xref: /openbmc/qemu/hw/block/m25p80.c (revision 181103cd)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "hw/hw.h"
25 #include "sysemu/blockdev.h"
26 #include "hw/ssi.h"
27 
28 #ifndef M25P80_ERR_DEBUG
29 #define M25P80_ERR_DEBUG 0
30 #endif
31 
32 #define DB_PRINT_L(level, ...) do { \
33     if (M25P80_ERR_DEBUG > (level)) { \
34         fprintf(stderr,  ": %s: ", __func__); \
35         fprintf(stderr, ## __VA_ARGS__); \
36     } \
37 } while (0);
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define WR_1 0x100
48 
49 typedef struct FlashPartInfo {
50     const char *part_name;
51     /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52     uint32_t jedec;
53     /* extended jedec code */
54     uint16_t ext_jedec;
55     /* there is confusion between manufacturers as to what a sector is. In this
56      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57      * command (opcode 0xd8).
58      */
59     uint32_t sector_size;
60     uint32_t n_sectors;
61     uint32_t page_size;
62     uint8_t flags;
63 } FlashPartInfo;
64 
65 /* adapted from linux */
66 
67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68     .part_name = (_part_name),\
69     .jedec = (_jedec),\
70     .ext_jedec = (_ext_jedec),\
71     .sector_size = (_sector_size),\
72     .n_sectors = (_n_sectors),\
73     .page_size = 256,\
74     .flags = (_flags),\
75 
76 #define JEDEC_NUMONYX 0x20
77 #define JEDEC_WINBOND 0xEF
78 #define JEDEC_SPANSION 0x01
79 
80 static const FlashPartInfo known_devices[] = {
81     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
83     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
84 
85     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
86     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
87     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
88 
89     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
90     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
91     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
92     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
93 
94     /* EON -- en25xxx */
95     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
96     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
97     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
98     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
99 
100     /* Intel/Numonyx -- xxxs33b */
101     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
102     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
103     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
104 
105     /* Macronix */
106     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
107     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
108     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
109     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
110     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
111     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
112     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
113     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
114     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
115 
116     /* Spansion -- single (large) sector size only, at least
117      * for the chips listed here (without boot sectors).
118      */
119     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
120     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
121     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
122     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
123     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
124     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
125     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
126     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
127     { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
128     { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
129     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
130     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
131     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
132     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
133     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
134     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
135 
136     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
137     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
138     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
139     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
140     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
141     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
142     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
143     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
144     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
145 
146     /* ST Microelectronics -- newer production may have feature updates */
147     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
148     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
149     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
150     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
151     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
152     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
153     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
154     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
155     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
156 
157     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
158     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
159     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
160 
161     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
162     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
163 
164     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
165     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
166     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
167     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
168 
169     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
170     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
171     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
172     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
173     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
174     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
175     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
176     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
177     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
178     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
179 
180     /* Numonyx -- n25q128 */
181     { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
182 };
183 
184 typedef enum {
185     NOP = 0,
186     WRSR = 0x1,
187     WRDI = 0x4,
188     RDSR = 0x5,
189     WREN = 0x6,
190     JEDEC_READ = 0x9f,
191     BULK_ERASE = 0xc7,
192 
193     READ = 0x3,
194     FAST_READ = 0xb,
195     DOR = 0x3b,
196     QOR = 0x6b,
197     DIOR = 0xbb,
198     QIOR = 0xeb,
199 
200     PP = 0x2,
201     DPP = 0xa2,
202     QPP = 0x32,
203 
204     ERASE_4K = 0x20,
205     ERASE_32K = 0x52,
206     ERASE_SECTOR = 0xd8,
207 } FlashCMD;
208 
209 typedef enum {
210     STATE_IDLE,
211     STATE_PAGE_PROGRAM,
212     STATE_READ,
213     STATE_COLLECTING_DATA,
214     STATE_READING_DATA,
215 } CMDState;
216 
217 typedef struct Flash {
218     SSISlave ssidev;
219     uint32_t r;
220 
221     BlockDriverState *bdrv;
222 
223     uint8_t *storage;
224     uint32_t size;
225     int page_size;
226 
227     uint8_t state;
228     uint8_t data[16];
229     uint32_t len;
230     uint32_t pos;
231     uint8_t needed_bytes;
232     uint8_t cmd_in_progress;
233     uint64_t cur_addr;
234     bool write_enable;
235 
236     int64_t dirty_page;
237 
238     const FlashPartInfo *pi;
239 
240 } Flash;
241 
242 typedef struct M25P80Class {
243     SSISlaveClass parent_class;
244     FlashPartInfo *pi;
245 } M25P80Class;
246 
247 #define TYPE_M25P80 "m25p80-generic"
248 #define M25P80(obj) \
249      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
250 #define M25P80_CLASS(klass) \
251      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
252 #define M25P80_GET_CLASS(obj) \
253      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
254 
255 static void bdrv_sync_complete(void *opaque, int ret)
256 {
257     /* do nothing. Masters do not directly interact with the backing store,
258      * only the working copy so no mutexing required.
259      */
260 }
261 
262 static void flash_sync_page(Flash *s, int page)
263 {
264     if (s->bdrv) {
265         int bdrv_sector, nb_sectors;
266         QEMUIOVector iov;
267 
268         bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
269         nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
270         qemu_iovec_init(&iov, 1);
271         qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
272                                                 nb_sectors * BDRV_SECTOR_SIZE);
273         bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
274                                                 bdrv_sync_complete, NULL);
275     }
276 }
277 
278 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
279 {
280     int64_t start, end, nb_sectors;
281     QEMUIOVector iov;
282 
283     if (!s->bdrv) {
284         return;
285     }
286 
287     assert(!(len % BDRV_SECTOR_SIZE));
288     start = off / BDRV_SECTOR_SIZE;
289     end = (off + len) / BDRV_SECTOR_SIZE;
290     nb_sectors = end - start;
291     qemu_iovec_init(&iov, 1);
292     qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
293                                         nb_sectors * BDRV_SECTOR_SIZE);
294     bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
295 }
296 
297 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
298 {
299     uint32_t len;
300     uint8_t capa_to_assert = 0;
301 
302     switch (cmd) {
303     case ERASE_4K:
304         len = 4 << 10;
305         capa_to_assert = ER_4K;
306         break;
307     case ERASE_32K:
308         len = 32 << 10;
309         capa_to_assert = ER_32K;
310         break;
311     case ERASE_SECTOR:
312         len = s->pi->sector_size;
313         break;
314     case BULK_ERASE:
315         len = s->size;
316         break;
317     default:
318         abort();
319     }
320 
321     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
322     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
323         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
324                       " device\n", len);
325     }
326 
327     if (!s->write_enable) {
328         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
329         return;
330     }
331     memset(s->storage + offset, 0xff, len);
332     flash_sync_area(s, offset, len);
333 }
334 
335 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
336 {
337     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
338         flash_sync_page(s, s->dirty_page);
339         s->dirty_page = newpage;
340     }
341 }
342 
343 static inline
344 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
345 {
346     int64_t page = addr / s->pi->page_size;
347     uint8_t prev = s->storage[s->cur_addr];
348 
349     if (!s->write_enable) {
350         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
351     }
352 
353     if ((prev ^ data) & data) {
354         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
355                    " -> %" PRIx8 "\n", addr, prev, data);
356     }
357 
358     if (s->pi->flags & WR_1) {
359         s->storage[s->cur_addr] = data;
360     } else {
361         s->storage[s->cur_addr] &= data;
362     }
363 
364     flash_sync_dirty(s, page);
365     s->dirty_page = page;
366 }
367 
368 static void complete_collecting_data(Flash *s)
369 {
370     s->cur_addr = s->data[0] << 16;
371     s->cur_addr |= s->data[1] << 8;
372     s->cur_addr |= s->data[2];
373 
374     s->state = STATE_IDLE;
375 
376     switch (s->cmd_in_progress) {
377     case DPP:
378     case QPP:
379     case PP:
380         s->state = STATE_PAGE_PROGRAM;
381         break;
382     case READ:
383     case FAST_READ:
384     case DOR:
385     case QOR:
386     case DIOR:
387     case QIOR:
388         s->state = STATE_READ;
389         break;
390     case ERASE_4K:
391     case ERASE_32K:
392     case ERASE_SECTOR:
393         flash_erase(s, s->cur_addr, s->cmd_in_progress);
394         break;
395     case WRSR:
396         if (s->write_enable) {
397             s->write_enable = false;
398         }
399         break;
400     default:
401         break;
402     }
403 }
404 
405 static void decode_new_cmd(Flash *s, uint32_t value)
406 {
407     s->cmd_in_progress = value;
408     DB_PRINT_L(0, "decoded new command:%x\n", value);
409 
410     switch (value) {
411 
412     case ERASE_4K:
413     case ERASE_32K:
414     case ERASE_SECTOR:
415     case READ:
416     case DPP:
417     case QPP:
418     case PP:
419         s->needed_bytes = 3;
420         s->pos = 0;
421         s->len = 0;
422         s->state = STATE_COLLECTING_DATA;
423         break;
424 
425     case FAST_READ:
426     case DOR:
427     case QOR:
428         s->needed_bytes = 4;
429         s->pos = 0;
430         s->len = 0;
431         s->state = STATE_COLLECTING_DATA;
432         break;
433 
434     case DIOR:
435         switch ((s->pi->jedec >> 16) & 0xFF) {
436         case JEDEC_WINBOND:
437         case JEDEC_SPANSION:
438             s->needed_bytes = 4;
439             break;
440         case JEDEC_NUMONYX:
441         default:
442             s->needed_bytes = 5;
443         }
444         s->pos = 0;
445         s->len = 0;
446         s->state = STATE_COLLECTING_DATA;
447         break;
448 
449     case QIOR:
450         switch ((s->pi->jedec >> 16) & 0xFF) {
451         case JEDEC_WINBOND:
452         case JEDEC_SPANSION:
453             s->needed_bytes = 6;
454             break;
455         case JEDEC_NUMONYX:
456         default:
457             s->needed_bytes = 8;
458         }
459         s->pos = 0;
460         s->len = 0;
461         s->state = STATE_COLLECTING_DATA;
462         break;
463 
464     case WRSR:
465         if (s->write_enable) {
466             s->needed_bytes = 1;
467             s->pos = 0;
468             s->len = 0;
469             s->state = STATE_COLLECTING_DATA;
470         }
471         break;
472 
473     case WRDI:
474         s->write_enable = false;
475         break;
476     case WREN:
477         s->write_enable = true;
478         break;
479 
480     case RDSR:
481         s->data[0] = (!!s->write_enable) << 1;
482         s->pos = 0;
483         s->len = 1;
484         s->state = STATE_READING_DATA;
485         break;
486 
487     case JEDEC_READ:
488         DB_PRINT_L(0, "populated jedec code\n");
489         s->data[0] = (s->pi->jedec >> 16) & 0xff;
490         s->data[1] = (s->pi->jedec >> 8) & 0xff;
491         s->data[2] = s->pi->jedec & 0xff;
492         if (s->pi->ext_jedec) {
493             s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
494             s->data[4] = s->pi->ext_jedec & 0xff;
495             s->len = 5;
496         } else {
497             s->len = 3;
498         }
499         s->pos = 0;
500         s->state = STATE_READING_DATA;
501         break;
502 
503     case BULK_ERASE:
504         if (s->write_enable) {
505             DB_PRINT_L(0, "chip erase\n");
506             flash_erase(s, 0, BULK_ERASE);
507         } else {
508             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
509                           "protect!\n");
510         }
511         break;
512     case NOP:
513         break;
514     default:
515         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
516         break;
517     }
518 }
519 
520 static int m25p80_cs(SSISlave *ss, bool select)
521 {
522     Flash *s = FROM_SSI_SLAVE(Flash, ss);
523 
524     if (select) {
525         s->len = 0;
526         s->pos = 0;
527         s->state = STATE_IDLE;
528         flash_sync_dirty(s, -1);
529     }
530 
531     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
532 
533     return 0;
534 }
535 
536 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
537 {
538     Flash *s = FROM_SSI_SLAVE(Flash, ss);
539     uint32_t r = 0;
540 
541     switch (s->state) {
542 
543     case STATE_PAGE_PROGRAM:
544         DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
545                    s->cur_addr, (uint8_t)tx);
546         flash_write8(s, s->cur_addr, (uint8_t)tx);
547         s->cur_addr++;
548         break;
549 
550     case STATE_READ:
551         r = s->storage[s->cur_addr];
552         DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
553                    (uint8_t)r);
554         s->cur_addr = (s->cur_addr + 1) % s->size;
555         break;
556 
557     case STATE_COLLECTING_DATA:
558         s->data[s->len] = (uint8_t)tx;
559         s->len++;
560 
561         if (s->len == s->needed_bytes) {
562             complete_collecting_data(s);
563         }
564         break;
565 
566     case STATE_READING_DATA:
567         r = s->data[s->pos];
568         s->pos++;
569         if (s->pos == s->len) {
570             s->pos = 0;
571             s->state = STATE_IDLE;
572         }
573         break;
574 
575     default:
576     case STATE_IDLE:
577         decode_new_cmd(s, (uint8_t)tx);
578         break;
579     }
580 
581     return r;
582 }
583 
584 static int m25p80_init(SSISlave *ss)
585 {
586     DriveInfo *dinfo;
587     Flash *s = FROM_SSI_SLAVE(Flash, ss);
588     M25P80Class *mc = M25P80_GET_CLASS(s);
589 
590     s->pi = mc->pi;
591 
592     s->size = s->pi->sector_size * s->pi->n_sectors;
593     s->dirty_page = -1;
594     s->storage = qemu_blockalign(s->bdrv, s->size);
595 
596     dinfo = drive_get_next(IF_MTD);
597 
598     if (dinfo && dinfo->bdrv) {
599         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
600         s->bdrv = dinfo->bdrv;
601         /* FIXME: Move to late init */
602         if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
603                                                     BDRV_SECTOR_SIZE))) {
604             fprintf(stderr, "Failed to initialize SPI flash!\n");
605             return 1;
606         }
607     } else {
608         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
609         memset(s->storage, 0xFF, s->size);
610     }
611 
612     return 0;
613 }
614 
615 static void m25p80_pre_save(void *opaque)
616 {
617     flash_sync_dirty((Flash *)opaque, -1);
618 }
619 
620 static const VMStateDescription vmstate_m25p80 = {
621     .name = "xilinx_spi",
622     .version_id = 1,
623     .minimum_version_id = 1,
624     .minimum_version_id_old = 1,
625     .pre_save = m25p80_pre_save,
626     .fields = (VMStateField[]) {
627         VMSTATE_UINT8(state, Flash),
628         VMSTATE_UINT8_ARRAY(data, Flash, 16),
629         VMSTATE_UINT32(len, Flash),
630         VMSTATE_UINT32(pos, Flash),
631         VMSTATE_UINT8(needed_bytes, Flash),
632         VMSTATE_UINT8(cmd_in_progress, Flash),
633         VMSTATE_UINT64(cur_addr, Flash),
634         VMSTATE_BOOL(write_enable, Flash),
635         VMSTATE_END_OF_LIST()
636     }
637 };
638 
639 static void m25p80_class_init(ObjectClass *klass, void *data)
640 {
641     DeviceClass *dc = DEVICE_CLASS(klass);
642     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
643     M25P80Class *mc = M25P80_CLASS(klass);
644 
645     k->init = m25p80_init;
646     k->transfer = m25p80_transfer8;
647     k->set_cs = m25p80_cs;
648     k->cs_polarity = SSI_CS_LOW;
649     dc->vmsd = &vmstate_m25p80;
650     mc->pi = data;
651 }
652 
653 static const TypeInfo m25p80_info = {
654     .name           = TYPE_M25P80,
655     .parent         = TYPE_SSI_SLAVE,
656     .instance_size  = sizeof(Flash),
657     .class_size     = sizeof(M25P80Class),
658     .abstract       = true,
659 };
660 
661 static void m25p80_register_types(void)
662 {
663     int i;
664 
665     type_register_static(&m25p80_info);
666     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
667         TypeInfo ti = {
668             .name       = known_devices[i].part_name,
669             .parent     = TYPE_M25P80,
670             .class_init = m25p80_class_init,
671             .class_data = (void *)&known_devices[i],
672         };
673         type_register(&ti);
674     }
675 }
676 
677 type_init(m25p80_register_types)
678