xref: /openbmc/qemu/hw/block/m25p80.c (revision 2e1cacfb)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
41 
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
45 
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags {
48     ER_4K                  = BIT(0),
49     ER_32K                 = BIT(1),
50     EEPROM                 = BIT(2),
51     HAS_SR_TB              = BIT(3),
52     HAS_SR_BP3_BIT6        = BIT(4),
53 };
54 
55 typedef struct FlashPartInfo {
56     const char *part_name;
57     /*
58      * This array stores the ID bytes.
59      * The first three bytes are the JEDIC ID.
60      * JEDEC ID zero means "no ID" (mostly older chips).
61      */
62     uint8_t id[SPI_NOR_MAX_ID_LEN];
63     uint8_t id_len;
64     /* there is confusion between manufacturers as to what a sector is. In this
65      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
66      * command (opcode 0xd8).
67      */
68     uint32_t sector_size;
69     uint32_t n_sectors;
70     uint32_t page_size;
71     uint16_t flags;
72     /*
73      * Big sized spi nor are often stacked devices, thus sometime
74      * replace chip erase with die erase.
75      * This field inform how many die is in the chip.
76      */
77     uint8_t die_cnt;
78     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
79 } FlashPartInfo;
80 
81 /* adapted from linux */
82 /* Used when the "_ext_id" is two bytes at most */
83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
84     .part_name = _part_name,\
85     .id = {\
86         ((_jedec_id) >> 16) & 0xff,\
87         ((_jedec_id) >> 8) & 0xff,\
88         (_jedec_id) & 0xff,\
89         ((_ext_id) >> 8) & 0xff,\
90         (_ext_id) & 0xff,\
91           },\
92     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
93     .sector_size = (_sector_size),\
94     .n_sectors = (_n_sectors),\
95     .page_size = 256,\
96     .flags = (_flags),\
97     .die_cnt = 0
98 
99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
100     .part_name = _part_name,\
101     .id = {\
102         ((_jedec_id) >> 16) & 0xff,\
103         ((_jedec_id) >> 8) & 0xff,\
104         (_jedec_id) & 0xff,\
105         ((_ext_id) >> 16) & 0xff,\
106         ((_ext_id) >> 8) & 0xff,\
107         (_ext_id) & 0xff,\
108           },\
109     .id_len = 6,\
110     .sector_size = (_sector_size),\
111     .n_sectors = (_n_sectors),\
112     .page_size = 256,\
113     .flags = (_flags),\
114     .die_cnt = 0
115 
116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
117                     _flags, _die_cnt)\
118     .part_name = _part_name,\
119     .id = {\
120         ((_jedec_id) >> 16) & 0xff,\
121         ((_jedec_id) >> 8) & 0xff,\
122         (_jedec_id) & 0xff,\
123         ((_ext_id) >> 8) & 0xff,\
124         (_ext_id) & 0xff,\
125           },\
126     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
127     .sector_size = (_sector_size),\
128     .n_sectors = (_n_sectors),\
129     .page_size = 256,\
130     .flags = (_flags),\
131     .die_cnt = _die_cnt
132 
133 #define JEDEC_NUMONYX 0x20
134 #define JEDEC_WINBOND 0xEF
135 #define JEDEC_SPANSION 0x01
136 
137 /* Numonyx (Micron) Configuration register macros */
138 #define VCFG_DUMMY 0x1
139 #define VCFG_WRAP_SEQUENTIAL 0x2
140 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
141 #define NVCFG_XIP_MODE_MASK (7 << 9)
142 #define VCFG_XIP_MODE_DISABLED (1 << 3)
143 #define CFG_DUMMY_CLK_LEN 4
144 #define NVCFG_DUMMY_CLK_POS 12
145 #define VCFG_DUMMY_CLK_POS 4
146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
147 #define EVCFG_VPP_ACCELERATOR (1 << 3)
148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
149 #define NVCFG_DUAL_IO_MASK (1 << 2)
150 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
151 #define NVCFG_QUAD_IO_MASK (1 << 3)
152 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
155 
156 /* Numonyx (Micron) Flag Status Register macros */
157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
158 #define FSR_FLASH_READY (1 << 7)
159 
160 /* Spansion configuration registers macros. */
161 #define SPANSION_QUAD_CFG_POS 0
162 #define SPANSION_QUAD_CFG_LEN 1
163 #define SPANSION_DUMMY_CLK_POS 0
164 #define SPANSION_DUMMY_CLK_LEN 4
165 #define SPANSION_ADDR_LEN_POS 7
166 #define SPANSION_ADDR_LEN_LEN 1
167 
168 /*
169  * Spansion read mode command length in bytes,
170  * the mode is currently not supported.
171 */
172 
173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
175 
176 static const FlashPartInfo known_devices[] = {
177     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
178     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
179     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
180 
181     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
182     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
183     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
184 
185     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
186     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
187     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
188     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
189 
190     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
191 
192     /* Atmel EEPROMS - it is assumed, that don't care bit in command
193      * is set to 0. Block protection is not supported.
194      */
195     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
196     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
197 
198     /* EON -- en25xxx */
199     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
200     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
201     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
202     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
203     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
204 
205     /* GigaDevice */
206     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
207     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
208 
209     /* Intel/Numonyx -- xxxs33b */
210     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
211     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
212     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
213     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
214 
215     /* ISSI */
216     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
217     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
218     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
219     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
220     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
221     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
222     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
223     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
224     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
225     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
226     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K),
227       .sfdp_read = m25p80_sfdp_is25wp256 },
228 
229     /* Macronix */
230     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
231     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
232     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
233     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
234     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
235     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
236     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
237     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
238     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
239             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
240     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
241             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
242     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
243     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
244     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
245     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
246     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
247       .sfdp_read = m25p80_sfdp_mx66l1g45g },
248 
249     /* Micron */
250     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
251     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
252     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
253     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
254     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
255     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
256     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
257     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
258       .sfdp_read = m25p80_sfdp_n25q256a },
259     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
260     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
261     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
262     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
263            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
264       .sfdp_read = m25p80_sfdp_n25q256a },
265    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
266     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
267     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
268     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
269                    ER_4K | ER_32K, 2),
270                    .sfdp_read = m25p80_sfdp_mt35xu01g },
271     { INFO_STACKED("mt35xu02gbba", 0x2c5b1c, 0x104100, 128 << 10, 2048,
272                    ER_4K | ER_32K, 4),
273                    .sfdp_read = m25p80_sfdp_mt35xu02g },
274     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
275     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
276     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
277     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
278     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
279     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
280 
281     /* Spansion -- single (large) sector size only, at least
282      * for the chips listed here (without boot sectors).
283      */
284     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
285     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
286     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
287     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
288     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
289     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
290     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
291     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
292     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
293     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
294     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
295     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
296     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
297     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
298     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
299     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
300     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
301 
302     /* Spansion --  boot sectors support  */
303     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
304     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
305 
306     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
307     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
308     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
309     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
310     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
311     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
312     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
313     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
314     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
315     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
316 
317     /* ST Microelectronics -- newer production may have feature updates */
318     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
319     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
320     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
321     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
322     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
323     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
324     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
325     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
326     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
327     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
328 
329     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
330     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
331     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
332 
333     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
334     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
335     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
336 
337     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
338     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
339     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
340     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
341 
342     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
343     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
344     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
345     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
346     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
347     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
348     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
349     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
350     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
351     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
352     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
353     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
354     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
355     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
356       .sfdp_read = m25p80_sfdp_w25q256 },
357     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
358       .sfdp_read = m25p80_sfdp_w25q512jv },
359     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
360       .sfdp_read = m25p80_sfdp_w25q01jvq },
361 
362     /* Microchip */
363     { INFO("25csm04",      0x29cc00,      0x100,  64 << 10,  8, 0) },
364 };
365 
366 typedef enum {
367     NOP = 0,
368     WRSR = 0x1,
369     WRDI = 0x4,
370     RDSR = 0x5,
371     WREN = 0x6,
372     BRRD = 0x16,
373     BRWR = 0x17,
374     JEDEC_READ = 0x9f,
375     BULK_ERASE_60 = 0x60,
376     BULK_ERASE = 0xc7,
377     READ_FSR = 0x70,
378     RDCR = 0x15,
379     RDSFDP = 0x5a,
380 
381     READ = 0x03,
382     READ4 = 0x13,
383     FAST_READ = 0x0b,
384     FAST_READ4 = 0x0c,
385     DOR = 0x3b,
386     DOR4 = 0x3c,
387     QOR = 0x6b,
388     QOR4 = 0x6c,
389     DIOR = 0xbb,
390     DIOR4 = 0xbc,
391     QIOR = 0xeb,
392     QIOR4 = 0xec,
393 
394     PP = 0x02,
395     PP4 = 0x12,
396     PP4_4 = 0x3e,
397     DPP = 0xa2,
398     QPP = 0x32,
399     QPP_4 = 0x34,
400     RDID_90 = 0x90,
401     RDID_AB = 0xab,
402     AAI_WP = 0xad,
403 
404     ERASE_4K = 0x20,
405     ERASE4_4K = 0x21,
406     ERASE_32K = 0x52,
407     ERASE4_32K = 0x5c,
408     ERASE_SECTOR = 0xd8,
409     ERASE4_SECTOR = 0xdc,
410 
411     EN_4BYTE_ADDR = 0xB7,
412     EX_4BYTE_ADDR = 0xE9,
413 
414     EXTEND_ADDR_READ = 0xC8,
415     EXTEND_ADDR_WRITE = 0xC5,
416 
417     RESET_ENABLE = 0x66,
418     RESET_MEMORY = 0x99,
419 
420     /*
421      * Micron: 0x35 - enable QPI
422      * Spansion: 0x35 - read control register
423      * Winbond: 0x35 - quad enable
424      */
425     RDCR_EQIO = 0x35,
426     RSTQIO = 0xf5,
427 
428     RNVCR = 0xB5,
429     WNVCR = 0xB1,
430 
431     RVCR = 0x85,
432     WVCR = 0x81,
433 
434     REVCR = 0x65,
435     WEVCR = 0x61,
436 
437     DIE_ERASE = 0xC4,
438 } FlashCMD;
439 
440 typedef enum {
441     STATE_IDLE,
442     STATE_PAGE_PROGRAM,
443     STATE_READ,
444     STATE_COLLECTING_DATA,
445     STATE_COLLECTING_VAR_LEN_DATA,
446     STATE_READING_DATA,
447     STATE_READING_SFDP,
448 } CMDState;
449 
450 typedef enum {
451     MAN_SPANSION,
452     MAN_MACRONIX,
453     MAN_NUMONYX,
454     MAN_WINBOND,
455     MAN_SST,
456     MAN_ISSI,
457     MAN_GENERIC,
458 } Manufacturer;
459 
460 typedef enum {
461     MODE_STD = 0,
462     MODE_DIO = 1,
463     MODE_QIO = 2
464 } SPIMode;
465 
466 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
467 
468 struct Flash {
469     SSIPeripheral parent_obj;
470 
471     BlockBackend *blk;
472 
473     uint8_t *storage;
474     uint32_t size;
475     int page_size;
476 
477     uint8_t state;
478     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
479     uint32_t len;
480     uint32_t pos;
481     bool data_read_loop;
482     uint8_t needed_bytes;
483     uint8_t cmd_in_progress;
484     uint32_t cur_addr;
485     uint32_t nonvolatile_cfg;
486     /* Configuration register for Macronix */
487     uint32_t volatile_cfg;
488     uint32_t enh_volatile_cfg;
489     /* Spansion cfg registers. */
490     uint8_t spansion_cr1nv;
491     uint8_t spansion_cr2nv;
492     uint8_t spansion_cr3nv;
493     uint8_t spansion_cr4nv;
494     uint8_t spansion_cr1v;
495     uint8_t spansion_cr2v;
496     uint8_t spansion_cr3v;
497     uint8_t spansion_cr4v;
498     bool wp_level;
499     bool write_enable;
500     bool four_bytes_address_mode;
501     bool reset_enable;
502     bool quad_enable;
503     bool aai_enable;
504     bool block_protect0;
505     bool block_protect1;
506     bool block_protect2;
507     bool block_protect3;
508     bool top_bottom_bit;
509     bool status_register_write_disabled;
510     uint8_t ear;
511 
512     int64_t dirty_page;
513 
514     const FlashPartInfo *pi;
515 
516 };
517 
518 struct M25P80Class {
519     SSIPeripheralClass parent_class;
520     FlashPartInfo *pi;
521 };
522 
523 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
524 
525 static inline Manufacturer get_man(Flash *s)
526 {
527     switch (s->pi->id[0]) {
528     case 0x20:
529         return MAN_NUMONYX;
530     case 0xEF:
531         return MAN_WINBOND;
532     case 0x01:
533         return MAN_SPANSION;
534     case 0xC2:
535         return MAN_MACRONIX;
536     case 0xBF:
537         return MAN_SST;
538     case 0x9D:
539         return MAN_ISSI;
540     default:
541         return MAN_GENERIC;
542     }
543 }
544 
545 static void blk_sync_complete(void *opaque, int ret)
546 {
547     QEMUIOVector *iov = opaque;
548 
549     qemu_iovec_destroy(iov);
550     g_free(iov);
551 
552     /* do nothing. Masters do not directly interact with the backing store,
553      * only the working copy so no mutexing required.
554      */
555 }
556 
557 static void flash_sync_page(Flash *s, int page)
558 {
559     QEMUIOVector *iov;
560 
561     if (!s->blk || !blk_is_writable(s->blk)) {
562         return;
563     }
564 
565     iov = g_new(QEMUIOVector, 1);
566     qemu_iovec_init(iov, 1);
567     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
568                    s->pi->page_size);
569     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
570                     blk_sync_complete, iov);
571 }
572 
573 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
574 {
575     QEMUIOVector *iov;
576 
577     if (!s->blk || !blk_is_writable(s->blk)) {
578         return;
579     }
580 
581     assert(!(len % BDRV_SECTOR_SIZE));
582     iov = g_new(QEMUIOVector, 1);
583     qemu_iovec_init(iov, 1);
584     qemu_iovec_add(iov, s->storage + off, len);
585     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
586 }
587 
588 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
589 {
590     uint32_t len;
591     uint8_t capa_to_assert = 0;
592 
593     switch (cmd) {
594     case ERASE_4K:
595     case ERASE4_4K:
596         len = 4 * KiB;
597         capa_to_assert = ER_4K;
598         break;
599     case ERASE_32K:
600     case ERASE4_32K:
601         len = 32 * KiB;
602         capa_to_assert = ER_32K;
603         break;
604     case ERASE_SECTOR:
605     case ERASE4_SECTOR:
606         len = s->pi->sector_size;
607         break;
608     case BULK_ERASE:
609         len = s->size;
610         break;
611     case DIE_ERASE:
612         if (s->pi->die_cnt) {
613             len = s->size / s->pi->die_cnt;
614             offset = offset & (~(len - 1));
615         } else {
616             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
617                           " by device\n");
618             return;
619         }
620         break;
621     default:
622         abort();
623     }
624 
625     trace_m25p80_flash_erase(s, offset, len);
626 
627     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
628         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
629                       " device\n", len);
630     }
631 
632     if (!s->write_enable) {
633         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
634         return;
635     }
636     memset(s->storage + offset, 0xff, len);
637     flash_sync_area(s, offset, len);
638 }
639 
640 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
641 {
642     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
643         flash_sync_page(s, s->dirty_page);
644         s->dirty_page = newpage;
645     }
646 }
647 
648 static inline
649 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
650 {
651     uint32_t page = addr / s->pi->page_size;
652     uint8_t prev = s->storage[s->cur_addr];
653     uint32_t block_protect_value = (s->block_protect3 << 3) |
654                                    (s->block_protect2 << 2) |
655                                    (s->block_protect1 << 1) |
656                                    (s->block_protect0 << 0);
657 
658     if (!s->write_enable) {
659         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
660         return;
661     }
662 
663     if (block_protect_value > 0) {
664         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
665         uint32_t sector = addr / s->pi->sector_size;
666 
667         /* top_bottom_bit == 0 means TOP */
668         if (!s->top_bottom_bit) {
669             if (s->pi->n_sectors <= sector + num_protected_sectors) {
670                 qemu_log_mask(LOG_GUEST_ERROR,
671                               "M25P80: write with write protect!\n");
672                 return;
673             }
674         } else {
675             if (sector < num_protected_sectors) {
676                 qemu_log_mask(LOG_GUEST_ERROR,
677                               "M25P80: write with write protect!\n");
678                 return;
679             }
680         }
681     }
682 
683     if ((prev ^ data) & data) {
684         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
685     }
686 
687     if (s->pi->flags & EEPROM) {
688         s->storage[s->cur_addr] = data;
689     } else {
690         s->storage[s->cur_addr] &= data;
691     }
692 
693     flash_sync_dirty(s, page);
694     s->dirty_page = page;
695 }
696 
697 static inline int get_addr_length(Flash *s)
698 {
699    /* check if eeprom is in use */
700     if (s->pi->flags == EEPROM) {
701         return 2;
702     }
703 
704    switch (s->cmd_in_progress) {
705    case RDSFDP:
706        return 3;
707    case PP4:
708    case PP4_4:
709    case QPP_4:
710    case READ4:
711    case QIOR4:
712    case ERASE4_4K:
713    case ERASE4_32K:
714    case ERASE4_SECTOR:
715    case FAST_READ4:
716    case DOR4:
717    case QOR4:
718    case DIOR4:
719        return 4;
720    default:
721        return s->four_bytes_address_mode ? 4 : 3;
722    }
723 }
724 
725 static void complete_collecting_data(Flash *s)
726 {
727     int i, n;
728 
729     n = get_addr_length(s);
730     s->cur_addr = (n == 3 ? s->ear : 0);
731     for (i = 0; i < n; ++i) {
732         s->cur_addr <<= 8;
733         s->cur_addr |= s->data[i];
734     }
735 
736     s->cur_addr &= s->size - 1;
737 
738     s->state = STATE_IDLE;
739 
740     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
741                                      s->cur_addr);
742 
743     switch (s->cmd_in_progress) {
744     case DPP:
745     case QPP:
746     case QPP_4:
747     case PP:
748     case PP4:
749     case PP4_4:
750         s->state = STATE_PAGE_PROGRAM;
751         break;
752     case AAI_WP:
753         /* AAI programming starts from the even address */
754         s->cur_addr &= ~BIT(0);
755         s->state = STATE_PAGE_PROGRAM;
756         break;
757     case READ:
758     case READ4:
759     case FAST_READ:
760     case FAST_READ4:
761     case DOR:
762     case DOR4:
763     case QOR:
764     case QOR4:
765     case DIOR:
766     case DIOR4:
767     case QIOR:
768     case QIOR4:
769         s->state = STATE_READ;
770         break;
771     case ERASE_4K:
772     case ERASE4_4K:
773     case ERASE_32K:
774     case ERASE4_32K:
775     case ERASE_SECTOR:
776     case ERASE4_SECTOR:
777     case DIE_ERASE:
778         flash_erase(s, s->cur_addr, s->cmd_in_progress);
779         break;
780     case WRSR:
781         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
782         s->block_protect0 = extract32(s->data[0], 2, 1);
783         s->block_protect1 = extract32(s->data[0], 3, 1);
784         s->block_protect2 = extract32(s->data[0], 4, 1);
785         if (s->pi->flags & HAS_SR_TB) {
786             s->top_bottom_bit = extract32(s->data[0], 5, 1);
787         }
788         if (s->pi->flags & HAS_SR_BP3_BIT6) {
789             s->block_protect3 = extract32(s->data[0], 6, 1);
790         }
791 
792         switch (get_man(s)) {
793         case MAN_SPANSION:
794             s->quad_enable = !!(s->data[1] & 0x02);
795             break;
796         case MAN_ISSI:
797             s->quad_enable = extract32(s->data[0], 6, 1);
798             break;
799         case MAN_MACRONIX:
800             s->quad_enable = extract32(s->data[0], 6, 1);
801             if (s->len > 1) {
802                 s->volatile_cfg = s->data[1];
803                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
804             }
805             break;
806         case MAN_WINBOND:
807             if (s->len > 1) {
808                 s->quad_enable = !!(s->data[1] & 0x02);
809             }
810             break;
811         default:
812             break;
813         }
814         if (s->write_enable) {
815             s->write_enable = false;
816         }
817         break;
818     case BRWR:
819     case EXTEND_ADDR_WRITE:
820         s->ear = s->data[0];
821         break;
822     case WNVCR:
823         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
824         break;
825     case WVCR:
826         s->volatile_cfg = s->data[0];
827         break;
828     case WEVCR:
829         s->enh_volatile_cfg = s->data[0];
830         break;
831     case RDID_90:
832     case RDID_AB:
833         if (get_man(s) == MAN_SST) {
834             if (s->cur_addr <= 1) {
835                 if (s->cur_addr) {
836                     s->data[0] = s->pi->id[2];
837                     s->data[1] = s->pi->id[0];
838                 } else {
839                     s->data[0] = s->pi->id[0];
840                     s->data[1] = s->pi->id[2];
841                 }
842                 s->pos = 0;
843                 s->len = 2;
844                 s->data_read_loop = true;
845                 s->state = STATE_READING_DATA;
846             } else {
847                 qemu_log_mask(LOG_GUEST_ERROR,
848                               "M25P80: Invalid read id address\n");
849             }
850         } else {
851             qemu_log_mask(LOG_GUEST_ERROR,
852                           "M25P80: Read id (command 0x90/0xAB) is not supported"
853                           " by device\n");
854         }
855         break;
856 
857     case RDSFDP:
858         s->state = STATE_READING_SFDP;
859         break;
860 
861     default:
862         break;
863     }
864 }
865 
866 static void reset_memory(Flash *s)
867 {
868     s->cmd_in_progress = NOP;
869     s->cur_addr = 0;
870     s->ear = 0;
871     s->four_bytes_address_mode = false;
872     s->len = 0;
873     s->needed_bytes = 0;
874     s->pos = 0;
875     s->state = STATE_IDLE;
876     s->write_enable = false;
877     s->reset_enable = false;
878     s->quad_enable = false;
879     s->aai_enable = false;
880 
881     switch (get_man(s)) {
882     case MAN_NUMONYX:
883         s->volatile_cfg = 0;
884         s->volatile_cfg |= VCFG_DUMMY;
885         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
886         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
887                                 == NVCFG_XIP_MODE_DISABLED) {
888             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
889         }
890         s->volatile_cfg |= deposit32(s->volatile_cfg,
891                             VCFG_DUMMY_CLK_POS,
892                             CFG_DUMMY_CLK_LEN,
893                             extract32(s->nonvolatile_cfg,
894                                         NVCFG_DUMMY_CLK_POS,
895                                         CFG_DUMMY_CLK_LEN)
896                             );
897 
898         s->enh_volatile_cfg = 0;
899         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
900         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
901         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
902         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
903             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
904         }
905         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
906             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
907         }
908         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
909             s->four_bytes_address_mode = true;
910         }
911         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
912             s->ear = s->size / MAX_3BYTES_SIZE - 1;
913         }
914         break;
915     case MAN_MACRONIX:
916         s->volatile_cfg = 0x7;
917         break;
918     case MAN_SPANSION:
919         s->spansion_cr1v = s->spansion_cr1nv;
920         s->spansion_cr2v = s->spansion_cr2nv;
921         s->spansion_cr3v = s->spansion_cr3nv;
922         s->spansion_cr4v = s->spansion_cr4nv;
923         s->quad_enable = extract32(s->spansion_cr1v,
924                                    SPANSION_QUAD_CFG_POS,
925                                    SPANSION_QUAD_CFG_LEN
926                                    );
927         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
928                 SPANSION_ADDR_LEN_POS,
929                 SPANSION_ADDR_LEN_LEN
930                 );
931         break;
932     default:
933         break;
934     }
935 
936     trace_m25p80_reset_done(s);
937 }
938 
939 static uint8_t numonyx_mode(Flash *s)
940 {
941     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
942         return MODE_QIO;
943     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
944         return MODE_DIO;
945     } else {
946         return MODE_STD;
947     }
948 }
949 
950 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
951 {
952     uint8_t num_dummies;
953     uint8_t mode;
954     assert(get_man(s) == MAN_NUMONYX);
955 
956     mode = numonyx_mode(s);
957     num_dummies = extract32(s->volatile_cfg, 4, 4);
958 
959     if (num_dummies == 0x0 || num_dummies == 0xf) {
960         switch (s->cmd_in_progress) {
961         case QIOR:
962         case QIOR4:
963             num_dummies = 10;
964             break;
965         default:
966             num_dummies = (mode == MODE_QIO) ? 10 : 8;
967             break;
968         }
969     }
970 
971     return num_dummies;
972 }
973 
974 static void decode_fast_read_cmd(Flash *s)
975 {
976     s->needed_bytes = get_addr_length(s);
977     switch (get_man(s)) {
978     /* Dummy cycles - modeled with bytes writes instead of bits */
979     case MAN_SST:
980         s->needed_bytes += 1;
981         break;
982     case MAN_WINBOND:
983         s->needed_bytes += 8;
984         break;
985     case MAN_NUMONYX:
986         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
987         break;
988     case MAN_MACRONIX:
989         if (extract32(s->volatile_cfg, 6, 2) == 1) {
990             s->needed_bytes += 6;
991         } else {
992             s->needed_bytes += 8;
993         }
994         break;
995     case MAN_SPANSION:
996         s->needed_bytes += extract32(s->spansion_cr2v,
997                                     SPANSION_DUMMY_CLK_POS,
998                                     SPANSION_DUMMY_CLK_LEN
999                                     );
1000         break;
1001     case MAN_ISSI:
1002         /*
1003          * The Fast Read instruction code is followed by address bytes and
1004          * dummy cycles, transmitted via the SI line.
1005          *
1006          * The number of dummy cycles is configurable but this is currently
1007          * unmodeled, hence the default value 8 is used.
1008          *
1009          * QPI (Quad Peripheral Interface) mode has different default value
1010          * of dummy cycles, but this is unsupported at the time being.
1011          */
1012         s->needed_bytes += 1;
1013         break;
1014     default:
1015         break;
1016     }
1017     s->pos = 0;
1018     s->len = 0;
1019     s->state = STATE_COLLECTING_DATA;
1020 }
1021 
1022 static void decode_dio_read_cmd(Flash *s)
1023 {
1024     s->needed_bytes = get_addr_length(s);
1025     /* Dummy cycles modeled with bytes writes instead of bits */
1026     switch (get_man(s)) {
1027     case MAN_WINBOND:
1028         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1029         break;
1030     case MAN_SPANSION:
1031         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1032         s->needed_bytes += extract32(s->spansion_cr2v,
1033                                     SPANSION_DUMMY_CLK_POS,
1034                                     SPANSION_DUMMY_CLK_LEN
1035                                     );
1036         break;
1037     case MAN_NUMONYX:
1038         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1039         break;
1040     case MAN_MACRONIX:
1041         switch (extract32(s->volatile_cfg, 6, 2)) {
1042         case 1:
1043             s->needed_bytes += 6;
1044             break;
1045         case 2:
1046             s->needed_bytes += 8;
1047             break;
1048         default:
1049             s->needed_bytes += 4;
1050             break;
1051         }
1052         break;
1053     case MAN_ISSI:
1054         /*
1055          * The Fast Read Dual I/O instruction code is followed by address bytes
1056          * and dummy cycles, transmitted via the IO1 and IO0 line.
1057          *
1058          * The number of dummy cycles is configurable but this is currently
1059          * unmodeled, hence the default value 4 is used.
1060          */
1061         s->needed_bytes += 1;
1062         break;
1063     default:
1064         break;
1065     }
1066     s->pos = 0;
1067     s->len = 0;
1068     s->state = STATE_COLLECTING_DATA;
1069 }
1070 
1071 static void decode_qio_read_cmd(Flash *s)
1072 {
1073     s->needed_bytes = get_addr_length(s);
1074     /* Dummy cycles modeled with bytes writes instead of bits */
1075     switch (get_man(s)) {
1076     case MAN_WINBOND:
1077         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1078         s->needed_bytes += 4;
1079         break;
1080     case MAN_SPANSION:
1081         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1082         s->needed_bytes += extract32(s->spansion_cr2v,
1083                                     SPANSION_DUMMY_CLK_POS,
1084                                     SPANSION_DUMMY_CLK_LEN
1085                                     );
1086         break;
1087     case MAN_NUMONYX:
1088         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1089         break;
1090     case MAN_MACRONIX:
1091         switch (extract32(s->volatile_cfg, 6, 2)) {
1092         case 1:
1093             s->needed_bytes += 4;
1094             break;
1095         case 2:
1096             s->needed_bytes += 8;
1097             break;
1098         default:
1099             s->needed_bytes += 6;
1100             break;
1101         }
1102         break;
1103     case MAN_ISSI:
1104         /*
1105          * The Fast Read Quad I/O instruction code is followed by address bytes
1106          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1107          *
1108          * The number of dummy cycles is configurable but this is currently
1109          * unmodeled, hence the default value 6 is used.
1110          *
1111          * QPI (Quad Peripheral Interface) mode has different default value
1112          * of dummy cycles, but this is unsupported at the time being.
1113          */
1114         s->needed_bytes += 3;
1115         break;
1116     default:
1117         break;
1118     }
1119     s->pos = 0;
1120     s->len = 0;
1121     s->state = STATE_COLLECTING_DATA;
1122 }
1123 
1124 static bool is_valid_aai_cmd(uint32_t cmd)
1125 {
1126     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1127 }
1128 
1129 static void decode_new_cmd(Flash *s, uint32_t value)
1130 {
1131     int i;
1132 
1133     s->cmd_in_progress = value;
1134     trace_m25p80_command_decoded(s, value);
1135 
1136     if (value != RESET_MEMORY) {
1137         s->reset_enable = false;
1138     }
1139 
1140     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1141         qemu_log_mask(LOG_GUEST_ERROR,
1142                       "M25P80: Invalid cmd within AAI programming sequence");
1143     }
1144 
1145     switch (value) {
1146 
1147     case ERASE_4K:
1148     case ERASE4_4K:
1149     case ERASE_32K:
1150     case ERASE4_32K:
1151     case ERASE_SECTOR:
1152     case ERASE4_SECTOR:
1153     case PP:
1154     case PP4:
1155     case DIE_ERASE:
1156     case RDID_90:
1157     case RDID_AB:
1158         s->needed_bytes = get_addr_length(s);
1159         s->pos = 0;
1160         s->len = 0;
1161         s->state = STATE_COLLECTING_DATA;
1162         break;
1163     case READ:
1164     case READ4:
1165         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1166             s->needed_bytes = get_addr_length(s);
1167             s->pos = 0;
1168             s->len = 0;
1169             s->state = STATE_COLLECTING_DATA;
1170         } else {
1171             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1172                           "DIO or QIO mode\n", s->cmd_in_progress);
1173         }
1174         break;
1175     case DPP:
1176         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1177             s->needed_bytes = get_addr_length(s);
1178             s->pos = 0;
1179             s->len = 0;
1180             s->state = STATE_COLLECTING_DATA;
1181         } else {
1182             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1183                           "QIO mode\n", s->cmd_in_progress);
1184         }
1185         break;
1186     case QPP:
1187     case QPP_4:
1188     case PP4_4:
1189         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1190             s->needed_bytes = get_addr_length(s);
1191             s->pos = 0;
1192             s->len = 0;
1193             s->state = STATE_COLLECTING_DATA;
1194         } else {
1195             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1196                           "DIO mode\n", s->cmd_in_progress);
1197         }
1198         break;
1199 
1200     case FAST_READ:
1201     case FAST_READ4:
1202         decode_fast_read_cmd(s);
1203         break;
1204     case DOR:
1205     case DOR4:
1206         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1207             decode_fast_read_cmd(s);
1208         } else {
1209             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1210                           "QIO mode\n", s->cmd_in_progress);
1211         }
1212         break;
1213     case QOR:
1214     case QOR4:
1215         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1216             decode_fast_read_cmd(s);
1217         } else {
1218             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1219                           "DIO mode\n", s->cmd_in_progress);
1220         }
1221         break;
1222 
1223     case DIOR:
1224     case DIOR4:
1225         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1226             decode_dio_read_cmd(s);
1227         } else {
1228             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1229                           "QIO mode\n", s->cmd_in_progress);
1230         }
1231         break;
1232 
1233     case QIOR:
1234     case QIOR4:
1235         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1236             decode_qio_read_cmd(s);
1237         } else {
1238             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1239                           "DIO mode\n", s->cmd_in_progress);
1240         }
1241         break;
1242 
1243     case WRSR:
1244         /*
1245          * If WP# is low and status_register_write_disabled is high,
1246          * status register writes are disabled.
1247          * This is also called "hardware protected mode" (HPM). All other
1248          * combinations of the two states are called "software protected mode"
1249          * (SPM), and status register writes are permitted.
1250          */
1251         if ((s->wp_level == 0 && s->status_register_write_disabled)
1252             || !s->write_enable) {
1253             qemu_log_mask(LOG_GUEST_ERROR,
1254                           "M25P80: Status register write is disabled!\n");
1255             break;
1256         }
1257 
1258         switch (get_man(s)) {
1259         case MAN_SPANSION:
1260             s->needed_bytes = 2;
1261             s->state = STATE_COLLECTING_DATA;
1262             break;
1263         case MAN_MACRONIX:
1264             s->needed_bytes = 2;
1265             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1266             break;
1267         case MAN_WINBOND:
1268             s->needed_bytes = 2;
1269             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1270             break;
1271         default:
1272             s->needed_bytes = 1;
1273             s->state = STATE_COLLECTING_DATA;
1274         }
1275         s->pos = 0;
1276         break;
1277 
1278     case WRDI:
1279         s->write_enable = false;
1280         if (get_man(s) == MAN_SST) {
1281             s->aai_enable = false;
1282         }
1283         break;
1284     case WREN:
1285         s->write_enable = true;
1286         break;
1287 
1288     case RDSR:
1289         s->data[0] = (!!s->write_enable) << 1;
1290         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1291         s->data[0] |= (!!s->block_protect0) << 2;
1292         s->data[0] |= (!!s->block_protect1) << 3;
1293         s->data[0] |= (!!s->block_protect2) << 4;
1294         if (s->pi->flags & HAS_SR_TB) {
1295             s->data[0] |= (!!s->top_bottom_bit) << 5;
1296         }
1297         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1298             s->data[0] |= (!!s->block_protect3) << 6;
1299         }
1300 
1301         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1302             s->data[0] |= (!!s->quad_enable) << 6;
1303         }
1304         if (get_man(s) == MAN_SST) {
1305             s->data[0] |= (!!s->aai_enable) << 6;
1306         }
1307 
1308         s->pos = 0;
1309         s->len = 1;
1310         s->data_read_loop = true;
1311         s->state = STATE_READING_DATA;
1312         break;
1313 
1314     case READ_FSR:
1315         s->data[0] = FSR_FLASH_READY;
1316         if (s->four_bytes_address_mode) {
1317             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1318         }
1319         s->pos = 0;
1320         s->len = 1;
1321         s->data_read_loop = true;
1322         s->state = STATE_READING_DATA;
1323         break;
1324 
1325     case JEDEC_READ:
1326         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1327             trace_m25p80_populated_jedec(s);
1328             for (i = 0; i < s->pi->id_len; i++) {
1329                 s->data[i] = s->pi->id[i];
1330             }
1331             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1332                 s->data[i] = 0;
1333             }
1334 
1335             s->len = SPI_NOR_MAX_ID_LEN;
1336             s->pos = 0;
1337             s->state = STATE_READING_DATA;
1338         } else {
1339             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1340                           "in DIO or QIO mode\n");
1341         }
1342         break;
1343 
1344     case RDCR:
1345         s->data[0] = s->volatile_cfg & 0xFF;
1346         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1347         s->pos = 0;
1348         s->len = 1;
1349         s->state = STATE_READING_DATA;
1350         break;
1351 
1352     case BULK_ERASE_60:
1353     case BULK_ERASE:
1354         if (s->write_enable) {
1355             trace_m25p80_chip_erase(s);
1356             flash_erase(s, 0, BULK_ERASE);
1357         } else {
1358             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1359                           "protect!\n");
1360         }
1361         break;
1362     case NOP:
1363         break;
1364     case EN_4BYTE_ADDR:
1365         s->four_bytes_address_mode = true;
1366         break;
1367     case EX_4BYTE_ADDR:
1368         s->four_bytes_address_mode = false;
1369         break;
1370     case BRRD:
1371     case EXTEND_ADDR_READ:
1372         s->data[0] = s->ear;
1373         s->pos = 0;
1374         s->len = 1;
1375         s->state = STATE_READING_DATA;
1376         break;
1377     case BRWR:
1378     case EXTEND_ADDR_WRITE:
1379         if (s->write_enable) {
1380             s->needed_bytes = 1;
1381             s->pos = 0;
1382             s->len = 0;
1383             s->state = STATE_COLLECTING_DATA;
1384         }
1385         break;
1386     case RNVCR:
1387         s->data[0] = s->nonvolatile_cfg & 0xFF;
1388         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1389         s->pos = 0;
1390         s->len = 2;
1391         s->state = STATE_READING_DATA;
1392         break;
1393     case WNVCR:
1394         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1395             s->needed_bytes = 2;
1396             s->pos = 0;
1397             s->len = 0;
1398             s->state = STATE_COLLECTING_DATA;
1399         }
1400         break;
1401     case RVCR:
1402         s->data[0] = s->volatile_cfg & 0xFF;
1403         s->pos = 0;
1404         s->len = 1;
1405         s->state = STATE_READING_DATA;
1406         break;
1407     case WVCR:
1408         if (s->write_enable) {
1409             s->needed_bytes = 1;
1410             s->pos = 0;
1411             s->len = 0;
1412             s->state = STATE_COLLECTING_DATA;
1413         }
1414         break;
1415     case REVCR:
1416         s->data[0] = s->enh_volatile_cfg & 0xFF;
1417         s->pos = 0;
1418         s->len = 1;
1419         s->state = STATE_READING_DATA;
1420         break;
1421     case WEVCR:
1422         if (s->write_enable) {
1423             s->needed_bytes = 1;
1424             s->pos = 0;
1425             s->len = 0;
1426             s->state = STATE_COLLECTING_DATA;
1427         }
1428         break;
1429     case RESET_ENABLE:
1430         s->reset_enable = true;
1431         break;
1432     case RESET_MEMORY:
1433         if (s->reset_enable) {
1434             reset_memory(s);
1435         }
1436         break;
1437     case RDCR_EQIO:
1438         switch (get_man(s)) {
1439         case MAN_SPANSION:
1440             s->data[0] = (!!s->quad_enable) << 1;
1441             s->pos = 0;
1442             s->len = 1;
1443             s->state = STATE_READING_DATA;
1444             break;
1445         case MAN_MACRONIX:
1446             s->quad_enable = true;
1447             break;
1448         case MAN_WINBOND:
1449             s->data[0] = (!!s->quad_enable) << 1;
1450             s->pos = 0;
1451             s->len = 1;
1452             s->state = STATE_READING_DATA;
1453             break;
1454         default:
1455             break;
1456         }
1457         break;
1458     case RSTQIO:
1459         s->quad_enable = false;
1460         break;
1461     case AAI_WP:
1462         if (get_man(s) == MAN_SST) {
1463             if (s->write_enable) {
1464                 if (s->aai_enable) {
1465                     s->state = STATE_PAGE_PROGRAM;
1466                 } else {
1467                     s->aai_enable = true;
1468                     s->needed_bytes = get_addr_length(s);
1469                     s->state = STATE_COLLECTING_DATA;
1470                 }
1471             } else {
1472                 qemu_log_mask(LOG_GUEST_ERROR,
1473                               "M25P80: AAI_WP with write protect\n");
1474             }
1475         } else {
1476             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1477         }
1478         break;
1479     case RDSFDP:
1480         if (s->pi->sfdp_read) {
1481             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1482             s->pos = 0;
1483             s->len = 0;
1484             s->state = STATE_COLLECTING_DATA;
1485             break;
1486         }
1487         /* Fallthrough */
1488 
1489     default:
1490         s->pos = 0;
1491         s->len = 1;
1492         s->state = STATE_READING_DATA;
1493         s->data_read_loop = true;
1494         s->data[0] = 0;
1495         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1496         break;
1497     }
1498 }
1499 
1500 static int m25p80_cs(SSIPeripheral *ss, bool select)
1501 {
1502     Flash *s = M25P80(ss);
1503 
1504     if (select) {
1505         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1506             complete_collecting_data(s);
1507         }
1508         s->len = 0;
1509         s->pos = 0;
1510         s->state = STATE_IDLE;
1511         flash_sync_dirty(s, -1);
1512         s->data_read_loop = false;
1513     }
1514 
1515     trace_m25p80_select(s, select ? "de" : "");
1516 
1517     return 0;
1518 }
1519 
1520 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1521 {
1522     Flash *s = M25P80(ss);
1523     uint32_t r = 0;
1524 
1525     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1526                           s->cur_addr, (uint8_t)tx);
1527 
1528     switch (s->state) {
1529 
1530     case STATE_PAGE_PROGRAM:
1531         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1532         flash_write8(s, s->cur_addr, (uint8_t)tx);
1533         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1534 
1535         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1536             /*
1537              * There is no wrap mode during AAI programming once the highest
1538              * unprotected memory address is reached. The Write-Enable-Latch
1539              * bit is automatically reset, and AAI programming mode aborts.
1540              */
1541             s->write_enable = false;
1542             s->aai_enable = false;
1543         }
1544 
1545         break;
1546 
1547     case STATE_READ:
1548         r = s->storage[s->cur_addr];
1549         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1550         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1551         break;
1552 
1553     case STATE_COLLECTING_DATA:
1554     case STATE_COLLECTING_VAR_LEN_DATA:
1555 
1556         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1557             qemu_log_mask(LOG_GUEST_ERROR,
1558                           "M25P80: Write overrun internal data buffer. "
1559                           "SPI controller (QEMU emulator or guest driver) "
1560                           "is misbehaving\n");
1561             s->len = s->pos = 0;
1562             s->state = STATE_IDLE;
1563             break;
1564         }
1565 
1566         s->data[s->len] = (uint8_t)tx;
1567         s->len++;
1568 
1569         if (s->len == s->needed_bytes) {
1570             complete_collecting_data(s);
1571         }
1572         break;
1573 
1574     case STATE_READING_DATA:
1575 
1576         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1577             qemu_log_mask(LOG_GUEST_ERROR,
1578                           "M25P80: Read overrun internal data buffer. "
1579                           "SPI controller (QEMU emulator or guest driver) "
1580                           "is misbehaving\n");
1581             s->len = s->pos = 0;
1582             s->state = STATE_IDLE;
1583             break;
1584         }
1585 
1586         r = s->data[s->pos];
1587         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1588         s->pos++;
1589         if (s->pos == s->len) {
1590             s->pos = 0;
1591             if (!s->data_read_loop) {
1592                 s->state = STATE_IDLE;
1593             }
1594         }
1595         break;
1596     case STATE_READING_SFDP:
1597         assert(s->pi->sfdp_read);
1598         r = s->pi->sfdp_read(s->cur_addr);
1599         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1600         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1601         break;
1602 
1603     default:
1604     case STATE_IDLE:
1605         decode_new_cmd(s, (uint8_t)tx);
1606         break;
1607     }
1608 
1609     return r;
1610 }
1611 
1612 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1613 {
1614     Flash *s = M25P80(opaque);
1615     /* WP# is just a single pin. */
1616     assert(n == 0);
1617     s->wp_level = !!level;
1618 }
1619 
1620 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1621 {
1622     Flash *s = M25P80(ss);
1623     M25P80Class *mc = M25P80_GET_CLASS(s);
1624     int ret;
1625 
1626     s->pi = mc->pi;
1627 
1628     s->size = s->pi->sector_size * s->pi->n_sectors;
1629     s->dirty_page = -1;
1630 
1631     if (s->blk) {
1632         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1633                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1634         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1635         if (ret < 0) {
1636             return;
1637         }
1638 
1639         trace_m25p80_binding(s);
1640         s->storage = blk_blockalign(s->blk, s->size);
1641 
1642         if (!blk_check_size_and_read_all(s->blk, DEVICE(s),
1643                                          s->storage, s->size, errp)) {
1644             return;
1645         }
1646     } else {
1647         trace_m25p80_binding_no_bdrv(s);
1648         s->storage = blk_blockalign(NULL, s->size);
1649         memset(s->storage, 0xFF, s->size);
1650     }
1651 
1652     qdev_init_gpio_in_named(DEVICE(s),
1653                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1654 }
1655 
1656 static void m25p80_reset(DeviceState *d)
1657 {
1658     Flash *s = M25P80(d);
1659 
1660     s->wp_level = true;
1661     s->status_register_write_disabled = false;
1662     s->block_protect0 = false;
1663     s->block_protect1 = false;
1664     s->block_protect2 = false;
1665     s->block_protect3 = false;
1666     s->top_bottom_bit = false;
1667 
1668     reset_memory(s);
1669 }
1670 
1671 static int m25p80_pre_save(void *opaque)
1672 {
1673     flash_sync_dirty((Flash *)opaque, -1);
1674 
1675     return 0;
1676 }
1677 
1678 static Property m25p80_properties[] = {
1679     /* This is default value for Micron flash */
1680     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1681     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1682     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1683     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1684     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1685     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1686     DEFINE_PROP_DRIVE("drive", Flash, blk),
1687     DEFINE_PROP_END_OF_LIST(),
1688 };
1689 
1690 static int m25p80_pre_load(void *opaque)
1691 {
1692     Flash *s = (Flash *)opaque;
1693 
1694     s->data_read_loop = false;
1695     return 0;
1696 }
1697 
1698 static bool m25p80_data_read_loop_needed(void *opaque)
1699 {
1700     Flash *s = (Flash *)opaque;
1701 
1702     return s->data_read_loop;
1703 }
1704 
1705 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1706     .name = "m25p80/data_read_loop",
1707     .version_id = 1,
1708     .minimum_version_id = 1,
1709     .needed = m25p80_data_read_loop_needed,
1710     .fields = (const VMStateField[]) {
1711         VMSTATE_BOOL(data_read_loop, Flash),
1712         VMSTATE_END_OF_LIST()
1713     }
1714 };
1715 
1716 static bool m25p80_aai_enable_needed(void *opaque)
1717 {
1718     Flash *s = (Flash *)opaque;
1719 
1720     return s->aai_enable;
1721 }
1722 
1723 static const VMStateDescription vmstate_m25p80_aai_enable = {
1724     .name = "m25p80/aai_enable",
1725     .version_id = 1,
1726     .minimum_version_id = 1,
1727     .needed = m25p80_aai_enable_needed,
1728     .fields = (const VMStateField[]) {
1729         VMSTATE_BOOL(aai_enable, Flash),
1730         VMSTATE_END_OF_LIST()
1731     }
1732 };
1733 
1734 static bool m25p80_wp_level_srwd_needed(void *opaque)
1735 {
1736     Flash *s = (Flash *)opaque;
1737 
1738     return !s->wp_level || s->status_register_write_disabled;
1739 }
1740 
1741 static const VMStateDescription vmstate_m25p80_write_protect = {
1742     .name = "m25p80/write_protect",
1743     .version_id = 1,
1744     .minimum_version_id = 1,
1745     .needed = m25p80_wp_level_srwd_needed,
1746     .fields = (const VMStateField[]) {
1747         VMSTATE_BOOL(wp_level, Flash),
1748         VMSTATE_BOOL(status_register_write_disabled, Flash),
1749         VMSTATE_END_OF_LIST()
1750     }
1751 };
1752 
1753 static bool m25p80_block_protect_needed(void *opaque)
1754 {
1755     Flash *s = (Flash *)opaque;
1756 
1757     return s->block_protect0 ||
1758            s->block_protect1 ||
1759            s->block_protect2 ||
1760            s->block_protect3 ||
1761            s->top_bottom_bit;
1762 }
1763 
1764 static const VMStateDescription vmstate_m25p80_block_protect = {
1765     .name = "m25p80/block_protect",
1766     .version_id = 1,
1767     .minimum_version_id = 1,
1768     .needed = m25p80_block_protect_needed,
1769     .fields = (const VMStateField[]) {
1770         VMSTATE_BOOL(block_protect0, Flash),
1771         VMSTATE_BOOL(block_protect1, Flash),
1772         VMSTATE_BOOL(block_protect2, Flash),
1773         VMSTATE_BOOL(block_protect3, Flash),
1774         VMSTATE_BOOL(top_bottom_bit, Flash),
1775         VMSTATE_END_OF_LIST()
1776     }
1777 };
1778 
1779 static const VMStateDescription vmstate_m25p80 = {
1780     .name = "m25p80",
1781     .version_id = 0,
1782     .minimum_version_id = 0,
1783     .pre_save = m25p80_pre_save,
1784     .pre_load = m25p80_pre_load,
1785     .fields = (const VMStateField[]) {
1786         VMSTATE_UINT8(state, Flash),
1787         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1788         VMSTATE_UINT32(len, Flash),
1789         VMSTATE_UINT32(pos, Flash),
1790         VMSTATE_UINT8(needed_bytes, Flash),
1791         VMSTATE_UINT8(cmd_in_progress, Flash),
1792         VMSTATE_UINT32(cur_addr, Flash),
1793         VMSTATE_BOOL(write_enable, Flash),
1794         VMSTATE_BOOL(reset_enable, Flash),
1795         VMSTATE_UINT8(ear, Flash),
1796         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1797         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1798         VMSTATE_UINT32(volatile_cfg, Flash),
1799         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1800         VMSTATE_BOOL(quad_enable, Flash),
1801         VMSTATE_UINT8(spansion_cr1nv, Flash),
1802         VMSTATE_UINT8(spansion_cr2nv, Flash),
1803         VMSTATE_UINT8(spansion_cr3nv, Flash),
1804         VMSTATE_UINT8(spansion_cr4nv, Flash),
1805         VMSTATE_END_OF_LIST()
1806     },
1807     .subsections = (const VMStateDescription * const []) {
1808         &vmstate_m25p80_data_read_loop,
1809         &vmstate_m25p80_aai_enable,
1810         &vmstate_m25p80_write_protect,
1811         &vmstate_m25p80_block_protect,
1812         NULL
1813     }
1814 };
1815 
1816 static void m25p80_class_init(ObjectClass *klass, void *data)
1817 {
1818     DeviceClass *dc = DEVICE_CLASS(klass);
1819     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1820     M25P80Class *mc = M25P80_CLASS(klass);
1821 
1822     k->realize = m25p80_realize;
1823     k->transfer = m25p80_transfer8;
1824     k->set_cs = m25p80_cs;
1825     k->cs_polarity = SSI_CS_LOW;
1826     dc->vmsd = &vmstate_m25p80;
1827     device_class_set_props(dc, m25p80_properties);
1828     device_class_set_legacy_reset(dc, m25p80_reset);
1829     mc->pi = data;
1830 }
1831 
1832 static const TypeInfo m25p80_info = {
1833     .name           = TYPE_M25P80,
1834     .parent         = TYPE_SSI_PERIPHERAL,
1835     .instance_size  = sizeof(Flash),
1836     .class_size     = sizeof(M25P80Class),
1837     .abstract       = true,
1838 };
1839 
1840 static void m25p80_register_types(void)
1841 {
1842     int i;
1843 
1844     type_register_static(&m25p80_info);
1845     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1846         TypeInfo ti = {
1847             .name       = known_devices[i].part_name,
1848             .parent     = TYPE_M25P80,
1849             .class_init = m25p80_class_init,
1850             .class_data = (void *)&known_devices[i],
1851         };
1852         type_register(&ti);
1853     }
1854 }
1855 
1856 type_init(m25p80_register_types)
1857 
1858 BlockBackend *m25p80_get_blk(DeviceState *dev)
1859 {
1860     return M25P80(dev)->blk;
1861 }
1862