xref: /openbmc/qemu/hw/block/m25p80.c (revision 4b4629d9)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 
31 #ifndef M25P80_ERR_DEBUG
32 #define M25P80_ERR_DEBUG 0
33 #endif
34 
35 #define DB_PRINT_L(level, ...) do { \
36     if (M25P80_ERR_DEBUG > (level)) { \
37         fprintf(stderr,  ": %s: ", __func__); \
38         fprintf(stderr, ## __VA_ARGS__); \
39     } \
40 } while (0);
41 
42 /* Fields for FlashPartInfo->flags */
43 
44 /* erase capabilities */
45 #define ER_4K 1
46 #define ER_32K 2
47 /* set to allow the page program command to write 0s back to 1. Useful for
48  * modelling EEPROM with SPI flash command set
49  */
50 #define EEPROM 0x100
51 
52 /* 16 MiB max in 3 byte address mode */
53 #define MAX_3BYTES_SIZE 0x1000000
54 
55 typedef struct FlashPartInfo {
56     const char *part_name;
57     /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
58     uint32_t jedec;
59     /* extended jedec code */
60     uint16_t ext_jedec;
61     /* there is confusion between manufacturers as to what a sector is. In this
62      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
63      * command (opcode 0xd8).
64      */
65     uint32_t sector_size;
66     uint32_t n_sectors;
67     uint32_t page_size;
68     uint16_t flags;
69 } FlashPartInfo;
70 
71 /* adapted from linux */
72 
73 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
74     .part_name = (_part_name),\
75     .jedec = (_jedec),\
76     .ext_jedec = (_ext_jedec),\
77     .sector_size = (_sector_size),\
78     .n_sectors = (_n_sectors),\
79     .page_size = 256,\
80     .flags = (_flags),\
81 
82 #define JEDEC_NUMONYX 0x20
83 #define JEDEC_WINBOND 0xEF
84 #define JEDEC_SPANSION 0x01
85 
86 /* Numonyx (Micron) Configuration register macros */
87 #define VCFG_DUMMY 0x1
88 #define VCFG_WRAP_SEQUENTIAL 0x2
89 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
90 #define NVCFG_XIP_MODE_MASK (7 << 9)
91 #define VCFG_XIP_MODE_ENABLED (1 << 3)
92 #define CFG_DUMMY_CLK_LEN 4
93 #define NVCFG_DUMMY_CLK_POS 12
94 #define VCFG_DUMMY_CLK_POS 4
95 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
96 #define EVCFG_VPP_ACCELERATOR (1 << 3)
97 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
98 #define NVCFG_DUAL_IO_MASK (1 << 2)
99 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
100 #define NVCFG_QUAD_IO_MASK (1 << 3)
101 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
102 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
103 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
104 #define CFG_UPPER_128MB_SEG_ENABLED 0x3
105 
106 /* Numonyx (Micron) Flag Status Register macros */
107 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
108 #define FSR_FLASH_READY (1 << 7)
109 
110 static const FlashPartInfo known_devices[] = {
111     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
112     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
113     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
114 
115     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
116     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
117     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
118 
119     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
120     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
121     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
122     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
123 
124     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
125 
126     /* Atmel EEPROMS - it is assumed, that don't care bit in command
127      * is set to 0. Block protection is not supported.
128      */
129     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
130     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
131 
132     /* EON -- en25xxx */
133     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
134     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
135     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
136     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
137     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
138 
139     /* GigaDevice */
140     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
141     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
142 
143     /* Intel/Numonyx -- xxxs33b */
144     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
145     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
146     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
147     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
148 
149     /* Macronix */
150     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
151     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
152     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
153     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
154     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
155     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
156     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
157     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
158     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
159     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
160 
161     /* Micron */
162     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
163     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
164     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
165     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
166     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
167     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
168     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
169     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
170 
171     /* Spansion -- single (large) sector size only, at least
172      * for the chips listed here (without boot sectors).
173      */
174     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
175     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
176     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
177     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
178     { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
179     { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
180     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
181     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
182     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
183     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
184     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
185     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
186     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
187     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
188     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
189     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
190     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
191 
192     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
193     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
194     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
195     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
196     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
197     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
198     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
199     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
200     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
201     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
202 
203     /* ST Microelectronics -- newer production may have feature updates */
204     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
205     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
206     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
207     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
208     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
209     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
210     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
211     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
212     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
213     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
214 
215     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
216     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
217     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
218 
219     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
220     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
221     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
222 
223     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
224     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
225     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
226     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
227 
228     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
229     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
230     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
231     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
232     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
233     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
234     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
235     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
236     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
237     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
238     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
239     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
240     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
241     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
242 
243     { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
244     { INFO("n25q256a",     0x20ba19,      0,  64 << 10, 512, ER_4K) },
245     { INFO("n25q512a",     0x20ba20,      0,  64 << 10, 1024, ER_4K) },
246 };
247 
248 typedef enum {
249     NOP = 0,
250     WRSR = 0x1,
251     WRDI = 0x4,
252     RDSR = 0x5,
253     WREN = 0x6,
254     JEDEC_READ = 0x9f,
255     BULK_ERASE = 0xc7,
256     READ_FSR = 0x70,
257 
258     READ = 0x03,
259     READ4 = 0x13,
260     FAST_READ = 0x0b,
261     FAST_READ4 = 0x0c,
262     DOR = 0x3b,
263     DOR4 = 0x3c,
264     QOR = 0x6b,
265     QOR4 = 0x6c,
266     DIOR = 0xbb,
267     DIOR4 = 0xbc,
268     QIOR = 0xeb,
269     QIOR4 = 0xec,
270 
271     PP = 0x02,
272     PP4 = 0x12,
273     DPP = 0xa2,
274     QPP = 0x32,
275 
276     ERASE_4K = 0x20,
277     ERASE4_4K = 0x21,
278     ERASE_32K = 0x52,
279     ERASE_SECTOR = 0xd8,
280     ERASE4_SECTOR = 0xdc,
281 
282     EN_4BYTE_ADDR = 0xB7,
283     EX_4BYTE_ADDR = 0xE9,
284 
285     EXTEND_ADDR_READ = 0xC8,
286     EXTEND_ADDR_WRITE = 0xC5,
287 
288     RESET_ENABLE = 0x66,
289     RESET_MEMORY = 0x99,
290 
291     RNVCR = 0xB5,
292     WNVCR = 0xB1,
293 
294     RVCR = 0x85,
295     WVCR = 0x81,
296 
297     REVCR = 0x65,
298     WEVCR = 0x61,
299 } FlashCMD;
300 
301 typedef enum {
302     STATE_IDLE,
303     STATE_PAGE_PROGRAM,
304     STATE_READ,
305     STATE_COLLECTING_DATA,
306     STATE_READING_DATA,
307 } CMDState;
308 
309 typedef struct Flash {
310     SSISlave parent_obj;
311 
312     BlockBackend *blk;
313 
314     uint8_t *storage;
315     uint32_t size;
316     int page_size;
317 
318     uint8_t state;
319     uint8_t data[16];
320     uint32_t len;
321     uint32_t pos;
322     uint8_t needed_bytes;
323     uint8_t cmd_in_progress;
324     uint64_t cur_addr;
325     uint32_t nonvolatile_cfg;
326     uint32_t volatile_cfg;
327     uint32_t enh_volatile_cfg;
328     bool write_enable;
329     bool four_bytes_address_mode;
330     bool reset_enable;
331     uint8_t ear;
332 
333     int64_t dirty_page;
334 
335     const FlashPartInfo *pi;
336 
337 } Flash;
338 
339 typedef struct M25P80Class {
340     SSISlaveClass parent_class;
341     FlashPartInfo *pi;
342 } M25P80Class;
343 
344 #define TYPE_M25P80 "m25p80-generic"
345 #define M25P80(obj) \
346      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
347 #define M25P80_CLASS(klass) \
348      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
349 #define M25P80_GET_CLASS(obj) \
350      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
351 
352 static void blk_sync_complete(void *opaque, int ret)
353 {
354     /* do nothing. Masters do not directly interact with the backing store,
355      * only the working copy so no mutexing required.
356      */
357 }
358 
359 static void flash_sync_page(Flash *s, int page)
360 {
361     QEMUIOVector iov;
362 
363     if (!s->blk || blk_is_read_only(s->blk)) {
364         return;
365     }
366 
367     qemu_iovec_init(&iov, 1);
368     qemu_iovec_add(&iov, s->storage + page * s->pi->page_size,
369                    s->pi->page_size);
370     blk_aio_pwritev(s->blk, page * s->pi->page_size, &iov, 0,
371                     blk_sync_complete, NULL);
372 }
373 
374 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
375 {
376     QEMUIOVector iov;
377 
378     if (!s->blk || blk_is_read_only(s->blk)) {
379         return;
380     }
381 
382     assert(!(len % BDRV_SECTOR_SIZE));
383     qemu_iovec_init(&iov, 1);
384     qemu_iovec_add(&iov, s->storage + off, len);
385     blk_aio_pwritev(s->blk, off, &iov, 0, blk_sync_complete, NULL);
386 }
387 
388 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
389 {
390     uint32_t len;
391     uint8_t capa_to_assert = 0;
392 
393     switch (cmd) {
394     case ERASE_4K:
395     case ERASE4_4K:
396         len = 4 << 10;
397         capa_to_assert = ER_4K;
398         break;
399     case ERASE_32K:
400         len = 32 << 10;
401         capa_to_assert = ER_32K;
402         break;
403     case ERASE_SECTOR:
404     case ERASE4_SECTOR:
405         len = s->pi->sector_size;
406         break;
407     case BULK_ERASE:
408         len = s->size;
409         break;
410     default:
411         abort();
412     }
413 
414     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
415     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
416         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
417                       " device\n", len);
418     }
419 
420     if (!s->write_enable) {
421         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
422         return;
423     }
424     memset(s->storage + offset, 0xff, len);
425     flash_sync_area(s, offset, len);
426 }
427 
428 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
429 {
430     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
431         flash_sync_page(s, s->dirty_page);
432         s->dirty_page = newpage;
433     }
434 }
435 
436 static inline
437 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
438 {
439     int64_t page = addr / s->pi->page_size;
440     uint8_t prev = s->storage[s->cur_addr];
441 
442     if (!s->write_enable) {
443         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
444     }
445 
446     if ((prev ^ data) & data) {
447         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
448                    " -> %" PRIx8 "\n", addr, prev, data);
449     }
450 
451     if (s->pi->flags & EEPROM) {
452         s->storage[s->cur_addr] = data;
453     } else {
454         s->storage[s->cur_addr] &= data;
455     }
456 
457     flash_sync_dirty(s, page);
458     s->dirty_page = page;
459 }
460 
461 static inline int get_addr_length(Flash *s)
462 {
463    /* check if eeprom is in use */
464     if (s->pi->flags == EEPROM) {
465         return 2;
466     }
467 
468    switch (s->cmd_in_progress) {
469    case PP4:
470    case READ4:
471    case QIOR4:
472    case ERASE4_4K:
473    case ERASE4_SECTOR:
474    case FAST_READ4:
475    case DOR4:
476    case QOR4:
477    case DIOR4:
478        return 4;
479    default:
480        return s->four_bytes_address_mode ? 4 : 3;
481    }
482 }
483 
484 static void complete_collecting_data(Flash *s)
485 {
486     int i;
487 
488     s->cur_addr = 0;
489 
490     for (i = 0; i < get_addr_length(s); ++i) {
491         s->cur_addr <<= 8;
492         s->cur_addr |= s->data[i];
493     }
494 
495     if (get_addr_length(s) == 3) {
496         s->cur_addr += (s->ear & 0x3) * MAX_3BYTES_SIZE;
497     }
498 
499     s->state = STATE_IDLE;
500 
501     switch (s->cmd_in_progress) {
502     case DPP:
503     case QPP:
504     case PP:
505     case PP4:
506         s->state = STATE_PAGE_PROGRAM;
507         break;
508     case READ:
509     case READ4:
510     case FAST_READ:
511     case FAST_READ4:
512     case DOR:
513     case DOR4:
514     case QOR:
515     case QOR4:
516     case DIOR:
517     case DIOR4:
518     case QIOR:
519     case QIOR4:
520         s->state = STATE_READ;
521         break;
522     case ERASE_4K:
523     case ERASE4_4K:
524     case ERASE_32K:
525     case ERASE_SECTOR:
526     case ERASE4_SECTOR:
527         flash_erase(s, s->cur_addr, s->cmd_in_progress);
528         break;
529     case WRSR:
530         if (s->write_enable) {
531             s->write_enable = false;
532         }
533         break;
534     case EXTEND_ADDR_WRITE:
535         s->ear = s->data[0];
536         break;
537     case WNVCR:
538         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
539         break;
540     case WVCR:
541         s->volatile_cfg = s->data[0];
542         break;
543     case WEVCR:
544         s->enh_volatile_cfg = s->data[0];
545         break;
546     default:
547         break;
548     }
549 }
550 
551 static void reset_memory(Flash *s)
552 {
553     s->cmd_in_progress = NOP;
554     s->cur_addr = 0;
555     s->ear = 0;
556     s->four_bytes_address_mode = false;
557     s->len = 0;
558     s->needed_bytes = 0;
559     s->pos = 0;
560     s->state = STATE_IDLE;
561     s->write_enable = false;
562     s->reset_enable = false;
563 
564     if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
565         s->volatile_cfg = 0;
566         s->volatile_cfg |= VCFG_DUMMY;
567         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
568         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
569                                 != NVCFG_XIP_MODE_DISABLED) {
570             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
571         }
572         s->volatile_cfg |= deposit32(s->volatile_cfg,
573                             VCFG_DUMMY_CLK_POS,
574                             CFG_DUMMY_CLK_LEN,
575                             extract32(s->nonvolatile_cfg,
576                                         NVCFG_DUMMY_CLK_POS,
577                                         CFG_DUMMY_CLK_LEN)
578                             );
579 
580         s->enh_volatile_cfg = 0;
581         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
582         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
583         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
584         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
585             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
586         }
587         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
588             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
589         }
590         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
591             s->four_bytes_address_mode = true;
592         }
593         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
594             s->ear = CFG_UPPER_128MB_SEG_ENABLED;
595         }
596     }
597 
598     DB_PRINT_L(0, "Reset done.\n");
599 }
600 
601 static void decode_new_cmd(Flash *s, uint32_t value)
602 {
603     s->cmd_in_progress = value;
604     DB_PRINT_L(0, "decoded new command:%x\n", value);
605 
606     if (value != RESET_MEMORY) {
607         s->reset_enable = false;
608     }
609 
610     switch (value) {
611 
612     case ERASE_4K:
613     case ERASE4_4K:
614     case ERASE_32K:
615     case ERASE_SECTOR:
616     case ERASE4_SECTOR:
617     case READ:
618     case READ4:
619     case DPP:
620     case QPP:
621     case PP:
622     case PP4:
623         s->needed_bytes = get_addr_length(s);
624         s->pos = 0;
625         s->len = 0;
626         s->state = STATE_COLLECTING_DATA;
627         break;
628 
629     case FAST_READ:
630     case FAST_READ4:
631     case DOR:
632     case DOR4:
633     case QOR:
634     case QOR4:
635         s->needed_bytes = get_addr_length(s);
636         if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
637             /* Dummy cycles modeled with bytes writes instead of bits */
638             s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
639         }
640         s->pos = 0;
641         s->len = 0;
642         s->state = STATE_COLLECTING_DATA;
643         break;
644 
645     case DIOR:
646     case DIOR4:
647         switch ((s->pi->jedec >> 16) & 0xFF) {
648         case JEDEC_WINBOND:
649         case JEDEC_SPANSION:
650             s->needed_bytes = 4;
651             break;
652         default:
653             s->needed_bytes = get_addr_length(s);
654             /* Dummy cycles modeled with bytes writes instead of bits */
655             s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
656         }
657         s->pos = 0;
658         s->len = 0;
659         s->state = STATE_COLLECTING_DATA;
660         break;
661 
662     case QIOR:
663     case QIOR4:
664         switch ((s->pi->jedec >> 16) & 0xFF) {
665         case JEDEC_WINBOND:
666         case JEDEC_SPANSION:
667             s->needed_bytes = 6;
668             break;
669         default:
670             s->needed_bytes = get_addr_length(s);
671             /* Dummy cycles modeled with bytes writes instead of bits */
672             s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
673         }
674         s->pos = 0;
675         s->len = 0;
676         s->state = STATE_COLLECTING_DATA;
677         break;
678 
679     case WRSR:
680         if (s->write_enable) {
681             s->needed_bytes = 1;
682             s->pos = 0;
683             s->len = 0;
684             s->state = STATE_COLLECTING_DATA;
685         }
686         break;
687 
688     case WRDI:
689         s->write_enable = false;
690         break;
691     case WREN:
692         s->write_enable = true;
693         break;
694 
695     case RDSR:
696         s->data[0] = (!!s->write_enable) << 1;
697         s->pos = 0;
698         s->len = 1;
699         s->state = STATE_READING_DATA;
700         break;
701 
702     case READ_FSR:
703         s->data[0] = FSR_FLASH_READY;
704         if (s->four_bytes_address_mode) {
705             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
706         }
707         s->pos = 0;
708         s->len = 1;
709         s->state = STATE_READING_DATA;
710         break;
711 
712     case JEDEC_READ:
713         DB_PRINT_L(0, "populated jedec code\n");
714         s->data[0] = (s->pi->jedec >> 16) & 0xff;
715         s->data[1] = (s->pi->jedec >> 8) & 0xff;
716         s->data[2] = s->pi->jedec & 0xff;
717         if (s->pi->ext_jedec) {
718             s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
719             s->data[4] = s->pi->ext_jedec & 0xff;
720             s->len = 5;
721         } else {
722             s->len = 3;
723         }
724         s->pos = 0;
725         s->state = STATE_READING_DATA;
726         break;
727 
728     case BULK_ERASE:
729         if (s->write_enable) {
730             DB_PRINT_L(0, "chip erase\n");
731             flash_erase(s, 0, BULK_ERASE);
732         } else {
733             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
734                           "protect!\n");
735         }
736         break;
737     case NOP:
738         break;
739     case EN_4BYTE_ADDR:
740         s->four_bytes_address_mode = true;
741         break;
742     case EX_4BYTE_ADDR:
743         s->four_bytes_address_mode = false;
744         break;
745     case EXTEND_ADDR_READ:
746         s->data[0] = s->ear;
747         s->pos = 0;
748         s->len = 1;
749         s->state = STATE_READING_DATA;
750         break;
751     case EXTEND_ADDR_WRITE:
752         if (s->write_enable) {
753             s->needed_bytes = 1;
754             s->pos = 0;
755             s->len = 0;
756             s->state = STATE_COLLECTING_DATA;
757         }
758         break;
759     case RNVCR:
760         s->data[0] = s->nonvolatile_cfg & 0xFF;
761         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
762         s->pos = 0;
763         s->len = 2;
764         s->state = STATE_READING_DATA;
765         break;
766     case WNVCR:
767         if (s->write_enable) {
768             s->needed_bytes = 2;
769             s->pos = 0;
770             s->len = 0;
771             s->state = STATE_COLLECTING_DATA;
772         }
773         break;
774     case RVCR:
775         s->data[0] = s->volatile_cfg & 0xFF;
776         s->pos = 0;
777         s->len = 1;
778         s->state = STATE_READING_DATA;
779         break;
780     case WVCR:
781         if (s->write_enable) {
782             s->needed_bytes = 1;
783             s->pos = 0;
784             s->len = 0;
785             s->state = STATE_COLLECTING_DATA;
786         }
787         break;
788     case REVCR:
789         s->data[0] = s->enh_volatile_cfg & 0xFF;
790         s->pos = 0;
791         s->len = 1;
792         s->state = STATE_READING_DATA;
793         break;
794     case WEVCR:
795         if (s->write_enable) {
796             s->needed_bytes = 1;
797             s->pos = 0;
798             s->len = 0;
799             s->state = STATE_COLLECTING_DATA;
800         }
801         break;
802     case RESET_ENABLE:
803         s->reset_enable = true;
804         break;
805     case RESET_MEMORY:
806         if (s->reset_enable) {
807             reset_memory(s);
808         }
809         break;
810     default:
811         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
812         break;
813     }
814 }
815 
816 static int m25p80_cs(SSISlave *ss, bool select)
817 {
818     Flash *s = M25P80(ss);
819 
820     if (select) {
821         s->len = 0;
822         s->pos = 0;
823         s->state = STATE_IDLE;
824         flash_sync_dirty(s, -1);
825     }
826 
827     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
828 
829     return 0;
830 }
831 
832 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
833 {
834     Flash *s = M25P80(ss);
835     uint32_t r = 0;
836 
837     switch (s->state) {
838 
839     case STATE_PAGE_PROGRAM:
840         DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
841                    s->cur_addr, (uint8_t)tx);
842         flash_write8(s, s->cur_addr, (uint8_t)tx);
843         s->cur_addr++;
844         break;
845 
846     case STATE_READ:
847         r = s->storage[s->cur_addr];
848         DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
849                    (uint8_t)r);
850         s->cur_addr = (s->cur_addr + 1) % s->size;
851         break;
852 
853     case STATE_COLLECTING_DATA:
854         s->data[s->len] = (uint8_t)tx;
855         s->len++;
856 
857         if (s->len == s->needed_bytes) {
858             complete_collecting_data(s);
859         }
860         break;
861 
862     case STATE_READING_DATA:
863         r = s->data[s->pos];
864         s->pos++;
865         if (s->pos == s->len) {
866             s->pos = 0;
867             s->state = STATE_IDLE;
868         }
869         break;
870 
871     default:
872     case STATE_IDLE:
873         decode_new_cmd(s, (uint8_t)tx);
874         break;
875     }
876 
877     return r;
878 }
879 
880 static int m25p80_init(SSISlave *ss)
881 {
882     DriveInfo *dinfo;
883     Flash *s = M25P80(ss);
884     M25P80Class *mc = M25P80_GET_CLASS(s);
885 
886     s->pi = mc->pi;
887 
888     s->size = s->pi->sector_size * s->pi->n_sectors;
889     s->dirty_page = -1;
890 
891     /* FIXME use a qdev drive property instead of drive_get_next() */
892     dinfo = drive_get_next(IF_MTD);
893 
894     if (dinfo) {
895         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
896         s->blk = blk_by_legacy_dinfo(dinfo);
897         blk_attach_dev_nofail(s->blk, s);
898 
899         s->storage = blk_blockalign(s->blk, s->size);
900 
901         /* FIXME: Move to late init */
902         if (blk_pread(s->blk, 0, s->storage, s->size)) {
903             fprintf(stderr, "Failed to initialize SPI flash!\n");
904             return 1;
905         }
906     } else {
907         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
908         s->storage = blk_blockalign(NULL, s->size);
909         memset(s->storage, 0xFF, s->size);
910     }
911 
912     return 0;
913 }
914 
915 static void m25p80_reset(DeviceState *d)
916 {
917     Flash *s = M25P80(d);
918 
919     reset_memory(s);
920 }
921 
922 static void m25p80_pre_save(void *opaque)
923 {
924     flash_sync_dirty((Flash *)opaque, -1);
925 }
926 
927 static Property m25p80_properties[] = {
928     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
929     DEFINE_PROP_END_OF_LIST(),
930 };
931 
932 static const VMStateDescription vmstate_m25p80 = {
933     .name = "xilinx_spi",
934     .version_id = 2,
935     .minimum_version_id = 1,
936     .pre_save = m25p80_pre_save,
937     .fields = (VMStateField[]) {
938         VMSTATE_UINT8(state, Flash),
939         VMSTATE_UINT8_ARRAY(data, Flash, 16),
940         VMSTATE_UINT32(len, Flash),
941         VMSTATE_UINT32(pos, Flash),
942         VMSTATE_UINT8(needed_bytes, Flash),
943         VMSTATE_UINT8(cmd_in_progress, Flash),
944         VMSTATE_UINT64(cur_addr, Flash),
945         VMSTATE_BOOL(write_enable, Flash),
946         VMSTATE_BOOL_V(reset_enable, Flash, 2),
947         VMSTATE_UINT8_V(ear, Flash, 2),
948         VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
949         VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
950         VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
951         VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
952         VMSTATE_END_OF_LIST()
953     }
954 };
955 
956 static void m25p80_class_init(ObjectClass *klass, void *data)
957 {
958     DeviceClass *dc = DEVICE_CLASS(klass);
959     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
960     M25P80Class *mc = M25P80_CLASS(klass);
961 
962     k->init = m25p80_init;
963     k->transfer = m25p80_transfer8;
964     k->set_cs = m25p80_cs;
965     k->cs_polarity = SSI_CS_LOW;
966     dc->vmsd = &vmstate_m25p80;
967     dc->props = m25p80_properties;
968     dc->reset = m25p80_reset;
969     mc->pi = data;
970 }
971 
972 static const TypeInfo m25p80_info = {
973     .name           = TYPE_M25P80,
974     .parent         = TYPE_SSI_SLAVE,
975     .instance_size  = sizeof(Flash),
976     .class_size     = sizeof(M25P80Class),
977     .abstract       = true,
978 };
979 
980 static void m25p80_register_types(void)
981 {
982     int i;
983 
984     type_register_static(&m25p80_info);
985     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
986         TypeInfo ti = {
987             .name       = known_devices[i].part_name,
988             .parent     = TYPE_M25P80,
989             .class_init = m25p80_class_init,
990             .class_data = (void *)&known_devices[i],
991         };
992         type_register(&ti);
993     }
994 }
995 
996 type_init(m25p80_register_types)
997