xref: /openbmc/qemu/hw/block/m25p80.c (revision 4be74634)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "hw/hw.h"
25 #include "sysemu/block-backend.h"
26 #include "sysemu/blockdev.h"
27 #include "hw/ssi.h"
28 
29 #ifndef M25P80_ERR_DEBUG
30 #define M25P80_ERR_DEBUG 0
31 #endif
32 
33 #define DB_PRINT_L(level, ...) do { \
34     if (M25P80_ERR_DEBUG > (level)) { \
35         fprintf(stderr,  ": %s: ", __func__); \
36         fprintf(stderr, ## __VA_ARGS__); \
37     } \
38 } while (0);
39 
40 /* Fields for FlashPartInfo->flags */
41 
42 /* erase capabilities */
43 #define ER_4K 1
44 #define ER_32K 2
45 /* set to allow the page program command to write 0s back to 1. Useful for
46  * modelling EEPROM with SPI flash command set
47  */
48 #define WR_1 0x100
49 
50 typedef struct FlashPartInfo {
51     const char *part_name;
52     /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
53     uint32_t jedec;
54     /* extended jedec code */
55     uint16_t ext_jedec;
56     /* there is confusion between manufacturers as to what a sector is. In this
57      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
58      * command (opcode 0xd8).
59      */
60     uint32_t sector_size;
61     uint32_t n_sectors;
62     uint32_t page_size;
63     uint8_t flags;
64 } FlashPartInfo;
65 
66 /* adapted from linux */
67 
68 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
69     .part_name = (_part_name),\
70     .jedec = (_jedec),\
71     .ext_jedec = (_ext_jedec),\
72     .sector_size = (_sector_size),\
73     .n_sectors = (_n_sectors),\
74     .page_size = 256,\
75     .flags = (_flags),\
76 
77 #define JEDEC_NUMONYX 0x20
78 #define JEDEC_WINBOND 0xEF
79 #define JEDEC_SPANSION 0x01
80 
81 static const FlashPartInfo known_devices[] = {
82     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
83     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
84     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
85 
86     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
87     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
88     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
89 
90     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
91     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
92     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
93     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
94 
95     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
96 
97     /* EON -- en25xxx */
98     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
99     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
100     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
101     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
102     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
103 
104     /* GigaDevice */
105     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
106     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
107 
108     /* Intel/Numonyx -- xxxs33b */
109     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
110     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
111     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
112     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
113 
114     /* Macronix */
115     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
116     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
117     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
118     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
119     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
120     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
121     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
122     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
123     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
124     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
125 
126     /* Micron */
127     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
128     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
129     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
130     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
131     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
132     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
133     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
134     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
135 
136     /* Spansion -- single (large) sector size only, at least
137      * for the chips listed here (without boot sectors).
138      */
139     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
140     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
141     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
142     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
143     { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
144     { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
145     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
146     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
147     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
148     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
149     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
150     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
151     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
152     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
153     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
154     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
155     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
156 
157     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
158     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
159     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
160     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
161     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
162     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
163     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
164     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
165     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
166 
167     /* ST Microelectronics -- newer production may have feature updates */
168     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
169     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
170     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
171     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
172     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
173     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
174     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
175     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
176     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
177     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
178 
179     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
180     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
181     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
182 
183     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
184     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
185     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
186 
187     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
188     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
189     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
190     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
191 
192     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
193     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
194     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
195     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
196     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
197     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
198     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
199     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
200     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
201     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
202     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
203     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
204     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
205     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
206 
207     /* Numonyx -- n25q128 */
208     { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
209 };
210 
211 typedef enum {
212     NOP = 0,
213     WRSR = 0x1,
214     WRDI = 0x4,
215     RDSR = 0x5,
216     WREN = 0x6,
217     JEDEC_READ = 0x9f,
218     BULK_ERASE = 0xc7,
219 
220     READ = 0x3,
221     FAST_READ = 0xb,
222     DOR = 0x3b,
223     QOR = 0x6b,
224     DIOR = 0xbb,
225     QIOR = 0xeb,
226 
227     PP = 0x2,
228     DPP = 0xa2,
229     QPP = 0x32,
230 
231     ERASE_4K = 0x20,
232     ERASE_32K = 0x52,
233     ERASE_SECTOR = 0xd8,
234 } FlashCMD;
235 
236 typedef enum {
237     STATE_IDLE,
238     STATE_PAGE_PROGRAM,
239     STATE_READ,
240     STATE_COLLECTING_DATA,
241     STATE_READING_DATA,
242 } CMDState;
243 
244 typedef struct Flash {
245     SSISlave parent_obj;
246 
247     uint32_t r;
248 
249     BlockBackend *blk;
250 
251     uint8_t *storage;
252     uint32_t size;
253     int page_size;
254 
255     uint8_t state;
256     uint8_t data[16];
257     uint32_t len;
258     uint32_t pos;
259     uint8_t needed_bytes;
260     uint8_t cmd_in_progress;
261     uint64_t cur_addr;
262     bool write_enable;
263 
264     int64_t dirty_page;
265 
266     const FlashPartInfo *pi;
267 
268 } Flash;
269 
270 typedef struct M25P80Class {
271     SSISlaveClass parent_class;
272     FlashPartInfo *pi;
273 } M25P80Class;
274 
275 #define TYPE_M25P80 "m25p80-generic"
276 #define M25P80(obj) \
277      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
278 #define M25P80_CLASS(klass) \
279      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
280 #define M25P80_GET_CLASS(obj) \
281      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
282 
283 static void blk_sync_complete(void *opaque, int ret)
284 {
285     /* do nothing. Masters do not directly interact with the backing store,
286      * only the working copy so no mutexing required.
287      */
288 }
289 
290 static void flash_sync_page(Flash *s, int page)
291 {
292     int blk_sector, nb_sectors;
293     QEMUIOVector iov;
294 
295     if (!s->blk || blk_is_read_only(s->blk)) {
296         return;
297     }
298 
299     blk_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
300     nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
301     qemu_iovec_init(&iov, 1);
302     qemu_iovec_add(&iov, s->storage + blk_sector * BDRV_SECTOR_SIZE,
303                    nb_sectors * BDRV_SECTOR_SIZE);
304     blk_aio_writev(s->blk, blk_sector, &iov, nb_sectors, blk_sync_complete,
305                    NULL);
306 }
307 
308 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
309 {
310     int64_t start, end, nb_sectors;
311     QEMUIOVector iov;
312 
313     if (!s->blk || blk_is_read_only(s->blk)) {
314         return;
315     }
316 
317     assert(!(len % BDRV_SECTOR_SIZE));
318     start = off / BDRV_SECTOR_SIZE;
319     end = (off + len) / BDRV_SECTOR_SIZE;
320     nb_sectors = end - start;
321     qemu_iovec_init(&iov, 1);
322     qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
323                                         nb_sectors * BDRV_SECTOR_SIZE);
324     blk_aio_writev(s->blk, start, &iov, nb_sectors, blk_sync_complete, NULL);
325 }
326 
327 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
328 {
329     uint32_t len;
330     uint8_t capa_to_assert = 0;
331 
332     switch (cmd) {
333     case ERASE_4K:
334         len = 4 << 10;
335         capa_to_assert = ER_4K;
336         break;
337     case ERASE_32K:
338         len = 32 << 10;
339         capa_to_assert = ER_32K;
340         break;
341     case ERASE_SECTOR:
342         len = s->pi->sector_size;
343         break;
344     case BULK_ERASE:
345         len = s->size;
346         break;
347     default:
348         abort();
349     }
350 
351     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
352     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
353         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
354                       " device\n", len);
355     }
356 
357     if (!s->write_enable) {
358         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
359         return;
360     }
361     memset(s->storage + offset, 0xff, len);
362     flash_sync_area(s, offset, len);
363 }
364 
365 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
366 {
367     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
368         flash_sync_page(s, s->dirty_page);
369         s->dirty_page = newpage;
370     }
371 }
372 
373 static inline
374 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
375 {
376     int64_t page = addr / s->pi->page_size;
377     uint8_t prev = s->storage[s->cur_addr];
378 
379     if (!s->write_enable) {
380         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
381     }
382 
383     if ((prev ^ data) & data) {
384         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
385                    " -> %" PRIx8 "\n", addr, prev, data);
386     }
387 
388     if (s->pi->flags & WR_1) {
389         s->storage[s->cur_addr] = data;
390     } else {
391         s->storage[s->cur_addr] &= data;
392     }
393 
394     flash_sync_dirty(s, page);
395     s->dirty_page = page;
396 }
397 
398 static void complete_collecting_data(Flash *s)
399 {
400     s->cur_addr = s->data[0] << 16;
401     s->cur_addr |= s->data[1] << 8;
402     s->cur_addr |= s->data[2];
403 
404     s->state = STATE_IDLE;
405 
406     switch (s->cmd_in_progress) {
407     case DPP:
408     case QPP:
409     case PP:
410         s->state = STATE_PAGE_PROGRAM;
411         break;
412     case READ:
413     case FAST_READ:
414     case DOR:
415     case QOR:
416     case DIOR:
417     case QIOR:
418         s->state = STATE_READ;
419         break;
420     case ERASE_4K:
421     case ERASE_32K:
422     case ERASE_SECTOR:
423         flash_erase(s, s->cur_addr, s->cmd_in_progress);
424         break;
425     case WRSR:
426         if (s->write_enable) {
427             s->write_enable = false;
428         }
429         break;
430     default:
431         break;
432     }
433 }
434 
435 static void decode_new_cmd(Flash *s, uint32_t value)
436 {
437     s->cmd_in_progress = value;
438     DB_PRINT_L(0, "decoded new command:%x\n", value);
439 
440     switch (value) {
441 
442     case ERASE_4K:
443     case ERASE_32K:
444     case ERASE_SECTOR:
445     case READ:
446     case DPP:
447     case QPP:
448     case PP:
449         s->needed_bytes = 3;
450         s->pos = 0;
451         s->len = 0;
452         s->state = STATE_COLLECTING_DATA;
453         break;
454 
455     case FAST_READ:
456     case DOR:
457     case QOR:
458         s->needed_bytes = 4;
459         s->pos = 0;
460         s->len = 0;
461         s->state = STATE_COLLECTING_DATA;
462         break;
463 
464     case DIOR:
465         switch ((s->pi->jedec >> 16) & 0xFF) {
466         case JEDEC_WINBOND:
467         case JEDEC_SPANSION:
468             s->needed_bytes = 4;
469             break;
470         case JEDEC_NUMONYX:
471         default:
472             s->needed_bytes = 5;
473         }
474         s->pos = 0;
475         s->len = 0;
476         s->state = STATE_COLLECTING_DATA;
477         break;
478 
479     case QIOR:
480         switch ((s->pi->jedec >> 16) & 0xFF) {
481         case JEDEC_WINBOND:
482         case JEDEC_SPANSION:
483             s->needed_bytes = 6;
484             break;
485         case JEDEC_NUMONYX:
486         default:
487             s->needed_bytes = 8;
488         }
489         s->pos = 0;
490         s->len = 0;
491         s->state = STATE_COLLECTING_DATA;
492         break;
493 
494     case WRSR:
495         if (s->write_enable) {
496             s->needed_bytes = 1;
497             s->pos = 0;
498             s->len = 0;
499             s->state = STATE_COLLECTING_DATA;
500         }
501         break;
502 
503     case WRDI:
504         s->write_enable = false;
505         break;
506     case WREN:
507         s->write_enable = true;
508         break;
509 
510     case RDSR:
511         s->data[0] = (!!s->write_enable) << 1;
512         s->pos = 0;
513         s->len = 1;
514         s->state = STATE_READING_DATA;
515         break;
516 
517     case JEDEC_READ:
518         DB_PRINT_L(0, "populated jedec code\n");
519         s->data[0] = (s->pi->jedec >> 16) & 0xff;
520         s->data[1] = (s->pi->jedec >> 8) & 0xff;
521         s->data[2] = s->pi->jedec & 0xff;
522         if (s->pi->ext_jedec) {
523             s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
524             s->data[4] = s->pi->ext_jedec & 0xff;
525             s->len = 5;
526         } else {
527             s->len = 3;
528         }
529         s->pos = 0;
530         s->state = STATE_READING_DATA;
531         break;
532 
533     case BULK_ERASE:
534         if (s->write_enable) {
535             DB_PRINT_L(0, "chip erase\n");
536             flash_erase(s, 0, BULK_ERASE);
537         } else {
538             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
539                           "protect!\n");
540         }
541         break;
542     case NOP:
543         break;
544     default:
545         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
546         break;
547     }
548 }
549 
550 static int m25p80_cs(SSISlave *ss, bool select)
551 {
552     Flash *s = M25P80(ss);
553 
554     if (select) {
555         s->len = 0;
556         s->pos = 0;
557         s->state = STATE_IDLE;
558         flash_sync_dirty(s, -1);
559     }
560 
561     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
562 
563     return 0;
564 }
565 
566 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
567 {
568     Flash *s = M25P80(ss);
569     uint32_t r = 0;
570 
571     switch (s->state) {
572 
573     case STATE_PAGE_PROGRAM:
574         DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
575                    s->cur_addr, (uint8_t)tx);
576         flash_write8(s, s->cur_addr, (uint8_t)tx);
577         s->cur_addr++;
578         break;
579 
580     case STATE_READ:
581         r = s->storage[s->cur_addr];
582         DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
583                    (uint8_t)r);
584         s->cur_addr = (s->cur_addr + 1) % s->size;
585         break;
586 
587     case STATE_COLLECTING_DATA:
588         s->data[s->len] = (uint8_t)tx;
589         s->len++;
590 
591         if (s->len == s->needed_bytes) {
592             complete_collecting_data(s);
593         }
594         break;
595 
596     case STATE_READING_DATA:
597         r = s->data[s->pos];
598         s->pos++;
599         if (s->pos == s->len) {
600             s->pos = 0;
601             s->state = STATE_IDLE;
602         }
603         break;
604 
605     default:
606     case STATE_IDLE:
607         decode_new_cmd(s, (uint8_t)tx);
608         break;
609     }
610 
611     return r;
612 }
613 
614 static int m25p80_init(SSISlave *ss)
615 {
616     DriveInfo *dinfo;
617     Flash *s = M25P80(ss);
618     M25P80Class *mc = M25P80_GET_CLASS(s);
619 
620     s->pi = mc->pi;
621 
622     s->size = s->pi->sector_size * s->pi->n_sectors;
623     s->dirty_page = -1;
624     s->storage = blk_blockalign(s->blk, s->size);
625 
626     dinfo = drive_get_next(IF_MTD);
627 
628     if (dinfo) {
629         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
630         s->blk = blk_by_legacy_dinfo(dinfo);
631 
632         /* FIXME: Move to late init */
633         if (blk_read(s->blk, 0, s->storage,
634                      DIV_ROUND_UP(s->size, BDRV_SECTOR_SIZE))) {
635             fprintf(stderr, "Failed to initialize SPI flash!\n");
636             return 1;
637         }
638     } else {
639         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
640         memset(s->storage, 0xFF, s->size);
641     }
642 
643     return 0;
644 }
645 
646 static void m25p80_pre_save(void *opaque)
647 {
648     flash_sync_dirty((Flash *)opaque, -1);
649 }
650 
651 static const VMStateDescription vmstate_m25p80 = {
652     .name = "xilinx_spi",
653     .version_id = 1,
654     .minimum_version_id = 1,
655     .pre_save = m25p80_pre_save,
656     .fields = (VMStateField[]) {
657         VMSTATE_UINT8(state, Flash),
658         VMSTATE_UINT8_ARRAY(data, Flash, 16),
659         VMSTATE_UINT32(len, Flash),
660         VMSTATE_UINT32(pos, Flash),
661         VMSTATE_UINT8(needed_bytes, Flash),
662         VMSTATE_UINT8(cmd_in_progress, Flash),
663         VMSTATE_UINT64(cur_addr, Flash),
664         VMSTATE_BOOL(write_enable, Flash),
665         VMSTATE_END_OF_LIST()
666     }
667 };
668 
669 static void m25p80_class_init(ObjectClass *klass, void *data)
670 {
671     DeviceClass *dc = DEVICE_CLASS(klass);
672     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
673     M25P80Class *mc = M25P80_CLASS(klass);
674 
675     k->init = m25p80_init;
676     k->transfer = m25p80_transfer8;
677     k->set_cs = m25p80_cs;
678     k->cs_polarity = SSI_CS_LOW;
679     dc->vmsd = &vmstate_m25p80;
680     mc->pi = data;
681 }
682 
683 static const TypeInfo m25p80_info = {
684     .name           = TYPE_M25P80,
685     .parent         = TYPE_SSI_SLAVE,
686     .instance_size  = sizeof(Flash),
687     .class_size     = sizeof(M25P80Class),
688     .abstract       = true,
689 };
690 
691 static void m25p80_register_types(void)
692 {
693     int i;
694 
695     type_register_static(&m25p80_info);
696     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
697         TypeInfo ti = {
698             .name       = known_devices[i].part_name,
699             .parent     = TYPE_M25P80,
700             .class_init = m25p80_class_init,
701             .class_data = (void *)&known_devices[i],
702         };
703         type_register(&ti);
704     }
705 }
706 
707 type_init(m25p80_register_types)
708