1 /* 2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command 3 * set. Known devices table current as of Jun/2012 and taken from linux. 4 * See drivers/mtd/devices/m25p80.c. 5 * 6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com> 7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com> 8 * Copyright (C) 2012 PetaLogix 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 or 13 * (at your option) a later version of the License. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/block-backend.h" 27 #include "hw/ssi/ssi.h" 28 #include "qemu/bitops.h" 29 #include "qemu/log.h" 30 #include "qemu/error-report.h" 31 #include "qapi/error.h" 32 33 #ifndef M25P80_ERR_DEBUG 34 #define M25P80_ERR_DEBUG 0 35 #endif 36 37 #define DB_PRINT_L(level, ...) do { \ 38 if (M25P80_ERR_DEBUG > (level)) { \ 39 fprintf(stderr, ": %s: ", __func__); \ 40 fprintf(stderr, ## __VA_ARGS__); \ 41 } \ 42 } while (0) 43 44 /* Fields for FlashPartInfo->flags */ 45 46 /* erase capabilities */ 47 #define ER_4K 1 48 #define ER_32K 2 49 /* set to allow the page program command to write 0s back to 1. Useful for 50 * modelling EEPROM with SPI flash command set 51 */ 52 #define EEPROM 0x100 53 54 /* 16 MiB max in 3 byte address mode */ 55 #define MAX_3BYTES_SIZE 0x1000000 56 57 #define SPI_NOR_MAX_ID_LEN 6 58 59 typedef struct FlashPartInfo { 60 const char *part_name; 61 /* 62 * This array stores the ID bytes. 63 * The first three bytes are the JEDIC ID. 64 * JEDEC ID zero means "no ID" (mostly older chips). 65 */ 66 uint8_t id[SPI_NOR_MAX_ID_LEN]; 67 uint8_t id_len; 68 /* there is confusion between manufacturers as to what a sector is. In this 69 * device model, a "sector" is the size that is erased by the ERASE_SECTOR 70 * command (opcode 0xd8). 71 */ 72 uint32_t sector_size; 73 uint32_t n_sectors; 74 uint32_t page_size; 75 uint16_t flags; 76 /* 77 * Big sized spi nor are often stacked devices, thus sometime 78 * replace chip erase with die erase. 79 * This field inform how many die is in the chip. 80 */ 81 uint8_t die_cnt; 82 } FlashPartInfo; 83 84 /* adapted from linux */ 85 /* Used when the "_ext_id" is two bytes at most */ 86 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ 87 .part_name = _part_name,\ 88 .id = {\ 89 ((_jedec_id) >> 16) & 0xff,\ 90 ((_jedec_id) >> 8) & 0xff,\ 91 (_jedec_id) & 0xff,\ 92 ((_ext_id) >> 8) & 0xff,\ 93 (_ext_id) & 0xff,\ 94 },\ 95 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ 96 .sector_size = (_sector_size),\ 97 .n_sectors = (_n_sectors),\ 98 .page_size = 256,\ 99 .flags = (_flags),\ 100 .die_cnt = 0 101 102 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ 103 .part_name = _part_name,\ 104 .id = {\ 105 ((_jedec_id) >> 16) & 0xff,\ 106 ((_jedec_id) >> 8) & 0xff,\ 107 (_jedec_id) & 0xff,\ 108 ((_ext_id) >> 16) & 0xff,\ 109 ((_ext_id) >> 8) & 0xff,\ 110 (_ext_id) & 0xff,\ 111 },\ 112 .id_len = 6,\ 113 .sector_size = (_sector_size),\ 114 .n_sectors = (_n_sectors),\ 115 .page_size = 256,\ 116 .flags = (_flags),\ 117 .die_cnt = 0 118 119 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\ 120 _flags, _die_cnt)\ 121 .part_name = _part_name,\ 122 .id = {\ 123 ((_jedec_id) >> 16) & 0xff,\ 124 ((_jedec_id) >> 8) & 0xff,\ 125 (_jedec_id) & 0xff,\ 126 ((_ext_id) >> 8) & 0xff,\ 127 (_ext_id) & 0xff,\ 128 },\ 129 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ 130 .sector_size = (_sector_size),\ 131 .n_sectors = (_n_sectors),\ 132 .page_size = 256,\ 133 .flags = (_flags),\ 134 .die_cnt = _die_cnt 135 136 #define JEDEC_NUMONYX 0x20 137 #define JEDEC_WINBOND 0xEF 138 #define JEDEC_SPANSION 0x01 139 140 /* Numonyx (Micron) Configuration register macros */ 141 #define VCFG_DUMMY 0x1 142 #define VCFG_WRAP_SEQUENTIAL 0x2 143 #define NVCFG_XIP_MODE_DISABLED (7 << 9) 144 #define NVCFG_XIP_MODE_MASK (7 << 9) 145 #define VCFG_XIP_MODE_ENABLED (1 << 3) 146 #define CFG_DUMMY_CLK_LEN 4 147 #define NVCFG_DUMMY_CLK_POS 12 148 #define VCFG_DUMMY_CLK_POS 4 149 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7 150 #define EVCFG_VPP_ACCELERATOR (1 << 3) 151 #define EVCFG_RESET_HOLD_ENABLED (1 << 4) 152 #define NVCFG_DUAL_IO_MASK (1 << 2) 153 #define EVCFG_DUAL_IO_ENABLED (1 << 6) 154 #define NVCFG_QUAD_IO_MASK (1 << 3) 155 #define EVCFG_QUAD_IO_ENABLED (1 << 7) 156 #define NVCFG_4BYTE_ADDR_MASK (1 << 0) 157 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1) 158 159 /* Numonyx (Micron) Flag Status Register macros */ 160 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1 161 #define FSR_FLASH_READY (1 << 7) 162 163 /* Spansion configuration registers macros. */ 164 #define SPANSION_QUAD_CFG_POS 0 165 #define SPANSION_QUAD_CFG_LEN 1 166 #define SPANSION_DUMMY_CLK_POS 0 167 #define SPANSION_DUMMY_CLK_LEN 4 168 #define SPANSION_ADDR_LEN_POS 7 169 #define SPANSION_ADDR_LEN_LEN 1 170 171 /* 172 * Spansion read mode command length in bytes, 173 * the mode is currently not supported. 174 */ 175 176 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1 177 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1 178 179 static const FlashPartInfo known_devices[] = { 180 /* Atmel -- some are (confusingly) marketed as "DataFlash" */ 181 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) }, 182 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) }, 183 184 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) }, 185 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) }, 186 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) }, 187 188 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) }, 189 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) }, 190 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) }, 191 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) }, 192 193 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) }, 194 195 /* Atmel EEPROMS - it is assumed, that don't care bit in command 196 * is set to 0. Block protection is not supported. 197 */ 198 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) }, 199 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) }, 200 201 /* EON -- en25xxx */ 202 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) }, 203 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) }, 204 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) }, 205 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) }, 206 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) }, 207 208 /* GigaDevice */ 209 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) }, 210 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) }, 211 212 /* Intel/Numonyx -- xxxs33b */ 213 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) }, 214 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) }, 215 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) }, 216 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) }, 217 218 /* Macronix */ 219 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) }, 220 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) }, 221 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) }, 222 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) }, 223 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) }, 224 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) }, 225 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) }, 226 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) }, 227 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) }, 228 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) }, 229 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, 230 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, 231 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, 232 233 /* Micron */ 234 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) }, 235 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) }, 236 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) }, 237 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) }, 238 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) }, 239 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) }, 240 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) }, 241 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, 242 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) }, 243 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, 244 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) }, 245 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, 246 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, 247 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, 248 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, 249 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, 250 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, 251 252 /* Spansion -- single (large) sector size only, at least 253 * for the chips listed here (without boot sectors). 254 */ 255 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) }, 256 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) }, 257 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) }, 258 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) }, 259 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) }, 260 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) }, 261 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) }, 262 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) }, 263 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) }, 264 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) }, 265 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) }, 266 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) }, 267 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) }, 268 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) }, 269 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) }, 270 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) }, 271 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) }, 272 273 /* Spansion -- boot sectors support */ 274 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) }, 275 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) }, 276 277 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */ 278 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) }, 279 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) }, 280 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) }, 281 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) }, 282 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) }, 283 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) }, 284 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) }, 285 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) }, 286 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) }, 287 288 /* ST Microelectronics -- newer production may have feature updates */ 289 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) }, 290 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) }, 291 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) }, 292 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) }, 293 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) }, 294 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) }, 295 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) }, 296 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) }, 297 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) }, 298 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) }, 299 300 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) }, 301 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) }, 302 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) }, 303 304 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) }, 305 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) }, 306 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) }, 307 308 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) }, 309 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) }, 310 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) }, 311 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) }, 312 313 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */ 314 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) }, 315 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) }, 316 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) }, 317 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) }, 318 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) }, 319 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) }, 320 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) }, 321 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) }, 322 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) }, 323 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) }, 324 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) }, 325 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) }, 326 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) }, 327 }; 328 329 typedef enum { 330 NOP = 0, 331 WRSR = 0x1, 332 WRDI = 0x4, 333 RDSR = 0x5, 334 WREN = 0x6, 335 BRRD = 0x16, 336 BRWR = 0x17, 337 JEDEC_READ = 0x9f, 338 BULK_ERASE_60 = 0x60, 339 BULK_ERASE = 0xc7, 340 READ_FSR = 0x70, 341 RDCR = 0x15, 342 343 READ = 0x03, 344 READ4 = 0x13, 345 FAST_READ = 0x0b, 346 FAST_READ4 = 0x0c, 347 DOR = 0x3b, 348 DOR4 = 0x3c, 349 QOR = 0x6b, 350 QOR4 = 0x6c, 351 DIOR = 0xbb, 352 DIOR4 = 0xbc, 353 QIOR = 0xeb, 354 QIOR4 = 0xec, 355 356 PP = 0x02, 357 PP4 = 0x12, 358 PP4_4 = 0x3e, 359 DPP = 0xa2, 360 QPP = 0x32, 361 QPP_4 = 0x34, 362 RDID_90 = 0x90, 363 RDID_AB = 0xab, 364 365 ERASE_4K = 0x20, 366 ERASE4_4K = 0x21, 367 ERASE_32K = 0x52, 368 ERASE4_32K = 0x5c, 369 ERASE_SECTOR = 0xd8, 370 ERASE4_SECTOR = 0xdc, 371 372 EN_4BYTE_ADDR = 0xB7, 373 EX_4BYTE_ADDR = 0xE9, 374 375 EXTEND_ADDR_READ = 0xC8, 376 EXTEND_ADDR_WRITE = 0xC5, 377 378 RESET_ENABLE = 0x66, 379 RESET_MEMORY = 0x99, 380 381 /* 382 * Micron: 0x35 - enable QPI 383 * Spansion: 0x35 - read control register 384 */ 385 RDCR_EQIO = 0x35, 386 RSTQIO = 0xf5, 387 388 RNVCR = 0xB5, 389 WNVCR = 0xB1, 390 391 RVCR = 0x85, 392 WVCR = 0x81, 393 394 REVCR = 0x65, 395 WEVCR = 0x61, 396 397 DIE_ERASE = 0xC4, 398 } FlashCMD; 399 400 typedef enum { 401 STATE_IDLE, 402 STATE_PAGE_PROGRAM, 403 STATE_READ, 404 STATE_COLLECTING_DATA, 405 STATE_COLLECTING_VAR_LEN_DATA, 406 STATE_READING_DATA, 407 } CMDState; 408 409 typedef enum { 410 MAN_SPANSION, 411 MAN_MACRONIX, 412 MAN_NUMONYX, 413 MAN_WINBOND, 414 MAN_SST, 415 MAN_GENERIC, 416 } Manufacturer; 417 418 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16 419 420 typedef struct Flash { 421 SSISlave parent_obj; 422 423 BlockBackend *blk; 424 425 uint8_t *storage; 426 uint32_t size; 427 int page_size; 428 429 uint8_t state; 430 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ]; 431 uint32_t len; 432 uint32_t pos; 433 bool data_read_loop; 434 uint8_t needed_bytes; 435 uint8_t cmd_in_progress; 436 uint32_t cur_addr; 437 uint32_t nonvolatile_cfg; 438 /* Configuration register for Macronix */ 439 uint32_t volatile_cfg; 440 uint32_t enh_volatile_cfg; 441 /* Spansion cfg registers. */ 442 uint8_t spansion_cr1nv; 443 uint8_t spansion_cr2nv; 444 uint8_t spansion_cr3nv; 445 uint8_t spansion_cr4nv; 446 uint8_t spansion_cr1v; 447 uint8_t spansion_cr2v; 448 uint8_t spansion_cr3v; 449 uint8_t spansion_cr4v; 450 bool write_enable; 451 bool four_bytes_address_mode; 452 bool reset_enable; 453 bool quad_enable; 454 uint8_t ear; 455 456 int64_t dirty_page; 457 458 const FlashPartInfo *pi; 459 460 } Flash; 461 462 typedef struct M25P80Class { 463 SSISlaveClass parent_class; 464 FlashPartInfo *pi; 465 } M25P80Class; 466 467 #define TYPE_M25P80 "m25p80-generic" 468 #define M25P80(obj) \ 469 OBJECT_CHECK(Flash, (obj), TYPE_M25P80) 470 #define M25P80_CLASS(klass) \ 471 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80) 472 #define M25P80_GET_CLASS(obj) \ 473 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80) 474 475 static inline Manufacturer get_man(Flash *s) 476 { 477 switch (s->pi->id[0]) { 478 case 0x20: 479 return MAN_NUMONYX; 480 case 0xEF: 481 return MAN_WINBOND; 482 case 0x01: 483 return MAN_SPANSION; 484 case 0xC2: 485 return MAN_MACRONIX; 486 case 0xBF: 487 return MAN_SST; 488 default: 489 return MAN_GENERIC; 490 } 491 } 492 493 static void blk_sync_complete(void *opaque, int ret) 494 { 495 QEMUIOVector *iov = opaque; 496 497 qemu_iovec_destroy(iov); 498 g_free(iov); 499 500 /* do nothing. Masters do not directly interact with the backing store, 501 * only the working copy so no mutexing required. 502 */ 503 } 504 505 static void flash_sync_page(Flash *s, int page) 506 { 507 QEMUIOVector *iov; 508 509 if (!s->blk || blk_is_read_only(s->blk)) { 510 return; 511 } 512 513 iov = g_new(QEMUIOVector, 1); 514 qemu_iovec_init(iov, 1); 515 qemu_iovec_add(iov, s->storage + page * s->pi->page_size, 516 s->pi->page_size); 517 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0, 518 blk_sync_complete, iov); 519 } 520 521 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len) 522 { 523 QEMUIOVector *iov; 524 525 if (!s->blk || blk_is_read_only(s->blk)) { 526 return; 527 } 528 529 assert(!(len % BDRV_SECTOR_SIZE)); 530 iov = g_new(QEMUIOVector, 1); 531 qemu_iovec_init(iov, 1); 532 qemu_iovec_add(iov, s->storage + off, len); 533 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov); 534 } 535 536 static void flash_erase(Flash *s, int offset, FlashCMD cmd) 537 { 538 uint32_t len; 539 uint8_t capa_to_assert = 0; 540 541 switch (cmd) { 542 case ERASE_4K: 543 case ERASE4_4K: 544 len = 4 << 10; 545 capa_to_assert = ER_4K; 546 break; 547 case ERASE_32K: 548 case ERASE4_32K: 549 len = 32 << 10; 550 capa_to_assert = ER_32K; 551 break; 552 case ERASE_SECTOR: 553 case ERASE4_SECTOR: 554 len = s->pi->sector_size; 555 break; 556 case BULK_ERASE: 557 len = s->size; 558 break; 559 case DIE_ERASE: 560 if (s->pi->die_cnt) { 561 len = s->size / s->pi->die_cnt; 562 offset = offset & (~(len - 1)); 563 } else { 564 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported" 565 " by device\n"); 566 return; 567 } 568 break; 569 default: 570 abort(); 571 } 572 573 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len); 574 if ((s->pi->flags & capa_to_assert) != capa_to_assert) { 575 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by" 576 " device\n", len); 577 } 578 579 if (!s->write_enable) { 580 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n"); 581 return; 582 } 583 memset(s->storage + offset, 0xff, len); 584 flash_sync_area(s, offset, len); 585 } 586 587 static inline void flash_sync_dirty(Flash *s, int64_t newpage) 588 { 589 if (s->dirty_page >= 0 && s->dirty_page != newpage) { 590 flash_sync_page(s, s->dirty_page); 591 s->dirty_page = newpage; 592 } 593 } 594 595 static inline 596 void flash_write8(Flash *s, uint32_t addr, uint8_t data) 597 { 598 uint32_t page = addr / s->pi->page_size; 599 uint8_t prev = s->storage[s->cur_addr]; 600 601 if (!s->write_enable) { 602 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n"); 603 } 604 605 if ((prev ^ data) & data) { 606 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8 607 " -> %" PRIx8 "\n", addr, prev, data); 608 } 609 610 if (s->pi->flags & EEPROM) { 611 s->storage[s->cur_addr] = data; 612 } else { 613 s->storage[s->cur_addr] &= data; 614 } 615 616 flash_sync_dirty(s, page); 617 s->dirty_page = page; 618 } 619 620 static inline int get_addr_length(Flash *s) 621 { 622 /* check if eeprom is in use */ 623 if (s->pi->flags == EEPROM) { 624 return 2; 625 } 626 627 switch (s->cmd_in_progress) { 628 case PP4: 629 case PP4_4: 630 case QPP_4: 631 case READ4: 632 case QIOR4: 633 case ERASE4_4K: 634 case ERASE4_32K: 635 case ERASE4_SECTOR: 636 case FAST_READ4: 637 case DOR4: 638 case QOR4: 639 case DIOR4: 640 return 4; 641 default: 642 return s->four_bytes_address_mode ? 4 : 3; 643 } 644 } 645 646 static void complete_collecting_data(Flash *s) 647 { 648 int i, n; 649 650 n = get_addr_length(s); 651 s->cur_addr = (n == 3 ? s->ear : 0); 652 for (i = 0; i < n; ++i) { 653 s->cur_addr <<= 8; 654 s->cur_addr |= s->data[i]; 655 } 656 657 s->cur_addr &= s->size - 1; 658 659 s->state = STATE_IDLE; 660 661 switch (s->cmd_in_progress) { 662 case DPP: 663 case QPP: 664 case QPP_4: 665 case PP: 666 case PP4: 667 case PP4_4: 668 s->state = STATE_PAGE_PROGRAM; 669 break; 670 case READ: 671 case READ4: 672 case FAST_READ: 673 case FAST_READ4: 674 case DOR: 675 case DOR4: 676 case QOR: 677 case QOR4: 678 case DIOR: 679 case DIOR4: 680 case QIOR: 681 case QIOR4: 682 s->state = STATE_READ; 683 break; 684 case ERASE_4K: 685 case ERASE4_4K: 686 case ERASE_32K: 687 case ERASE4_32K: 688 case ERASE_SECTOR: 689 case ERASE4_SECTOR: 690 case DIE_ERASE: 691 flash_erase(s, s->cur_addr, s->cmd_in_progress); 692 break; 693 case WRSR: 694 switch (get_man(s)) { 695 case MAN_SPANSION: 696 s->quad_enable = !!(s->data[1] & 0x02); 697 break; 698 case MAN_MACRONIX: 699 s->quad_enable = extract32(s->data[0], 6, 1); 700 if (s->len > 1) { 701 s->volatile_cfg = s->data[1]; 702 s->four_bytes_address_mode = extract32(s->data[1], 5, 1); 703 } 704 break; 705 default: 706 break; 707 } 708 if (s->write_enable) { 709 s->write_enable = false; 710 } 711 break; 712 case BRWR: 713 case EXTEND_ADDR_WRITE: 714 s->ear = s->data[0]; 715 break; 716 case WNVCR: 717 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8); 718 break; 719 case WVCR: 720 s->volatile_cfg = s->data[0]; 721 break; 722 case WEVCR: 723 s->enh_volatile_cfg = s->data[0]; 724 break; 725 case RDID_90: 726 case RDID_AB: 727 if (get_man(s) == MAN_SST) { 728 if (s->cur_addr <= 1) { 729 if (s->cur_addr) { 730 s->data[0] = s->pi->id[2]; 731 s->data[1] = s->pi->id[0]; 732 } else { 733 s->data[0] = s->pi->id[0]; 734 s->data[1] = s->pi->id[2]; 735 } 736 s->pos = 0; 737 s->len = 2; 738 s->data_read_loop = true; 739 s->state = STATE_READING_DATA; 740 } else { 741 qemu_log_mask(LOG_GUEST_ERROR, 742 "M25P80: Invalid read id address\n"); 743 } 744 } else { 745 qemu_log_mask(LOG_GUEST_ERROR, 746 "M25P80: Read id (command 0x90/0xAB) is not supported" 747 " by device\n"); 748 } 749 break; 750 default: 751 break; 752 } 753 } 754 755 static void reset_memory(Flash *s) 756 { 757 s->cmd_in_progress = NOP; 758 s->cur_addr = 0; 759 s->ear = 0; 760 s->four_bytes_address_mode = false; 761 s->len = 0; 762 s->needed_bytes = 0; 763 s->pos = 0; 764 s->state = STATE_IDLE; 765 s->write_enable = false; 766 s->reset_enable = false; 767 s->quad_enable = false; 768 769 switch (get_man(s)) { 770 case MAN_NUMONYX: 771 s->volatile_cfg = 0; 772 s->volatile_cfg |= VCFG_DUMMY; 773 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL; 774 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK) 775 != NVCFG_XIP_MODE_DISABLED) { 776 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED; 777 } 778 s->volatile_cfg |= deposit32(s->volatile_cfg, 779 VCFG_DUMMY_CLK_POS, 780 CFG_DUMMY_CLK_LEN, 781 extract32(s->nonvolatile_cfg, 782 NVCFG_DUMMY_CLK_POS, 783 CFG_DUMMY_CLK_LEN) 784 ); 785 786 s->enh_volatile_cfg = 0; 787 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF; 788 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR; 789 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED; 790 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) { 791 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED; 792 } 793 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) { 794 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED; 795 } 796 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) { 797 s->four_bytes_address_mode = true; 798 } 799 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) { 800 s->ear = s->size / MAX_3BYTES_SIZE - 1; 801 } 802 break; 803 case MAN_MACRONIX: 804 s->volatile_cfg = 0x7; 805 break; 806 case MAN_SPANSION: 807 s->spansion_cr1v = s->spansion_cr1nv; 808 s->spansion_cr2v = s->spansion_cr2nv; 809 s->spansion_cr3v = s->spansion_cr3nv; 810 s->spansion_cr4v = s->spansion_cr4nv; 811 s->quad_enable = extract32(s->spansion_cr1v, 812 SPANSION_QUAD_CFG_POS, 813 SPANSION_QUAD_CFG_LEN 814 ); 815 s->four_bytes_address_mode = extract32(s->spansion_cr2v, 816 SPANSION_ADDR_LEN_POS, 817 SPANSION_ADDR_LEN_LEN 818 ); 819 break; 820 default: 821 break; 822 } 823 824 DB_PRINT_L(0, "Reset done.\n"); 825 } 826 827 static void decode_fast_read_cmd(Flash *s) 828 { 829 s->needed_bytes = get_addr_length(s); 830 switch (get_man(s)) { 831 /* Dummy cycles - modeled with bytes writes instead of bits */ 832 case MAN_WINBOND: 833 s->needed_bytes += 8; 834 break; 835 case MAN_NUMONYX: 836 s->needed_bytes += extract32(s->volatile_cfg, 4, 4); 837 break; 838 case MAN_MACRONIX: 839 if (extract32(s->volatile_cfg, 6, 2) == 1) { 840 s->needed_bytes += 6; 841 } else { 842 s->needed_bytes += 8; 843 } 844 break; 845 case MAN_SPANSION: 846 s->needed_bytes += extract32(s->spansion_cr2v, 847 SPANSION_DUMMY_CLK_POS, 848 SPANSION_DUMMY_CLK_LEN 849 ); 850 break; 851 default: 852 break; 853 } 854 s->pos = 0; 855 s->len = 0; 856 s->state = STATE_COLLECTING_DATA; 857 } 858 859 static void decode_dio_read_cmd(Flash *s) 860 { 861 s->needed_bytes = get_addr_length(s); 862 /* Dummy cycles modeled with bytes writes instead of bits */ 863 switch (get_man(s)) { 864 case MAN_WINBOND: 865 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; 866 break; 867 case MAN_SPANSION: 868 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; 869 s->needed_bytes += extract32(s->spansion_cr2v, 870 SPANSION_DUMMY_CLK_POS, 871 SPANSION_DUMMY_CLK_LEN 872 ); 873 break; 874 case MAN_NUMONYX: 875 s->needed_bytes += extract32(s->volatile_cfg, 4, 4); 876 break; 877 case MAN_MACRONIX: 878 switch (extract32(s->volatile_cfg, 6, 2)) { 879 case 1: 880 s->needed_bytes += 6; 881 break; 882 case 2: 883 s->needed_bytes += 8; 884 break; 885 default: 886 s->needed_bytes += 4; 887 break; 888 } 889 break; 890 default: 891 break; 892 } 893 s->pos = 0; 894 s->len = 0; 895 s->state = STATE_COLLECTING_DATA; 896 } 897 898 static void decode_qio_read_cmd(Flash *s) 899 { 900 s->needed_bytes = get_addr_length(s); 901 /* Dummy cycles modeled with bytes writes instead of bits */ 902 switch (get_man(s)) { 903 case MAN_WINBOND: 904 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; 905 s->needed_bytes += 4; 906 break; 907 case MAN_SPANSION: 908 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; 909 s->needed_bytes += extract32(s->spansion_cr2v, 910 SPANSION_DUMMY_CLK_POS, 911 SPANSION_DUMMY_CLK_LEN 912 ); 913 break; 914 case MAN_NUMONYX: 915 s->needed_bytes += extract32(s->volatile_cfg, 4, 4); 916 break; 917 case MAN_MACRONIX: 918 switch (extract32(s->volatile_cfg, 6, 2)) { 919 case 1: 920 s->needed_bytes += 4; 921 break; 922 case 2: 923 s->needed_bytes += 8; 924 break; 925 default: 926 s->needed_bytes += 6; 927 break; 928 } 929 break; 930 default: 931 break; 932 } 933 s->pos = 0; 934 s->len = 0; 935 s->state = STATE_COLLECTING_DATA; 936 } 937 938 static void decode_new_cmd(Flash *s, uint32_t value) 939 { 940 s->cmd_in_progress = value; 941 int i; 942 DB_PRINT_L(0, "decoded new command:%x\n", value); 943 944 if (value != RESET_MEMORY) { 945 s->reset_enable = false; 946 } 947 948 switch (value) { 949 950 case ERASE_4K: 951 case ERASE4_4K: 952 case ERASE_32K: 953 case ERASE4_32K: 954 case ERASE_SECTOR: 955 case ERASE4_SECTOR: 956 case READ: 957 case READ4: 958 case DPP: 959 case QPP: 960 case QPP_4: 961 case PP: 962 case PP4: 963 case PP4_4: 964 case DIE_ERASE: 965 case RDID_90: 966 case RDID_AB: 967 s->needed_bytes = get_addr_length(s); 968 s->pos = 0; 969 s->len = 0; 970 s->state = STATE_COLLECTING_DATA; 971 break; 972 973 case FAST_READ: 974 case FAST_READ4: 975 case DOR: 976 case DOR4: 977 case QOR: 978 case QOR4: 979 decode_fast_read_cmd(s); 980 break; 981 982 case DIOR: 983 case DIOR4: 984 decode_dio_read_cmd(s); 985 break; 986 987 case QIOR: 988 case QIOR4: 989 decode_qio_read_cmd(s); 990 break; 991 992 case WRSR: 993 if (s->write_enable) { 994 switch (get_man(s)) { 995 case MAN_SPANSION: 996 s->needed_bytes = 2; 997 s->state = STATE_COLLECTING_DATA; 998 break; 999 case MAN_MACRONIX: 1000 s->needed_bytes = 2; 1001 s->state = STATE_COLLECTING_VAR_LEN_DATA; 1002 break; 1003 default: 1004 s->needed_bytes = 1; 1005 s->state = STATE_COLLECTING_DATA; 1006 } 1007 s->pos = 0; 1008 } 1009 break; 1010 1011 case WRDI: 1012 s->write_enable = false; 1013 break; 1014 case WREN: 1015 s->write_enable = true; 1016 break; 1017 1018 case RDSR: 1019 s->data[0] = (!!s->write_enable) << 1; 1020 if (get_man(s) == MAN_MACRONIX) { 1021 s->data[0] |= (!!s->quad_enable) << 6; 1022 } 1023 s->pos = 0; 1024 s->len = 1; 1025 s->data_read_loop = true; 1026 s->state = STATE_READING_DATA; 1027 break; 1028 1029 case READ_FSR: 1030 s->data[0] = FSR_FLASH_READY; 1031 if (s->four_bytes_address_mode) { 1032 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED; 1033 } 1034 s->pos = 0; 1035 s->len = 1; 1036 s->data_read_loop = true; 1037 s->state = STATE_READING_DATA; 1038 break; 1039 1040 case JEDEC_READ: 1041 DB_PRINT_L(0, "populated jedec code\n"); 1042 for (i = 0; i < s->pi->id_len; i++) { 1043 s->data[i] = s->pi->id[i]; 1044 } 1045 1046 s->len = s->pi->id_len; 1047 s->pos = 0; 1048 s->state = STATE_READING_DATA; 1049 break; 1050 1051 case RDCR: 1052 s->data[0] = s->volatile_cfg & 0xFF; 1053 s->data[0] |= (!!s->four_bytes_address_mode) << 5; 1054 s->pos = 0; 1055 s->len = 1; 1056 s->state = STATE_READING_DATA; 1057 break; 1058 1059 case BULK_ERASE_60: 1060 case BULK_ERASE: 1061 if (s->write_enable) { 1062 DB_PRINT_L(0, "chip erase\n"); 1063 flash_erase(s, 0, BULK_ERASE); 1064 } else { 1065 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write " 1066 "protect!\n"); 1067 } 1068 break; 1069 case NOP: 1070 break; 1071 case EN_4BYTE_ADDR: 1072 s->four_bytes_address_mode = true; 1073 break; 1074 case EX_4BYTE_ADDR: 1075 s->four_bytes_address_mode = false; 1076 break; 1077 case BRRD: 1078 case EXTEND_ADDR_READ: 1079 s->data[0] = s->ear; 1080 s->pos = 0; 1081 s->len = 1; 1082 s->state = STATE_READING_DATA; 1083 break; 1084 case BRWR: 1085 case EXTEND_ADDR_WRITE: 1086 if (s->write_enable) { 1087 s->needed_bytes = 1; 1088 s->pos = 0; 1089 s->len = 0; 1090 s->state = STATE_COLLECTING_DATA; 1091 } 1092 break; 1093 case RNVCR: 1094 s->data[0] = s->nonvolatile_cfg & 0xFF; 1095 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF; 1096 s->pos = 0; 1097 s->len = 2; 1098 s->state = STATE_READING_DATA; 1099 break; 1100 case WNVCR: 1101 if (s->write_enable && get_man(s) == MAN_NUMONYX) { 1102 s->needed_bytes = 2; 1103 s->pos = 0; 1104 s->len = 0; 1105 s->state = STATE_COLLECTING_DATA; 1106 } 1107 break; 1108 case RVCR: 1109 s->data[0] = s->volatile_cfg & 0xFF; 1110 s->pos = 0; 1111 s->len = 1; 1112 s->state = STATE_READING_DATA; 1113 break; 1114 case WVCR: 1115 if (s->write_enable) { 1116 s->needed_bytes = 1; 1117 s->pos = 0; 1118 s->len = 0; 1119 s->state = STATE_COLLECTING_DATA; 1120 } 1121 break; 1122 case REVCR: 1123 s->data[0] = s->enh_volatile_cfg & 0xFF; 1124 s->pos = 0; 1125 s->len = 1; 1126 s->state = STATE_READING_DATA; 1127 break; 1128 case WEVCR: 1129 if (s->write_enable) { 1130 s->needed_bytes = 1; 1131 s->pos = 0; 1132 s->len = 0; 1133 s->state = STATE_COLLECTING_DATA; 1134 } 1135 break; 1136 case RESET_ENABLE: 1137 s->reset_enable = true; 1138 break; 1139 case RESET_MEMORY: 1140 if (s->reset_enable) { 1141 reset_memory(s); 1142 } 1143 break; 1144 case RDCR_EQIO: 1145 switch (get_man(s)) { 1146 case MAN_SPANSION: 1147 s->data[0] = (!!s->quad_enable) << 1; 1148 s->pos = 0; 1149 s->len = 1; 1150 s->state = STATE_READING_DATA; 1151 break; 1152 case MAN_MACRONIX: 1153 s->quad_enable = true; 1154 break; 1155 default: 1156 break; 1157 } 1158 break; 1159 case RSTQIO: 1160 s->quad_enable = false; 1161 break; 1162 default: 1163 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); 1164 break; 1165 } 1166 } 1167 1168 static int m25p80_cs(SSISlave *ss, bool select) 1169 { 1170 Flash *s = M25P80(ss); 1171 1172 if (select) { 1173 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) { 1174 complete_collecting_data(s); 1175 } 1176 s->len = 0; 1177 s->pos = 0; 1178 s->state = STATE_IDLE; 1179 flash_sync_dirty(s, -1); 1180 s->data_read_loop = false; 1181 } 1182 1183 DB_PRINT_L(0, "%sselect\n", select ? "de" : ""); 1184 1185 return 0; 1186 } 1187 1188 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx) 1189 { 1190 Flash *s = M25P80(ss); 1191 uint32_t r = 0; 1192 1193 switch (s->state) { 1194 1195 case STATE_PAGE_PROGRAM: 1196 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n", 1197 s->cur_addr, (uint8_t)tx); 1198 flash_write8(s, s->cur_addr, (uint8_t)tx); 1199 s->cur_addr = (s->cur_addr + 1) & (s->size - 1); 1200 break; 1201 1202 case STATE_READ: 1203 r = s->storage[s->cur_addr]; 1204 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr, 1205 (uint8_t)r); 1206 s->cur_addr = (s->cur_addr + 1) & (s->size - 1); 1207 break; 1208 1209 case STATE_COLLECTING_DATA: 1210 case STATE_COLLECTING_VAR_LEN_DATA: 1211 1212 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) { 1213 qemu_log_mask(LOG_GUEST_ERROR, 1214 "M25P80: Write overrun internal data buffer. " 1215 "SPI controller (QEMU emulator or guest driver) " 1216 "is misbehaving\n"); 1217 s->len = s->pos = 0; 1218 s->state = STATE_IDLE; 1219 break; 1220 } 1221 1222 s->data[s->len] = (uint8_t)tx; 1223 s->len++; 1224 1225 if (s->len == s->needed_bytes) { 1226 complete_collecting_data(s); 1227 } 1228 break; 1229 1230 case STATE_READING_DATA: 1231 1232 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) { 1233 qemu_log_mask(LOG_GUEST_ERROR, 1234 "M25P80: Read overrun internal data buffer. " 1235 "SPI controller (QEMU emulator or guest driver) " 1236 "is misbehaving\n"); 1237 s->len = s->pos = 0; 1238 s->state = STATE_IDLE; 1239 break; 1240 } 1241 1242 r = s->data[s->pos]; 1243 s->pos++; 1244 if (s->pos == s->len) { 1245 s->pos = 0; 1246 if (!s->data_read_loop) { 1247 s->state = STATE_IDLE; 1248 } 1249 } 1250 break; 1251 1252 default: 1253 case STATE_IDLE: 1254 decode_new_cmd(s, (uint8_t)tx); 1255 break; 1256 } 1257 1258 return r; 1259 } 1260 1261 static void m25p80_realize(SSISlave *ss, Error **errp) 1262 { 1263 Flash *s = M25P80(ss); 1264 M25P80Class *mc = M25P80_GET_CLASS(s); 1265 int ret; 1266 1267 s->pi = mc->pi; 1268 1269 s->size = s->pi->sector_size * s->pi->n_sectors; 1270 s->dirty_page = -1; 1271 1272 if (s->blk) { 1273 uint64_t perm = BLK_PERM_CONSISTENT_READ | 1274 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE); 1275 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp); 1276 if (ret < 0) { 1277 return; 1278 } 1279 1280 DB_PRINT_L(0, "Binding to IF_MTD drive\n"); 1281 s->storage = blk_blockalign(s->blk, s->size); 1282 1283 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) { 1284 error_setg(errp, "failed to read the initial flash content"); 1285 return; 1286 } 1287 } else { 1288 DB_PRINT_L(0, "No BDRV - binding to RAM\n"); 1289 s->storage = blk_blockalign(NULL, s->size); 1290 memset(s->storage, 0xFF, s->size); 1291 } 1292 } 1293 1294 static void m25p80_reset(DeviceState *d) 1295 { 1296 Flash *s = M25P80(d); 1297 1298 reset_memory(s); 1299 } 1300 1301 static int m25p80_pre_save(void *opaque) 1302 { 1303 flash_sync_dirty((Flash *)opaque, -1); 1304 1305 return 0; 1306 } 1307 1308 static Property m25p80_properties[] = { 1309 /* This is default value for Micron flash */ 1310 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF), 1311 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0), 1312 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8), 1313 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2), 1314 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10), 1315 DEFINE_PROP_DRIVE("drive", Flash, blk), 1316 DEFINE_PROP_END_OF_LIST(), 1317 }; 1318 1319 static int m25p80_pre_load(void *opaque) 1320 { 1321 Flash *s = (Flash *)opaque; 1322 1323 s->data_read_loop = false; 1324 return 0; 1325 } 1326 1327 static bool m25p80_data_read_loop_needed(void *opaque) 1328 { 1329 Flash *s = (Flash *)opaque; 1330 1331 return s->data_read_loop; 1332 } 1333 1334 static const VMStateDescription vmstate_m25p80_data_read_loop = { 1335 .name = "m25p80/data_read_loop", 1336 .version_id = 1, 1337 .minimum_version_id = 1, 1338 .needed = m25p80_data_read_loop_needed, 1339 .fields = (VMStateField[]) { 1340 VMSTATE_BOOL(data_read_loop, Flash), 1341 VMSTATE_END_OF_LIST() 1342 } 1343 }; 1344 1345 static const VMStateDescription vmstate_m25p80 = { 1346 .name = "m25p80", 1347 .version_id = 0, 1348 .minimum_version_id = 0, 1349 .pre_save = m25p80_pre_save, 1350 .pre_load = m25p80_pre_load, 1351 .fields = (VMStateField[]) { 1352 VMSTATE_UINT8(state, Flash), 1353 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ), 1354 VMSTATE_UINT32(len, Flash), 1355 VMSTATE_UINT32(pos, Flash), 1356 VMSTATE_UINT8(needed_bytes, Flash), 1357 VMSTATE_UINT8(cmd_in_progress, Flash), 1358 VMSTATE_UINT32(cur_addr, Flash), 1359 VMSTATE_BOOL(write_enable, Flash), 1360 VMSTATE_BOOL(reset_enable, Flash), 1361 VMSTATE_UINT8(ear, Flash), 1362 VMSTATE_BOOL(four_bytes_address_mode, Flash), 1363 VMSTATE_UINT32(nonvolatile_cfg, Flash), 1364 VMSTATE_UINT32(volatile_cfg, Flash), 1365 VMSTATE_UINT32(enh_volatile_cfg, Flash), 1366 VMSTATE_BOOL(quad_enable, Flash), 1367 VMSTATE_UINT8(spansion_cr1nv, Flash), 1368 VMSTATE_UINT8(spansion_cr2nv, Flash), 1369 VMSTATE_UINT8(spansion_cr3nv, Flash), 1370 VMSTATE_UINT8(spansion_cr4nv, Flash), 1371 VMSTATE_END_OF_LIST() 1372 }, 1373 .subsections = (const VMStateDescription * []) { 1374 &vmstate_m25p80_data_read_loop, 1375 NULL 1376 } 1377 }; 1378 1379 static void m25p80_class_init(ObjectClass *klass, void *data) 1380 { 1381 DeviceClass *dc = DEVICE_CLASS(klass); 1382 SSISlaveClass *k = SSI_SLAVE_CLASS(klass); 1383 M25P80Class *mc = M25P80_CLASS(klass); 1384 1385 k->realize = m25p80_realize; 1386 k->transfer = m25p80_transfer8; 1387 k->set_cs = m25p80_cs; 1388 k->cs_polarity = SSI_CS_LOW; 1389 dc->vmsd = &vmstate_m25p80; 1390 dc->props = m25p80_properties; 1391 dc->reset = m25p80_reset; 1392 mc->pi = data; 1393 } 1394 1395 static const TypeInfo m25p80_info = { 1396 .name = TYPE_M25P80, 1397 .parent = TYPE_SSI_SLAVE, 1398 .instance_size = sizeof(Flash), 1399 .class_size = sizeof(M25P80Class), 1400 .abstract = true, 1401 }; 1402 1403 static void m25p80_register_types(void) 1404 { 1405 int i; 1406 1407 type_register_static(&m25p80_info); 1408 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) { 1409 TypeInfo ti = { 1410 .name = known_devices[i].part_name, 1411 .parent = TYPE_M25P80, 1412 .class_init = m25p80_class_init, 1413 .class_data = (void *)&known_devices[i], 1414 }; 1415 type_register(&ti); 1416 } 1417 } 1418 1419 type_init(m25p80_register_types) 1420