->pos = 0; 1200 break; 1201 1202 case WRDI: 1203 s->write_enable = false; 1204 if (get_man(s) == MAN_SST) { 1205 s->aai_enable = false; 1206 } 1207 break; 1208 case WREN: 1209 s->write_enable = true; 1210 break; 1211 1212 case RDSR: 1213 s->data[0] = (!!s->write_enable) << 1; 1214 s->data[0] |= (!!s->status_register_write_disabled) << 7; 1215 1216 if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) { 1217 s->data[0] |= (!!s->quad_enable) << 6; 1218 } 1219 if (get_man(s) == MAN_SST) { 1220 s->data[0] |= (!!s->aai_enable) << 6; 1221 } 1222 1223 s->pos = 0; 1224 s->len = 1; 1225 s->data_read_loop = true; 1226 s->state = STATE_READING_DATA; 1227 break; 1228 1229 case READ_FSR: 1230 s->data[0] = FSR_FLASH_READY; 1231 if (s->four_bytes_address_mode) { 1232 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED; 1233 } 1234 s->pos = 0; 1235 s->len = 1; 1236 s->data_read_loop = true; 1237 s->state = STATE_READING_DATA; 1238 break; 1239 1240 case JEDEC_READ: 1241 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) { 1242 trace_m25p80_populated_jedec(s); 1243 for (i = 0; i < s->pi->id_len; i++) { 1244 s->data[i] = s->pi->id[i]; 1245 } 1246 for (; i < SPI_NOR_MAX_ID_LEN; i++) { 1247 s->data[i] = 0; 1248 } 1249 1250 s->len = SPI_NOR_MAX_ID_LEN; 1251 s->pos = 0; 1252 s->state = STATE_READING_DATA; 1253 } else { 1254 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read " 1255 "in DIO or QIO mode\n"); 1256 } 1257 break; 1258 1259 case RDCR: 1260 s->data[0] = s->volatile_cfg & 0xFF; 1261 s->data[0] |= (!!s->four_bytes_address_mode) << 5; 1262 s->pos = 0; 1263 s->len = 1; 1264 s->state = STATE_READING_DATA; 1265 break; 1266 1267 case BULK_ERASE_60: 1268 case BULK_ERASE: 1269 if (s->write_enable) { 1270 trace_m25p80_chip_erase(s); 1271 flash_erase(s, 0, BULK_ERASE); 1272 } else { 1273 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write " 1274 "protect!\n"); 1275 } 1276 break; 1277 case NOP: 1278 break; 1279 case EN_4BYTE_ADDR: 1280 s->four_bytes_address_mode = true; 1281 break; 1282 case EX_4BYTE_ADDR: 1283 s->four_bytes_address_mode = false; 1284 break; 1285 case BRRD: 1286 case EXTEND_ADDR_READ: 1287 s->data[0] = s->ear; 1288 s->pos = 0; 1289 s->len = 1; 1290 s->state = STATE_READING_DATA; 1291 break; 1292 case BRWR: 1293 case EXTEND_ADDR_WRITE: 1294 if (s->write_enable) { 1295 s->needed_bytes = 1; 1296 s->pos = 0; 1297 s->len = 0; 1298 s->state = STATE_COLLECTING_DATA; 1299 } 1300 break; 1301 case RNVCR: 1302 s->data[0] = s->nonvolatile_cfg & 0xFF; 1303 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF; 1304 s->pos = 0; 1305 s->len = 2; 1306 s->state = STATE_READING_DATA; 1307 break; 1308 case WNVCR: 1309 if (s->write_enable && get_man(s) == MAN_NUMONYX) { 1310 s->needed_bytes = 2; 1311 s->pos = 0; 1312 s->len = 0; 1313 s->state = STATE_COLLECTING_DATA; 1314 } 1315 break; 1316 case RVCR: 1317 s->data[0] = s->volatile_cfg & 0xFF; 1318 s->pos = 0; 1319 s->len = 1; 1320 s->state = STATE_READING_DATA; 1321 break; 1322 case WVCR: 1323 if (s->write_enable) { 1324 s->needed_bytes = 1; 1325 s->pos = 0; 1326 s->len = 0; 1327 s->state = STATE_COLLECTING_DATA; 1328 } 1329 break; 1330 case REVCR: 1331 s->data[0] = s->enh_volatile_cfg & 0xFF; 1332 s->pos = 0; 1333 s->len = 1; 1334 s->state = STATE_READING_DATA; 1335 break; 1336 case WEVCR: 1337 if (s->write_enable) { 1338 s->needed_bytes = 1; 1339 s->pos = 0; 1340 s->len = 0; 1341 s->state = STATE_COLLECTING_DATA; 1342 } 1343 break; 1344 case RESET_ENABLE: 1345 s->reset_enable = true; 1346 break; 1347 case RESET_MEMORY: 1348 if (s->reset_enable) { 1349 reset_memory(s); 1350 } 1351 break; 1352 case RDCR_EQIO: 1353 switch (get_man(s)) { 1354 case MAN_SPANSION: 1355 s->data[0] = (!!s->quad_enable) << 1; 1356 s->pos = 0; 1357 s->len = 1; 1358 s->state = STATE_READING_DATA; 1359 break; 1360 case MAN_MACRONIX: 1361 s->quad_enable = true; 1362 break; 1363 default: 1364 break; 1365 } 1366 break; 1367 case RSTQIO: 1368 s->quad_enable = false; 1369 break; 1370 case AAI_WP: 1371 if (get_man(s) == MAN_SST) { 1372 if (s->write_enable) { 1373 if (s->aai_enable) { 1374 s->state = STATE_PAGE_PROGRAM; 1375 } else { 1376 s->aai_enable = true; 1377 s->needed_bytes = get_addr_length(s); 1378 s->state = STATE_COLLECTING_DATA; 1379 } 1380 } else { 1381 qemu_log_mask(LOG_GUEST_ERROR, 1382 "M25P80: AAI_WP with write protect\n"); 1383 } 1384 } else { 1385 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); 1386 } 1387 break; 1388 default: 1389 s->pos = 0; 1390 s->len = 1; 1391 s->state = STATE_READING_DATA; 1392 s->data_read_loop = true; 1393 s->data[0] = 0; 1394 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); 1395 break; 1396 } 1397 } 1398 1399 static int m25p80_cs(SSIPeripheral *ss, bool select) 1400 { 1401 Flash *s = M25P80(ss); 1402 1403 if (select) { 1404 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) { 1405 complete_collecting_data(s); 1406 } 1407 s->len = 0; 1408 s->pos = 0; 1409 s->state = STATE_IDLE; 1410 flash_sync_dirty(s, -1); 1411 s->data_read_loop = false; 1412 } 1413 1414 trace_m25p80_select(s, select ? "de" : ""); 1415 1416 return 0; 1417 } 1418 1419 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx) 1420 { 1421 Flash *s = M25P80(ss); 1422 uint32_t r = 0; 1423 1424 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos, 1425 s->cur_addr, (uint8_t)tx); 1426 1427 switch (s->state) { 1428 1429 case STATE_PAGE_PROGRAM: 1430 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx); 1431 flash_write8(s, s->cur_addr, (uint8_t)tx); 1432 s->cur_addr = (s->cur_addr + 1) & (s->size - 1); 1433 1434 if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) { 1435 /* 1436 * There is no wrap mode during AAI programming once the highest 1437 * unprotected memory address is reached. The Write-Enable-Latch 1438 * bit is automatically reset, and AAI programming mode aborts. 1439 */ 1440 s->write_enable = false; 1441 s->aai_enable = false; 1442 } 1443 1444 break; 1445 1446 case STATE_READ: 1447 r = s->storage[s->cur_addr]; 1448 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r); 1449 s->cur_addr = (s->cur_addr + 1) & (s->size - 1); 1450 break; 1451 1452 case STATE_COLLECTING_DATA: 1453 case STATE_COLLECTING_VAR_LEN_DATA: 1454 1455 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) { 1456 qemu_log_mask(LOG_GUEST_ERROR, 1457 "M25P80: Write overrun internal data buffer. " 1458 "SPI controller (QEMU emulator or guest driver) " 1459 "is misbehaving\n"); 1460 s->len = s->pos = 0; 1461 s->state = STATE_IDLE; 1462 break; 1463 } 1464 1465 s->data[s->len] = (uint8_t)tx; 1466 s->len++; 1467 1468 if (s->len == s->needed_bytes) { 1469 complete_collecting_data(s); 1470 } 1471 break; 1472 1473 case STATE_READING_DATA: 1474 1475 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) { 1476 qemu_log_mask(LOG_GUEST_ERROR, 1477 "M25P80: Read overrun internal data buffer. " 1478 "SPI controller (QEMU emulator or guest driver) " 1479 "is misbehaving\n"); 1480 s->len = s->pos = 0; 1481 s->state = STATE_IDLE; 1482 break; 1483 } 1484 1485 r = s->data[s->pos]; 1486 trace_m25p80_read_data(s, s->pos, (uint8_t)r); 1487 s->pos++; 1488 if (s->pos == s->len) { 1489 s->pos = 0; 1490 if (!s->data_read_loop) { 1491 s->state = STATE_IDLE; 1492 } 1493 } 1494 break; 1495 1496 default: 1497 case STATE_IDLE: 1498 decode_new_cmd(s, (uint8_t)tx); 1499 break; 1500 } 1501 1502 return r; 1503 } 1504 1505 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level) 1506 { 1507 Flash *s = M25P80(opaque); 1508 /* WP# is just a single pin. */ 1509 assert(n == 0); 1510 s->wp_level = !!level; 1511 } 1512 1513 static void m25p80_realize(SSIPeripheral *ss, Error **errp) 1514 { 1515 Flash *s = M25P80(ss); 1516 M25P80Class *mc = M25P80_GET_CLASS(s); 1517 int ret; 1518 1519 s->pi = mc->pi; 1520 1521 s->size = s->pi->sector_size * s->pi->n_sectors; 1522 s->dirty_page = -1; 1523 1524 if (s->blk) { 1525 uint64_t perm = BLK_PERM_CONSISTENT_READ | 1526 (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0); 1527 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp); 1528 if (ret < 0) { 1529 return; 1530 } 1531 1532 trace_m25p80_binding(s); 1533 s->storage = blk_blockalign(s->blk, s->size); 1534 1535 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) { 1536 error_setg(errp, "failed to read the initial flash content"); 1537 return; 1538 } 1539 } else { 1540 trace_m25p80_binding_no_bdrv(s); 1541 s->storage = blk_blockalign(NULL, s->size); 1542 memset(s->storage, 0xFF, s->size); 1543 } 1544 1545 qdev_init_gpio_in_named(DEVICE(s), 1546 m25p80_write_protect_pin_irq_handler, "WP#", 1); 1547 } 1548 1549 static void m25p80_reset(DeviceState *d) 1550 { 1551 Flash *s = M25P80(d); 1552 1553 s->wp_level = true; 1554 s->status_register_write_disabled = false; 1555 1556 reset_memory(s); 1557 } 1558 1559 static int m25p80_pre_save(void *opaque) 1560 { 1561 flash_sync_dirty((Flash *)opaque, -1); 1562 1563 return 0; 1564 } 1565 1566 static Property m25p80_properties[] = { 1567 /* This is default value for Micron flash */ 1568 DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false), 1569 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF), 1570 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0), 1571 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8), 1572 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2), 1573 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10), 1574 DEFINE_PROP_DRIVE("drive", Flash, blk), 1575 DEFINE_PROP_END_OF_LIST(), 1576 }; 1577 1578 static int m25p80_pre_load(void *opaque) 1579 { 1580 Flash *s = (Flash *)opaque; 1581 1582 s->data_read_loop = false; 1583 return 0; 1584 } 1585 1586 static bool m25p80_data_read_loop_needed(void *opaque) 1587 { 1588 Flash *s = (Flash *)opaque; 1589 1590 return s->data_read_loop; 1591 } 1592 1593 static const VMStateDescription vmstate_m25p80_data_read_loop = { 1594 .name = "m25p80/data_read_loop", 1595 .version_id = 1, 1596 .minimum_version_id = 1, 1597 .needed = m25p80_data_read_loop_needed, 1598 .fields = (VMStateField[]) { 1599 VMSTATE_BOOL(data_read_loop, Flash), 1600 VMSTATE_END_OF_LIST() 1601 } 1602 }; 1603 1604 static bool m25p80_aai_enable_needed(void *opaque) 1605 { 1606 Flash *s = (Flash *)opaque; 1607 1608 return s->aai_enable; 1609 } 1610 1611 static const VMStateDescription vmstate_m25p80_aai_enable = { 1612 .name = "m25p80/aai_enable", 1613 .version_id = 1, 1614 .minimum_version_id = 1, 1615 .needed = m25p80_aai_enable_needed, 1616 .fields = (VMStateField[]) { 1617 VMSTATE_BOOL(aai_enable, Flash), 1618 VMSTATE_END_OF_LIST() 1619 } 1620 }; 1621 1622 static bool m25p80_wp_level_srwd_needed(void *opaque) 1623 { 1624 Flash *s = (Flash *)opaque; 1625 1626 return !s->wp_level || s->status_register_write_disabled; 1627 } 1628 1629 static const VMStateDescription vmstate_m25p80_write_protect = { 1630 .name = "m25p80/write_protect", 1631 .version_id = 1, 1632 .minimum_version_id = 1, 1633 .needed = m25p80_wp_level_srwd_needed, 1634 .fields = (VMStateField[]) { 1635 VMSTATE_BOOL(wp_level, Flash), 1636 VMSTATE_BOOL(status_register_write_disabled, Flash), 1637 VMSTATE_END_OF_LIST() 1638 } 1639 }; 1640 1641 static const VMStateDescription vmstate_m25p80 = { 1642 .name = "m25p80", 1643 .version_id = 0, 1644 .minimum_version_id = 0, 1645 .pre_save = m25p80_pre_save, 1646 .pre_load = m25p80_pre_load, 1647 .fields = (VMStateField[]) { 1648 VMSTATE_UINT8(state, Flash), 1649 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ), 1650 VMSTATE_UINT32(len, Flash), 1651 VMSTATE_UINT32(pos, Flash), 1652 VMSTATE_UINT8(needed_bytes, Flash), 1653 VMSTATE_UINT8(cmd_in_progress, Flash), 1654 VMSTATE_UINT32(cur_addr, Flash), 1655 VMSTATE_BOOL(write_enable, Flash), 1656 VMSTATE_BOOL(reset_enable, Flash), 1657 VMSTATE_UINT8(ear, Flash), 1658 VMSTATE_BOOL(four_bytes_address_mode, Flash), 1659 VMSTATE_UINT32(nonvolatile_cfg, Flash), 1660 VMSTATE_UINT32(volatile_cfg, Flash), 1661 VMSTATE_UINT32(enh_volatile_cfg, Flash), 1662 VMSTATE_BOOL(quad_enable, Flash), 1663 VMSTATE_UINT8(spansion_cr1nv, Flash), 1664 VMSTATE_UINT8(spansion_cr2nv, Flash), 1665 VMSTATE_UINT8(spansion_cr3nv, Flash), 1666 VMSTATE_UINT8(spansion_cr4nv, Flash), 1667 VMSTATE_END_OF_LIST() 1668 }, 1669 .subsections = (const VMStateDescription * []) { 1670 &vmstate_m25p80_data_read_loop, 1671 &vmstate_m25p80_aai_enable, 1672 &vmstate_m25p80_write_protect, 1673 NULL 1674 } 1675 }; 1676 1677 static void m25p80_class_init(ObjectClass *klass, void *data) 1678 { 1679 DeviceClass *dc = DEVICE_CLASS(klass); 1680 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass); 1681 M25P80Class *mc = M25P80_CLASS(klass); 1682 1683 k->realize = m25p80_realize; 1684 k->transfer = m25p80_transfer8; 1685 k->set_cs = m25p80_cs; 1686 k->cs_polarity = SSI_CS_LOW; 1687 dc->vmsd = &vmstate_m25p80; 1688 device_class_set_props(dc, m25p80_properties); 1689 dc->reset = m25p80_reset; 1690 mc->pi = data; 1691 } 1692 1693 static const TypeInfo m25p80_info = { 1694 .name = TYPE_M25P80, 1695 .parent = TYPE_SSI_PERIPHERAL, 1696 .instance_size = sizeof(Flash), 1697 .class_size = sizeof(M25P80Class), 1698 .abstract = true, 1699 }; 1700 1701 static void m25p80_register_types(void) 1702 { 1703 int i; 1704 1705 type_register_static(&m25p80_info); 1706 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) { 1707 TypeInfo ti = { 1708 .name = known_devices[i].part_name, 1709 .parent = TYPE_M25P80, 1710 .class_init = m25p80_class_init, 1711 .class_data = (void *)&known_devices[i], 1712 }; 1713 type_register(&ti); 1714 } 1715 } 1716 1717 type_init(m25p80_register_types) 1718