xref: /openbmc/qemu/hw/block/m25p80.c (revision 4cbd6c41fa3aa901e12e8158e8d22dd8f70f7a90)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
36 #endif
37 
38 #define DB_PRINT_L(level, ...) do { \
39     if (M25P80_ERR_DEBUG > (level)) { \
40         fprintf(stderr,  ": %s: ", __func__); \
41         fprintf(stderr, ## __VA_ARGS__); \
42     } \
43 } while (0);
44 
45 /* Fields for FlashPartInfo->flags */
46 
47 /* erase capabilities */
48 #define ER_4K 1
49 #define ER_32K 2
50 /* set to allow the page program command to write 0s back to 1. Useful for
51  * modelling EEPROM with SPI flash command set
52  */
53 #define EEPROM 0x100
54 
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
57 
58 #define SPI_NOR_MAX_ID_LEN 6
59 
60 typedef struct FlashPartInfo {
61     const char *part_name;
62     /*
63      * This array stores the ID bytes.
64      * The first three bytes are the JEDIC ID.
65      * JEDEC ID zero means "no ID" (mostly older chips).
66      */
67     uint8_t id[SPI_NOR_MAX_ID_LEN];
68     uint8_t id_len;
69     /* there is confusion between manufacturers as to what a sector is. In this
70      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71      * command (opcode 0xd8).
72      */
73     uint32_t sector_size;
74     uint32_t n_sectors;
75     uint32_t page_size;
76     uint16_t flags;
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),
95 
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97     .part_name = _part_name,\
98     .id = {\
99         ((_jedec_id) >> 16) & 0xff,\
100         ((_jedec_id) >> 8) & 0xff,\
101         (_jedec_id) & 0xff,\
102         ((_ext_id) >> 16) & 0xff,\
103         ((_ext_id) >> 8) & 0xff,\
104         (_ext_id) & 0xff,\
105           },\
106     .id_len = 6,\
107     .sector_size = (_sector_size),\
108     .n_sectors = (_n_sectors),\
109     .page_size = 256,\
110     .flags = (_flags),\
111 
112 #define JEDEC_NUMONYX 0x20
113 #define JEDEC_WINBOND 0xEF
114 #define JEDEC_SPANSION 0x01
115 
116 /* Numonyx (Micron) Configuration register macros */
117 #define VCFG_DUMMY 0x1
118 #define VCFG_WRAP_SEQUENTIAL 0x2
119 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
120 #define NVCFG_XIP_MODE_MASK (7 << 9)
121 #define VCFG_XIP_MODE_ENABLED (1 << 3)
122 #define CFG_DUMMY_CLK_LEN 4
123 #define NVCFG_DUMMY_CLK_POS 12
124 #define VCFG_DUMMY_CLK_POS 4
125 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
126 #define EVCFG_VPP_ACCELERATOR (1 << 3)
127 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
128 #define NVCFG_DUAL_IO_MASK (1 << 2)
129 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
130 #define NVCFG_QUAD_IO_MASK (1 << 3)
131 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
132 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
133 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
134 
135 /* Numonyx (Micron) Flag Status Register macros */
136 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
137 #define FSR_FLASH_READY (1 << 7)
138 
139 /* Spansion configuration registers macros. */
140 #define SPANSION_QUAD_CFG_POS 0
141 #define SPANSION_QUAD_CFG_LEN 1
142 #define SPANSION_DUMMY_CLK_POS 0
143 #define SPANSION_DUMMY_CLK_LEN 4
144 #define SPANSION_ADDR_LEN_POS 7
145 #define SPANSION_ADDR_LEN_LEN 1
146 
147 /*
148  * Spansion read mode command length in bytes,
149  * the mode is currently not supported.
150 */
151 
152 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
153 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
154 
155 static const FlashPartInfo known_devices[] = {
156     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
157     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
158     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
159 
160     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
161     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
162     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
163 
164     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
165     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
166     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
167     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
168 
169     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
170 
171     /* Atmel EEPROMS - it is assumed, that don't care bit in command
172      * is set to 0. Block protection is not supported.
173      */
174     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
175     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
176 
177     /* EON -- en25xxx */
178     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
179     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
180     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
181     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
182     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
183 
184     /* GigaDevice */
185     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
186     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
187 
188     /* Intel/Numonyx -- xxxs33b */
189     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
190     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
191     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
192     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
193 
194     /* Macronix */
195     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
196     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
197     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
198     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
199     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
200     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
201     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
202     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
203     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
204     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
205     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
206     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
207     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
208 
209     /* Micron */
210     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
211     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
212     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
213     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
214     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
215     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
216     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
217     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
218     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
219     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
220     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
221     { INFO("mt25ql01g",   0x20ba21,      0,  64 << 10, 2048, ER_4K) },
222     { INFO("mt25qu01g",   0x20bb21,      0,  64 << 10, 2048, ER_4K) },
223 
224     /* Spansion -- single (large) sector size only, at least
225      * for the chips listed here (without boot sectors).
226      */
227     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
228     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
229     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
230     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
231     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
232     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
233     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
234     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
235     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
236     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
237     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
238     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
239     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
240     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
241     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
242     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
243     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
244 
245     /* Spansion --  boot sectors support  */
246     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
247     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
248 
249     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
250     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
251     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
252     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
253     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
254     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
255     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
256     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
257     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
258     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
259 
260     /* ST Microelectronics -- newer production may have feature updates */
261     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
262     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
263     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
264     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
265     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
266     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
267     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
268     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
269     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
270     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
271 
272     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
273     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
274     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
275 
276     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
277     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
278     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
279 
280     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
281     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
282     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
283     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
284 
285     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
286     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
287     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
288     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
289     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
290     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
291     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
292     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
293     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
294     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
295     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
296     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
297     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
298     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
299 };
300 
301 typedef enum {
302     NOP = 0,
303     WRSR = 0x1,
304     WRDI = 0x4,
305     RDSR = 0x5,
306     WREN = 0x6,
307     JEDEC_READ = 0x9f,
308     BULK_ERASE = 0xc7,
309     READ_FSR = 0x70,
310     RDCR = 0x15,
311 
312     READ = 0x03,
313     READ4 = 0x13,
314     FAST_READ = 0x0b,
315     FAST_READ4 = 0x0c,
316     DOR = 0x3b,
317     DOR4 = 0x3c,
318     QOR = 0x6b,
319     QOR4 = 0x6c,
320     DIOR = 0xbb,
321     DIOR4 = 0xbc,
322     QIOR = 0xeb,
323     QIOR4 = 0xec,
324 
325     PP = 0x02,
326     PP4 = 0x12,
327     PP4_4 = 0x3e,
328     DPP = 0xa2,
329     QPP = 0x32,
330 
331     ERASE_4K = 0x20,
332     ERASE4_4K = 0x21,
333     ERASE_32K = 0x52,
334     ERASE4_32K = 0x5c,
335     ERASE_SECTOR = 0xd8,
336     ERASE4_SECTOR = 0xdc,
337 
338     EN_4BYTE_ADDR = 0xB7,
339     EX_4BYTE_ADDR = 0xE9,
340 
341     EXTEND_ADDR_READ = 0xC8,
342     EXTEND_ADDR_WRITE = 0xC5,
343 
344     RESET_ENABLE = 0x66,
345     RESET_MEMORY = 0x99,
346 
347     /*
348      * Micron: 0x35 - enable QPI
349      * Spansion: 0x35 - read control register
350      */
351     RDCR_EQIO = 0x35,
352     RSTQIO = 0xf5,
353 
354     RNVCR = 0xB5,
355     WNVCR = 0xB1,
356 
357     RVCR = 0x85,
358     WVCR = 0x81,
359 
360     REVCR = 0x65,
361     WEVCR = 0x61,
362 } FlashCMD;
363 
364 typedef enum {
365     STATE_IDLE,
366     STATE_PAGE_PROGRAM,
367     STATE_READ,
368     STATE_COLLECTING_DATA,
369     STATE_COLLECTING_VAR_LEN_DATA,
370     STATE_READING_DATA,
371 } CMDState;
372 
373 typedef enum {
374     MAN_SPANSION,
375     MAN_MACRONIX,
376     MAN_NUMONYX,
377     MAN_WINBOND,
378     MAN_GENERIC,
379 } Manufacturer;
380 
381 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
382 
383 typedef struct Flash {
384     SSISlave parent_obj;
385 
386     BlockBackend *blk;
387 
388     uint8_t *storage;
389     uint32_t size;
390     int page_size;
391 
392     uint8_t state;
393     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
394     uint32_t len;
395     uint32_t pos;
396     uint8_t needed_bytes;
397     uint8_t cmd_in_progress;
398     uint32_t cur_addr;
399     uint32_t nonvolatile_cfg;
400     /* Configuration register for Macronix */
401     uint32_t volatile_cfg;
402     uint32_t enh_volatile_cfg;
403     /* Spansion cfg registers. */
404     uint8_t spansion_cr1nv;
405     uint8_t spansion_cr2nv;
406     uint8_t spansion_cr3nv;
407     uint8_t spansion_cr4nv;
408     uint8_t spansion_cr1v;
409     uint8_t spansion_cr2v;
410     uint8_t spansion_cr3v;
411     uint8_t spansion_cr4v;
412     bool write_enable;
413     bool four_bytes_address_mode;
414     bool reset_enable;
415     bool quad_enable;
416     uint8_t ear;
417 
418     int64_t dirty_page;
419 
420     const FlashPartInfo *pi;
421 
422 } Flash;
423 
424 typedef struct M25P80Class {
425     SSISlaveClass parent_class;
426     FlashPartInfo *pi;
427 } M25P80Class;
428 
429 #define TYPE_M25P80 "m25p80-generic"
430 #define M25P80(obj) \
431      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
432 #define M25P80_CLASS(klass) \
433      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
434 #define M25P80_GET_CLASS(obj) \
435      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
436 
437 static inline Manufacturer get_man(Flash *s)
438 {
439     switch (s->pi->id[0]) {
440     case 0x20:
441         return MAN_NUMONYX;
442     case 0xEF:
443         return MAN_WINBOND;
444     case 0x01:
445         return MAN_SPANSION;
446     case 0xC2:
447         return MAN_MACRONIX;
448     default:
449         return MAN_GENERIC;
450     }
451 }
452 
453 static void blk_sync_complete(void *opaque, int ret)
454 {
455     QEMUIOVector *iov = opaque;
456 
457     qemu_iovec_destroy(iov);
458     g_free(iov);
459 
460     /* do nothing. Masters do not directly interact with the backing store,
461      * only the working copy so no mutexing required.
462      */
463 }
464 
465 static void flash_sync_page(Flash *s, int page)
466 {
467     QEMUIOVector *iov;
468 
469     if (!s->blk || blk_is_read_only(s->blk)) {
470         return;
471     }
472 
473     iov = g_new(QEMUIOVector, 1);
474     qemu_iovec_init(iov, 1);
475     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
476                    s->pi->page_size);
477     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
478                     blk_sync_complete, iov);
479 }
480 
481 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
482 {
483     QEMUIOVector *iov;
484 
485     if (!s->blk || blk_is_read_only(s->blk)) {
486         return;
487     }
488 
489     assert(!(len % BDRV_SECTOR_SIZE));
490     iov = g_new(QEMUIOVector, 1);
491     qemu_iovec_init(iov, 1);
492     qemu_iovec_add(iov, s->storage + off, len);
493     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
494 }
495 
496 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
497 {
498     uint32_t len;
499     uint8_t capa_to_assert = 0;
500 
501     switch (cmd) {
502     case ERASE_4K:
503     case ERASE4_4K:
504         len = 4 << 10;
505         capa_to_assert = ER_4K;
506         break;
507     case ERASE_32K:
508     case ERASE4_32K:
509         len = 32 << 10;
510         capa_to_assert = ER_32K;
511         break;
512     case ERASE_SECTOR:
513     case ERASE4_SECTOR:
514         len = s->pi->sector_size;
515         break;
516     case BULK_ERASE:
517         len = s->size;
518         break;
519     default:
520         abort();
521     }
522 
523     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
524     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
525         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
526                       " device\n", len);
527     }
528 
529     if (!s->write_enable) {
530         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
531         return;
532     }
533     memset(s->storage + offset, 0xff, len);
534     flash_sync_area(s, offset, len);
535 }
536 
537 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
538 {
539     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
540         flash_sync_page(s, s->dirty_page);
541         s->dirty_page = newpage;
542     }
543 }
544 
545 static inline
546 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
547 {
548     uint32_t page = addr / s->pi->page_size;
549     uint8_t prev = s->storage[s->cur_addr];
550 
551     if (!s->write_enable) {
552         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
553     }
554 
555     if ((prev ^ data) & data) {
556         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
557                    " -> %" PRIx8 "\n", addr, prev, data);
558     }
559 
560     if (s->pi->flags & EEPROM) {
561         s->storage[s->cur_addr] = data;
562     } else {
563         s->storage[s->cur_addr] &= data;
564     }
565 
566     flash_sync_dirty(s, page);
567     s->dirty_page = page;
568 }
569 
570 static inline int get_addr_length(Flash *s)
571 {
572    /* check if eeprom is in use */
573     if (s->pi->flags == EEPROM) {
574         return 2;
575     }
576 
577    switch (s->cmd_in_progress) {
578    case PP4:
579    case PP4_4:
580    case READ4:
581    case QIOR4:
582    case ERASE4_4K:
583    case ERASE4_32K:
584    case ERASE4_SECTOR:
585    case FAST_READ4:
586    case DOR4:
587    case QOR4:
588    case DIOR4:
589        return 4;
590    default:
591        return s->four_bytes_address_mode ? 4 : 3;
592    }
593 }
594 
595 static void complete_collecting_data(Flash *s)
596 {
597     int i, n;
598 
599     n = get_addr_length(s);
600     s->cur_addr = (n == 3 ? s->ear : 0);
601     for (i = 0; i < n; ++i) {
602         s->cur_addr <<= 8;
603         s->cur_addr |= s->data[i];
604     }
605 
606     s->cur_addr &= s->size - 1;
607 
608     s->state = STATE_IDLE;
609 
610     switch (s->cmd_in_progress) {
611     case DPP:
612     case QPP:
613     case PP:
614     case PP4:
615     case PP4_4:
616         s->state = STATE_PAGE_PROGRAM;
617         break;
618     case READ:
619     case READ4:
620     case FAST_READ:
621     case FAST_READ4:
622     case DOR:
623     case DOR4:
624     case QOR:
625     case QOR4:
626     case DIOR:
627     case DIOR4:
628     case QIOR:
629     case QIOR4:
630         s->state = STATE_READ;
631         break;
632     case ERASE_4K:
633     case ERASE4_4K:
634     case ERASE_32K:
635     case ERASE4_32K:
636     case ERASE_SECTOR:
637     case ERASE4_SECTOR:
638         flash_erase(s, s->cur_addr, s->cmd_in_progress);
639         break;
640     case WRSR:
641         switch (get_man(s)) {
642         case MAN_SPANSION:
643             s->quad_enable = !!(s->data[1] & 0x02);
644             break;
645         case MAN_MACRONIX:
646             s->quad_enable = extract32(s->data[0], 6, 1);
647             if (s->len > 1) {
648                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
649             }
650             break;
651         default:
652             break;
653         }
654         if (s->write_enable) {
655             s->write_enable = false;
656         }
657         break;
658     case EXTEND_ADDR_WRITE:
659         s->ear = s->data[0];
660         break;
661     case WNVCR:
662         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
663         break;
664     case WVCR:
665         s->volatile_cfg = s->data[0];
666         break;
667     case WEVCR:
668         s->enh_volatile_cfg = s->data[0];
669         break;
670     default:
671         break;
672     }
673 }
674 
675 static void reset_memory(Flash *s)
676 {
677     s->cmd_in_progress = NOP;
678     s->cur_addr = 0;
679     s->ear = 0;
680     s->four_bytes_address_mode = false;
681     s->len = 0;
682     s->needed_bytes = 0;
683     s->pos = 0;
684     s->state = STATE_IDLE;
685     s->write_enable = false;
686     s->reset_enable = false;
687     s->quad_enable = false;
688 
689     switch (get_man(s)) {
690     case MAN_NUMONYX:
691         s->volatile_cfg = 0;
692         s->volatile_cfg |= VCFG_DUMMY;
693         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
694         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
695                                 != NVCFG_XIP_MODE_DISABLED) {
696             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
697         }
698         s->volatile_cfg |= deposit32(s->volatile_cfg,
699                             VCFG_DUMMY_CLK_POS,
700                             CFG_DUMMY_CLK_LEN,
701                             extract32(s->nonvolatile_cfg,
702                                         NVCFG_DUMMY_CLK_POS,
703                                         CFG_DUMMY_CLK_LEN)
704                             );
705 
706         s->enh_volatile_cfg = 0;
707         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
708         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
709         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
710         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
711             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
712         }
713         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
714             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
715         }
716         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
717             s->four_bytes_address_mode = true;
718         }
719         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
720             s->ear = s->size / MAX_3BYTES_SIZE - 1;
721         }
722         break;
723     case MAN_MACRONIX:
724         s->volatile_cfg = 0x7;
725         break;
726     case MAN_SPANSION:
727         s->spansion_cr1v = s->spansion_cr1nv;
728         s->spansion_cr2v = s->spansion_cr2nv;
729         s->spansion_cr3v = s->spansion_cr3nv;
730         s->spansion_cr4v = s->spansion_cr4nv;
731         s->quad_enable = extract32(s->spansion_cr1v,
732                                    SPANSION_QUAD_CFG_POS,
733                                    SPANSION_QUAD_CFG_LEN
734                                    );
735         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
736                 SPANSION_ADDR_LEN_POS,
737                 SPANSION_ADDR_LEN_LEN
738                 );
739         break;
740     default:
741         break;
742     }
743 
744     DB_PRINT_L(0, "Reset done.\n");
745 }
746 
747 static void decode_fast_read_cmd(Flash *s)
748 {
749     s->needed_bytes = get_addr_length(s);
750     switch (get_man(s)) {
751     /* Dummy cycles - modeled with bytes writes instead of bits */
752     case MAN_WINBOND:
753         s->needed_bytes += 8;
754         break;
755     case MAN_NUMONYX:
756         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
757         break;
758     case MAN_MACRONIX:
759         if (extract32(s->volatile_cfg, 6, 2) == 1) {
760             s->needed_bytes += 6;
761         } else {
762             s->needed_bytes += 8;
763         }
764         break;
765     case MAN_SPANSION:
766         s->needed_bytes += extract32(s->spansion_cr2v,
767                                     SPANSION_DUMMY_CLK_POS,
768                                     SPANSION_DUMMY_CLK_LEN
769                                     );
770         break;
771     default:
772         break;
773     }
774     s->pos = 0;
775     s->len = 0;
776     s->state = STATE_COLLECTING_DATA;
777 }
778 
779 static void decode_dio_read_cmd(Flash *s)
780 {
781     s->needed_bytes = get_addr_length(s);
782     /* Dummy cycles modeled with bytes writes instead of bits */
783     switch (get_man(s)) {
784     case MAN_WINBOND:
785         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
786         break;
787     case MAN_SPANSION:
788         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
789         s->needed_bytes += extract32(s->spansion_cr2v,
790                                     SPANSION_DUMMY_CLK_POS,
791                                     SPANSION_DUMMY_CLK_LEN
792                                     );
793         break;
794     case MAN_NUMONYX:
795         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
796         break;
797     case MAN_MACRONIX:
798         switch (extract32(s->volatile_cfg, 6, 2)) {
799         case 1:
800             s->needed_bytes += 6;
801             break;
802         case 2:
803             s->needed_bytes += 8;
804             break;
805         default:
806             s->needed_bytes += 4;
807             break;
808         }
809         break;
810     default:
811         break;
812     }
813     s->pos = 0;
814     s->len = 0;
815     s->state = STATE_COLLECTING_DATA;
816 }
817 
818 static void decode_qio_read_cmd(Flash *s)
819 {
820     s->needed_bytes = get_addr_length(s);
821     /* Dummy cycles modeled with bytes writes instead of bits */
822     switch (get_man(s)) {
823     case MAN_WINBOND:
824         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
825         s->needed_bytes += 4;
826         break;
827     case MAN_SPANSION:
828         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
829         s->needed_bytes += extract32(s->spansion_cr2v,
830                                     SPANSION_DUMMY_CLK_POS,
831                                     SPANSION_DUMMY_CLK_LEN
832                                     );
833         break;
834     case MAN_NUMONYX:
835         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
836         break;
837     case MAN_MACRONIX:
838         switch (extract32(s->volatile_cfg, 6, 2)) {
839         case 1:
840             s->needed_bytes += 4;
841             break;
842         case 2:
843             s->needed_bytes += 8;
844             break;
845         default:
846             s->needed_bytes += 6;
847             break;
848         }
849         break;
850     default:
851         break;
852     }
853     s->pos = 0;
854     s->len = 0;
855     s->state = STATE_COLLECTING_DATA;
856 }
857 
858 static void decode_new_cmd(Flash *s, uint32_t value)
859 {
860     s->cmd_in_progress = value;
861     int i;
862     DB_PRINT_L(0, "decoded new command:%x\n", value);
863 
864     if (value != RESET_MEMORY) {
865         s->reset_enable = false;
866     }
867 
868     switch (value) {
869 
870     case ERASE_4K:
871     case ERASE4_4K:
872     case ERASE_32K:
873     case ERASE4_32K:
874     case ERASE_SECTOR:
875     case ERASE4_SECTOR:
876     case READ:
877     case READ4:
878     case DPP:
879     case QPP:
880     case PP:
881     case PP4:
882     case PP4_4:
883         s->needed_bytes = get_addr_length(s);
884         s->pos = 0;
885         s->len = 0;
886         s->state = STATE_COLLECTING_DATA;
887         break;
888 
889     case FAST_READ:
890     case FAST_READ4:
891     case DOR:
892     case DOR4:
893     case QOR:
894     case QOR4:
895         decode_fast_read_cmd(s);
896         break;
897 
898     case DIOR:
899     case DIOR4:
900         decode_dio_read_cmd(s);
901         break;
902 
903     case QIOR:
904     case QIOR4:
905         decode_qio_read_cmd(s);
906         break;
907 
908     case WRSR:
909         if (s->write_enable) {
910             switch (get_man(s)) {
911             case MAN_SPANSION:
912                 s->needed_bytes = 2;
913                 s->state = STATE_COLLECTING_DATA;
914                 break;
915             case MAN_MACRONIX:
916                 s->needed_bytes = 2;
917                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
918                 break;
919             default:
920                 s->needed_bytes = 1;
921                 s->state = STATE_COLLECTING_DATA;
922             }
923             s->pos = 0;
924         }
925         break;
926 
927     case WRDI:
928         s->write_enable = false;
929         break;
930     case WREN:
931         s->write_enable = true;
932         break;
933 
934     case RDSR:
935         s->data[0] = (!!s->write_enable) << 1;
936         if (get_man(s) == MAN_MACRONIX) {
937             s->data[0] |= (!!s->quad_enable) << 6;
938         }
939         s->pos = 0;
940         s->len = 1;
941         s->state = STATE_READING_DATA;
942         break;
943 
944     case READ_FSR:
945         s->data[0] = FSR_FLASH_READY;
946         if (s->four_bytes_address_mode) {
947             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
948         }
949         s->pos = 0;
950         s->len = 1;
951         s->state = STATE_READING_DATA;
952         break;
953 
954     case JEDEC_READ:
955         DB_PRINT_L(0, "populated jedec code\n");
956         for (i = 0; i < s->pi->id_len; i++) {
957             s->data[i] = s->pi->id[i];
958         }
959 
960         s->len = s->pi->id_len;
961         s->pos = 0;
962         s->state = STATE_READING_DATA;
963         break;
964 
965     case RDCR:
966         s->data[0] = s->volatile_cfg & 0xFF;
967         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
968         s->pos = 0;
969         s->len = 1;
970         s->state = STATE_READING_DATA;
971         break;
972 
973     case BULK_ERASE:
974         if (s->write_enable) {
975             DB_PRINT_L(0, "chip erase\n");
976             flash_erase(s, 0, BULK_ERASE);
977         } else {
978             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
979                           "protect!\n");
980         }
981         break;
982     case NOP:
983         break;
984     case EN_4BYTE_ADDR:
985         s->four_bytes_address_mode = true;
986         break;
987     case EX_4BYTE_ADDR:
988         s->four_bytes_address_mode = false;
989         break;
990     case EXTEND_ADDR_READ:
991         s->data[0] = s->ear;
992         s->pos = 0;
993         s->len = 1;
994         s->state = STATE_READING_DATA;
995         break;
996     case EXTEND_ADDR_WRITE:
997         if (s->write_enable) {
998             s->needed_bytes = 1;
999             s->pos = 0;
1000             s->len = 0;
1001             s->state = STATE_COLLECTING_DATA;
1002         }
1003         break;
1004     case RNVCR:
1005         s->data[0] = s->nonvolatile_cfg & 0xFF;
1006         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1007         s->pos = 0;
1008         s->len = 2;
1009         s->state = STATE_READING_DATA;
1010         break;
1011     case WNVCR:
1012         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1013             s->needed_bytes = 2;
1014             s->pos = 0;
1015             s->len = 0;
1016             s->state = STATE_COLLECTING_DATA;
1017         }
1018         break;
1019     case RVCR:
1020         s->data[0] = s->volatile_cfg & 0xFF;
1021         s->pos = 0;
1022         s->len = 1;
1023         s->state = STATE_READING_DATA;
1024         break;
1025     case WVCR:
1026         if (s->write_enable) {
1027             s->needed_bytes = 1;
1028             s->pos = 0;
1029             s->len = 0;
1030             s->state = STATE_COLLECTING_DATA;
1031         }
1032         break;
1033     case REVCR:
1034         s->data[0] = s->enh_volatile_cfg & 0xFF;
1035         s->pos = 0;
1036         s->len = 1;
1037         s->state = STATE_READING_DATA;
1038         break;
1039     case WEVCR:
1040         if (s->write_enable) {
1041             s->needed_bytes = 1;
1042             s->pos = 0;
1043             s->len = 0;
1044             s->state = STATE_COLLECTING_DATA;
1045         }
1046         break;
1047     case RESET_ENABLE:
1048         s->reset_enable = true;
1049         break;
1050     case RESET_MEMORY:
1051         if (s->reset_enable) {
1052             reset_memory(s);
1053         }
1054         break;
1055     case RDCR_EQIO:
1056         switch (get_man(s)) {
1057         case MAN_SPANSION:
1058             s->data[0] = (!!s->quad_enable) << 1;
1059             s->pos = 0;
1060             s->len = 1;
1061             s->state = STATE_READING_DATA;
1062             break;
1063         case MAN_MACRONIX:
1064             s->quad_enable = true;
1065             break;
1066         default:
1067             break;
1068         }
1069         break;
1070     case RSTQIO:
1071         s->quad_enable = false;
1072         break;
1073     default:
1074         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1075         break;
1076     }
1077 }
1078 
1079 static int m25p80_cs(SSISlave *ss, bool select)
1080 {
1081     Flash *s = M25P80(ss);
1082 
1083     if (select) {
1084         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1085             complete_collecting_data(s);
1086         }
1087         s->len = 0;
1088         s->pos = 0;
1089         s->state = STATE_IDLE;
1090         flash_sync_dirty(s, -1);
1091     }
1092 
1093     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1094 
1095     return 0;
1096 }
1097 
1098 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1099 {
1100     Flash *s = M25P80(ss);
1101     uint32_t r = 0;
1102 
1103     switch (s->state) {
1104 
1105     case STATE_PAGE_PROGRAM:
1106         DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1107                    s->cur_addr, (uint8_t)tx);
1108         flash_write8(s, s->cur_addr, (uint8_t)tx);
1109         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1110         break;
1111 
1112     case STATE_READ:
1113         r = s->storage[s->cur_addr];
1114         DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1115                    (uint8_t)r);
1116         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1117         break;
1118 
1119     case STATE_COLLECTING_DATA:
1120     case STATE_COLLECTING_VAR_LEN_DATA:
1121 
1122         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1123             qemu_log_mask(LOG_GUEST_ERROR,
1124                           "M25P80: Write overrun internal data buffer. "
1125                           "SPI controller (QEMU emulator or guest driver) "
1126                           "is misbehaving\n");
1127             s->len = s->pos = 0;
1128             s->state = STATE_IDLE;
1129             break;
1130         }
1131 
1132         s->data[s->len] = (uint8_t)tx;
1133         s->len++;
1134 
1135         if (s->len == s->needed_bytes) {
1136             complete_collecting_data(s);
1137         }
1138         break;
1139 
1140     case STATE_READING_DATA:
1141 
1142         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1143             qemu_log_mask(LOG_GUEST_ERROR,
1144                           "M25P80: Read overrun internal data buffer. "
1145                           "SPI controller (QEMU emulator or guest driver) "
1146                           "is misbehaving\n");
1147             s->len = s->pos = 0;
1148             s->state = STATE_IDLE;
1149             break;
1150         }
1151 
1152         r = s->data[s->pos];
1153         s->pos++;
1154         if (s->pos == s->len) {
1155             s->pos = 0;
1156             s->state = STATE_IDLE;
1157         }
1158         break;
1159 
1160     default:
1161     case STATE_IDLE:
1162         decode_new_cmd(s, (uint8_t)tx);
1163         break;
1164     }
1165 
1166     return r;
1167 }
1168 
1169 static void m25p80_realize(SSISlave *ss, Error **errp)
1170 {
1171     Flash *s = M25P80(ss);
1172     M25P80Class *mc = M25P80_GET_CLASS(s);
1173 
1174     s->pi = mc->pi;
1175 
1176     s->size = s->pi->sector_size * s->pi->n_sectors;
1177     s->dirty_page = -1;
1178 
1179     if (s->blk) {
1180         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1181         s->storage = blk_blockalign(s->blk, s->size);
1182 
1183         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1184             error_setg(errp, "failed to read the initial flash content");
1185             return;
1186         }
1187     } else {
1188         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1189         s->storage = blk_blockalign(NULL, s->size);
1190         memset(s->storage, 0xFF, s->size);
1191     }
1192 }
1193 
1194 static void m25p80_reset(DeviceState *d)
1195 {
1196     Flash *s = M25P80(d);
1197 
1198     reset_memory(s);
1199 }
1200 
1201 static void m25p80_pre_save(void *opaque)
1202 {
1203     flash_sync_dirty((Flash *)opaque, -1);
1204 }
1205 
1206 static Property m25p80_properties[] = {
1207     /* This is default value for Micron flash */
1208     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1209     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1210     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1211     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1212     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1213     DEFINE_PROP_DRIVE("drive", Flash, blk),
1214     DEFINE_PROP_END_OF_LIST(),
1215 };
1216 
1217 static const VMStateDescription vmstate_m25p80 = {
1218     .name = "m25p80",
1219     .version_id = 0,
1220     .minimum_version_id = 0,
1221     .pre_save = m25p80_pre_save,
1222     .fields = (VMStateField[]) {
1223         VMSTATE_UINT8(state, Flash),
1224         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1225         VMSTATE_UINT32(len, Flash),
1226         VMSTATE_UINT32(pos, Flash),
1227         VMSTATE_UINT8(needed_bytes, Flash),
1228         VMSTATE_UINT8(cmd_in_progress, Flash),
1229         VMSTATE_UINT32(cur_addr, Flash),
1230         VMSTATE_BOOL(write_enable, Flash),
1231         VMSTATE_BOOL(reset_enable, Flash),
1232         VMSTATE_UINT8(ear, Flash),
1233         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1234         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1235         VMSTATE_UINT32(volatile_cfg, Flash),
1236         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1237         VMSTATE_BOOL(quad_enable, Flash),
1238         VMSTATE_UINT8(spansion_cr1nv, Flash),
1239         VMSTATE_UINT8(spansion_cr2nv, Flash),
1240         VMSTATE_UINT8(spansion_cr3nv, Flash),
1241         VMSTATE_UINT8(spansion_cr4nv, Flash),
1242         VMSTATE_END_OF_LIST()
1243     }
1244 };
1245 
1246 static void m25p80_class_init(ObjectClass *klass, void *data)
1247 {
1248     DeviceClass *dc = DEVICE_CLASS(klass);
1249     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1250     M25P80Class *mc = M25P80_CLASS(klass);
1251 
1252     k->realize = m25p80_realize;
1253     k->transfer = m25p80_transfer8;
1254     k->set_cs = m25p80_cs;
1255     k->cs_polarity = SSI_CS_LOW;
1256     dc->vmsd = &vmstate_m25p80;
1257     dc->props = m25p80_properties;
1258     dc->reset = m25p80_reset;
1259     mc->pi = data;
1260 }
1261 
1262 static const TypeInfo m25p80_info = {
1263     .name           = TYPE_M25P80,
1264     .parent         = TYPE_SSI_SLAVE,
1265     .instance_size  = sizeof(Flash),
1266     .class_size     = sizeof(M25P80Class),
1267     .abstract       = true,
1268 };
1269 
1270 static void m25p80_register_types(void)
1271 {
1272     int i;
1273 
1274     type_register_static(&m25p80_info);
1275     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1276         TypeInfo ti = {
1277             .name       = known_devices[i].part_name,
1278             .parent     = TYPE_M25P80,
1279             .class_init = m25p80_class_init,
1280             .class_data = (void *)&known_devices[i],
1281         };
1282         type_register(&ti);
1283     }
1284 }
1285 
1286 type_init(m25p80_register_types)
1287