xref: /openbmc/qemu/hw/block/m25p80.c (revision 06831001)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/qdev-properties-system.h"
30 #include "hw/ssi/ssi.h"
31 #include "migration/vmstate.h"
32 #include "qemu/bitops.h"
33 #include "qemu/log.h"
34 #include "qemu/module.h"
35 #include "qemu/error-report.h"
36 #include "qapi/error.h"
37 #include "trace.h"
38 #include "qom/object.h"
39 #include "m25p80_sfdp.h"
40 
41 /* 16 MiB max in 3 byte address mode */
42 #define MAX_3BYTES_SIZE 0x1000000
43 #define SPI_NOR_MAX_ID_LEN 6
44 
45 /* Fields for FlashPartInfo->flags */
46 enum spi_flash_option_flags {
47     ER_4K                  = BIT(0),
48     ER_32K                 = BIT(1),
49     EEPROM                 = BIT(2),
50     HAS_SR_TB              = BIT(3),
51     HAS_SR_BP3_BIT6        = BIT(4),
52 };
53 
54 typedef struct FlashPartInfo {
55     const char *part_name;
56     /*
57      * This array stores the ID bytes.
58      * The first three bytes are the JEDIC ID.
59      * JEDEC ID zero means "no ID" (mostly older chips).
60      */
61     uint8_t id[SPI_NOR_MAX_ID_LEN];
62     uint8_t id_len;
63     /* there is confusion between manufacturers as to what a sector is. In this
64      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65      * command (opcode 0xd8).
66      */
67     uint32_t sector_size;
68     uint32_t n_sectors;
69     uint32_t page_size;
70     uint16_t flags;
71     /*
72      * Big sized spi nor are often stacked devices, thus sometime
73      * replace chip erase with die erase.
74      * This field inform how many die is in the chip.
75      */
76     uint8_t die_cnt;
77     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
78 } FlashPartInfo;
79 
80 /* adapted from linux */
81 /* Used when the "_ext_id" is two bytes at most */
82 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
83     .part_name = _part_name,\
84     .id = {\
85         ((_jedec_id) >> 16) & 0xff,\
86         ((_jedec_id) >> 8) & 0xff,\
87         (_jedec_id) & 0xff,\
88         ((_ext_id) >> 8) & 0xff,\
89         (_ext_id) & 0xff,\
90           },\
91     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
92     .sector_size = (_sector_size),\
93     .n_sectors = (_n_sectors),\
94     .page_size = 256,\
95     .flags = (_flags),\
96     .die_cnt = 0
97 
98 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
99     .part_name = _part_name,\
100     .id = {\
101         ((_jedec_id) >> 16) & 0xff,\
102         ((_jedec_id) >> 8) & 0xff,\
103         (_jedec_id) & 0xff,\
104         ((_ext_id) >> 16) & 0xff,\
105         ((_ext_id) >> 8) & 0xff,\
106         (_ext_id) & 0xff,\
107           },\
108     .id_len = 6,\
109     .sector_size = (_sector_size),\
110     .n_sectors = (_n_sectors),\
111     .page_size = 256,\
112     .flags = (_flags),\
113     .die_cnt = 0
114 
115 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
116                     _flags, _die_cnt)\
117     .part_name = _part_name,\
118     .id = {\
119         ((_jedec_id) >> 16) & 0xff,\
120         ((_jedec_id) >> 8) & 0xff,\
121         (_jedec_id) & 0xff,\
122         ((_ext_id) >> 8) & 0xff,\
123         (_ext_id) & 0xff,\
124           },\
125     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
126     .sector_size = (_sector_size),\
127     .n_sectors = (_n_sectors),\
128     .page_size = 256,\
129     .flags = (_flags),\
130     .die_cnt = _die_cnt
131 
132 #define JEDEC_NUMONYX 0x20
133 #define JEDEC_WINBOND 0xEF
134 #define JEDEC_SPANSION 0x01
135 
136 /* Numonyx (Micron) Configuration register macros */
137 #define VCFG_DUMMY 0x1
138 #define VCFG_WRAP_SEQUENTIAL 0x2
139 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
140 #define NVCFG_XIP_MODE_MASK (7 << 9)
141 #define VCFG_XIP_MODE_DISABLED (1 << 3)
142 #define CFG_DUMMY_CLK_LEN 4
143 #define NVCFG_DUMMY_CLK_POS 12
144 #define VCFG_DUMMY_CLK_POS 4
145 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
146 #define EVCFG_VPP_ACCELERATOR (1 << 3)
147 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
148 #define NVCFG_DUAL_IO_MASK (1 << 2)
149 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
150 #define NVCFG_QUAD_IO_MASK (1 << 3)
151 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
152 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
153 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
154 
155 /* Numonyx (Micron) Flag Status Register macros */
156 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
157 #define FSR_FLASH_READY (1 << 7)
158 
159 /* Spansion configuration registers macros. */
160 #define SPANSION_QUAD_CFG_POS 0
161 #define SPANSION_QUAD_CFG_LEN 1
162 #define SPANSION_DUMMY_CLK_POS 0
163 #define SPANSION_DUMMY_CLK_LEN 4
164 #define SPANSION_ADDR_LEN_POS 7
165 #define SPANSION_ADDR_LEN_LEN 1
166 
167 /*
168  * Spansion read mode command length in bytes,
169  * the mode is currently not supported.
170 */
171 
172 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
173 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
174 
175 static const FlashPartInfo known_devices[] = {
176     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
177     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
178     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
179 
180     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
181     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
182     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
183 
184     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
185     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
186     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
187     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
188 
189     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
190 
191     /* Atmel EEPROMS - it is assumed, that don't care bit in command
192      * is set to 0. Block protection is not supported.
193      */
194     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
195     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
196 
197     /* EON -- en25xxx */
198     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
199     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
200     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
201     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
202     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
203 
204     /* GigaDevice */
205     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
206     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
207 
208     /* Intel/Numonyx -- xxxs33b */
209     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
210     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
211     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
212     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
213 
214     /* ISSI */
215     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
216     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
217     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
218     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
219     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
220     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
221     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
222     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
223     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
224     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
225     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K),
226       .sfdp_read = m25p80_sfdp_is25wp256 },
227 
228     /* Macronix */
229     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
230     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
231     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
232     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
233     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
234     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
235     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
236     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
237     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
238             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
239     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
240             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
241     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
242     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
243     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
244     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
245     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
246       .sfdp_read = m25p80_sfdp_mx66l1g45g },
247 
248     /* Micron */
249     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
250     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
251     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
252     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
253     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
254     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
255     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
256     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
257       .sfdp_read = m25p80_sfdp_n25q256a },
258     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
259     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
260     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
261     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
262            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
263       .sfdp_read = m25p80_sfdp_n25q256a },
264    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
265     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
266     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
267     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
268                    ER_4K | ER_32K, 2) },
269     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
270     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
271     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
272     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
273     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
274     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
275 
276     /* Spansion -- single (large) sector size only, at least
277      * for the chips listed here (without boot sectors).
278      */
279     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
280     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
281     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
282     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
283     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
284     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
285     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
286     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
287     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
288     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
289     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
290     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
291     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
292     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
293     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
294     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
295     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
296 
297     /* Spansion --  boot sectors support  */
298     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
299     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
300 
301     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
302     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
303     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
304     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
305     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
306     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
307     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
308     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
309     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
310     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
311 
312     /* ST Microelectronics -- newer production may have feature updates */
313     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
314     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
315     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
316     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
317     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
318     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
319     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
320     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
321     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
322     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
323 
324     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
325     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
326     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
327 
328     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
329     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
330     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
331 
332     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
333     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
334     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
335     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
336 
337     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
338     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
339     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
340     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
341     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
342     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
343     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
344     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
345     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
346     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
347     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
348     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
349     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
350     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
351       .sfdp_read = m25p80_sfdp_w25q256 },
352     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
353       .sfdp_read = m25p80_sfdp_w25q512jv },
354     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
355       .sfdp_read = m25p80_sfdp_w25q01jvq },
356 };
357 
358 typedef enum {
359     NOP = 0,
360     WRSR = 0x1,
361     WRDI = 0x4,
362     RDSR = 0x5,
363     WREN = 0x6,
364     BRRD = 0x16,
365     BRWR = 0x17,
366     JEDEC_READ = 0x9f,
367     BULK_ERASE_60 = 0x60,
368     BULK_ERASE = 0xc7,
369     READ_FSR = 0x70,
370     RDCR = 0x15,
371     RDSFDP = 0x5a,
372 
373     READ = 0x03,
374     READ4 = 0x13,
375     FAST_READ = 0x0b,
376     FAST_READ4 = 0x0c,
377     DOR = 0x3b,
378     DOR4 = 0x3c,
379     QOR = 0x6b,
380     QOR4 = 0x6c,
381     DIOR = 0xbb,
382     DIOR4 = 0xbc,
383     QIOR = 0xeb,
384     QIOR4 = 0xec,
385 
386     PP = 0x02,
387     PP4 = 0x12,
388     PP4_4 = 0x3e,
389     DPP = 0xa2,
390     QPP = 0x32,
391     QPP_4 = 0x34,
392     RDID_90 = 0x90,
393     RDID_AB = 0xab,
394     AAI_WP = 0xad,
395 
396     ERASE_4K = 0x20,
397     ERASE4_4K = 0x21,
398     ERASE_32K = 0x52,
399     ERASE4_32K = 0x5c,
400     ERASE_SECTOR = 0xd8,
401     ERASE4_SECTOR = 0xdc,
402 
403     EN_4BYTE_ADDR = 0xB7,
404     EX_4BYTE_ADDR = 0xE9,
405 
406     EXTEND_ADDR_READ = 0xC8,
407     EXTEND_ADDR_WRITE = 0xC5,
408 
409     RESET_ENABLE = 0x66,
410     RESET_MEMORY = 0x99,
411 
412     /*
413      * Micron: 0x35 - enable QPI
414      * Spansion: 0x35 - read control register
415      */
416     RDCR_EQIO = 0x35,
417     RSTQIO = 0xf5,
418 
419     RNVCR = 0xB5,
420     WNVCR = 0xB1,
421 
422     RVCR = 0x85,
423     WVCR = 0x81,
424 
425     REVCR = 0x65,
426     WEVCR = 0x61,
427 
428     DIE_ERASE = 0xC4,
429 } FlashCMD;
430 
431 typedef enum {
432     STATE_IDLE,
433     STATE_PAGE_PROGRAM,
434     STATE_READ,
435     STATE_COLLECTING_DATA,
436     STATE_COLLECTING_VAR_LEN_DATA,
437     STATE_READING_DATA,
438     STATE_READING_SFDP,
439 } CMDState;
440 
441 typedef enum {
442     MAN_SPANSION,
443     MAN_MACRONIX,
444     MAN_NUMONYX,
445     MAN_WINBOND,
446     MAN_SST,
447     MAN_ISSI,
448     MAN_GENERIC,
449 } Manufacturer;
450 
451 typedef enum {
452     MODE_STD = 0,
453     MODE_DIO = 1,
454     MODE_QIO = 2
455 } SPIMode;
456 
457 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
458 
459 struct Flash {
460     SSIPeripheral parent_obj;
461 
462     BlockBackend *blk;
463 
464     uint8_t *storage;
465     uint32_t size;
466     int page_size;
467 
468     uint8_t state;
469     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
470     uint32_t len;
471     uint32_t pos;
472     bool data_read_loop;
473     uint8_t needed_bytes;
474     uint8_t cmd_in_progress;
475     uint32_t cur_addr;
476     uint32_t nonvolatile_cfg;
477     /* Configuration register for Macronix */
478     uint32_t volatile_cfg;
479     uint32_t enh_volatile_cfg;
480     /* Spansion cfg registers. */
481     uint8_t spansion_cr1nv;
482     uint8_t spansion_cr2nv;
483     uint8_t spansion_cr3nv;
484     uint8_t spansion_cr4nv;
485     uint8_t spansion_cr1v;
486     uint8_t spansion_cr2v;
487     uint8_t spansion_cr3v;
488     uint8_t spansion_cr4v;
489     bool wp_level;
490     bool write_enable;
491     bool four_bytes_address_mode;
492     bool reset_enable;
493     bool quad_enable;
494     bool aai_enable;
495     bool block_protect0;
496     bool block_protect1;
497     bool block_protect2;
498     bool block_protect3;
499     bool top_bottom_bit;
500     bool status_register_write_disabled;
501     uint8_t ear;
502 
503     int64_t dirty_page;
504 
505     const FlashPartInfo *pi;
506 
507 };
508 
509 struct M25P80Class {
510     SSIPeripheralClass parent_class;
511     FlashPartInfo *pi;
512 };
513 
514 #define TYPE_M25P80 "m25p80-generic"
515 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
516 
517 static inline Manufacturer get_man(Flash *s)
518 {
519     switch (s->pi->id[0]) {
520     case 0x20:
521         return MAN_NUMONYX;
522     case 0xEF:
523         return MAN_WINBOND;
524     case 0x01:
525         return MAN_SPANSION;
526     case 0xC2:
527         return MAN_MACRONIX;
528     case 0xBF:
529         return MAN_SST;
530     case 0x9D:
531         return MAN_ISSI;
532     default:
533         return MAN_GENERIC;
534     }
535 }
536 
537 static void blk_sync_complete(void *opaque, int ret)
538 {
539     QEMUIOVector *iov = opaque;
540 
541     qemu_iovec_destroy(iov);
542     g_free(iov);
543 
544     /* do nothing. Masters do not directly interact with the backing store,
545      * only the working copy so no mutexing required.
546      */
547 }
548 
549 static void flash_sync_page(Flash *s, int page)
550 {
551     QEMUIOVector *iov;
552 
553     if (!s->blk || !blk_is_writable(s->blk)) {
554         return;
555     }
556 
557     iov = g_new(QEMUIOVector, 1);
558     qemu_iovec_init(iov, 1);
559     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
560                    s->pi->page_size);
561     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
562                     blk_sync_complete, iov);
563 }
564 
565 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
566 {
567     QEMUIOVector *iov;
568 
569     if (!s->blk || !blk_is_writable(s->blk)) {
570         return;
571     }
572 
573     assert(!(len % BDRV_SECTOR_SIZE));
574     iov = g_new(QEMUIOVector, 1);
575     qemu_iovec_init(iov, 1);
576     qemu_iovec_add(iov, s->storage + off, len);
577     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
578 }
579 
580 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
581 {
582     uint32_t len;
583     uint8_t capa_to_assert = 0;
584 
585     switch (cmd) {
586     case ERASE_4K:
587     case ERASE4_4K:
588         len = 4 * KiB;
589         capa_to_assert = ER_4K;
590         break;
591     case ERASE_32K:
592     case ERASE4_32K:
593         len = 32 * KiB;
594         capa_to_assert = ER_32K;
595         break;
596     case ERASE_SECTOR:
597     case ERASE4_SECTOR:
598         len = s->pi->sector_size;
599         break;
600     case BULK_ERASE:
601         len = s->size;
602         break;
603     case DIE_ERASE:
604         if (s->pi->die_cnt) {
605             len = s->size / s->pi->die_cnt;
606             offset = offset & (~(len - 1));
607         } else {
608             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
609                           " by device\n");
610             return;
611         }
612         break;
613     default:
614         abort();
615     }
616 
617     trace_m25p80_flash_erase(s, offset, len);
618 
619     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
620         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
621                       " device\n", len);
622     }
623 
624     if (!s->write_enable) {
625         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
626         return;
627     }
628     memset(s->storage + offset, 0xff, len);
629     flash_sync_area(s, offset, len);
630 }
631 
632 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
633 {
634     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
635         flash_sync_page(s, s->dirty_page);
636         s->dirty_page = newpage;
637     }
638 }
639 
640 static inline
641 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
642 {
643     uint32_t page = addr / s->pi->page_size;
644     uint8_t prev = s->storage[s->cur_addr];
645     uint32_t block_protect_value = (s->block_protect3 << 3) |
646                                    (s->block_protect2 << 2) |
647                                    (s->block_protect1 << 1) |
648                                    (s->block_protect0 << 0);
649 
650     if (!s->write_enable) {
651         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
652         return;
653     }
654 
655     if (block_protect_value > 0) {
656         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
657         uint32_t sector = addr / s->pi->sector_size;
658 
659         /* top_bottom_bit == 0 means TOP */
660         if (!s->top_bottom_bit) {
661             if (s->pi->n_sectors <= sector + num_protected_sectors) {
662                 qemu_log_mask(LOG_GUEST_ERROR,
663                               "M25P80: write with write protect!\n");
664                 return;
665             }
666         } else {
667             if (sector < num_protected_sectors) {
668                 qemu_log_mask(LOG_GUEST_ERROR,
669                               "M25P80: write with write protect!\n");
670                 return;
671             }
672         }
673     }
674 
675     if ((prev ^ data) & data) {
676         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
677     }
678 
679     if (s->pi->flags & EEPROM) {
680         s->storage[s->cur_addr] = data;
681     } else {
682         s->storage[s->cur_addr] &= data;
683     }
684 
685     flash_sync_dirty(s, page);
686     s->dirty_page = page;
687 }
688 
689 static inline int get_addr_length(Flash *s)
690 {
691    /* check if eeprom is in use */
692     if (s->pi->flags == EEPROM) {
693         return 2;
694     }
695 
696    switch (s->cmd_in_progress) {
697    case RDSFDP:
698        return 3;
699    case PP4:
700    case PP4_4:
701    case QPP_4:
702    case READ4:
703    case QIOR4:
704    case ERASE4_4K:
705    case ERASE4_32K:
706    case ERASE4_SECTOR:
707    case FAST_READ4:
708    case DOR4:
709    case QOR4:
710    case DIOR4:
711        return 4;
712    default:
713        return s->four_bytes_address_mode ? 4 : 3;
714    }
715 }
716 
717 static void complete_collecting_data(Flash *s)
718 {
719     int i, n;
720 
721     n = get_addr_length(s);
722     s->cur_addr = (n == 3 ? s->ear : 0);
723     for (i = 0; i < n; ++i) {
724         s->cur_addr <<= 8;
725         s->cur_addr |= s->data[i];
726     }
727 
728     s->cur_addr &= s->size - 1;
729 
730     s->state = STATE_IDLE;
731 
732     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
733                                      s->cur_addr);
734 
735     switch (s->cmd_in_progress) {
736     case DPP:
737     case QPP:
738     case QPP_4:
739     case PP:
740     case PP4:
741     case PP4_4:
742         s->state = STATE_PAGE_PROGRAM;
743         break;
744     case AAI_WP:
745         /* AAI programming starts from the even address */
746         s->cur_addr &= ~BIT(0);
747         s->state = STATE_PAGE_PROGRAM;
748         break;
749     case READ:
750     case READ4:
751     case FAST_READ:
752     case FAST_READ4:
753     case DOR:
754     case DOR4:
755     case QOR:
756     case QOR4:
757     case DIOR:
758     case DIOR4:
759     case QIOR:
760     case QIOR4:
761         s->state = STATE_READ;
762         break;
763     case ERASE_4K:
764     case ERASE4_4K:
765     case ERASE_32K:
766     case ERASE4_32K:
767     case ERASE_SECTOR:
768     case ERASE4_SECTOR:
769     case DIE_ERASE:
770         flash_erase(s, s->cur_addr, s->cmd_in_progress);
771         break;
772     case WRSR:
773         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
774         s->block_protect0 = extract32(s->data[0], 2, 1);
775         s->block_protect1 = extract32(s->data[0], 3, 1);
776         s->block_protect2 = extract32(s->data[0], 4, 1);
777         if (s->pi->flags & HAS_SR_TB) {
778             s->top_bottom_bit = extract32(s->data[0], 5, 1);
779         }
780         if (s->pi->flags & HAS_SR_BP3_BIT6) {
781             s->block_protect3 = extract32(s->data[0], 6, 1);
782         }
783 
784         switch (get_man(s)) {
785         case MAN_SPANSION:
786             s->quad_enable = !!(s->data[1] & 0x02);
787             break;
788         case MAN_ISSI:
789             s->quad_enable = extract32(s->data[0], 6, 1);
790             break;
791         case MAN_MACRONIX:
792             s->quad_enable = extract32(s->data[0], 6, 1);
793             if (s->len > 1) {
794                 s->volatile_cfg = s->data[1];
795                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
796             }
797             break;
798         default:
799             break;
800         }
801         if (s->write_enable) {
802             s->write_enable = false;
803         }
804         break;
805     case BRWR:
806     case EXTEND_ADDR_WRITE:
807         s->ear = s->data[0];
808         break;
809     case WNVCR:
810         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
811         break;
812     case WVCR:
813         s->volatile_cfg = s->data[0];
814         break;
815     case WEVCR:
816         s->enh_volatile_cfg = s->data[0];
817         break;
818     case RDID_90:
819     case RDID_AB:
820         if (get_man(s) == MAN_SST) {
821             if (s->cur_addr <= 1) {
822                 if (s->cur_addr) {
823                     s->data[0] = s->pi->id[2];
824                     s->data[1] = s->pi->id[0];
825                 } else {
826                     s->data[0] = s->pi->id[0];
827                     s->data[1] = s->pi->id[2];
828                 }
829                 s->pos = 0;
830                 s->len = 2;
831                 s->data_read_loop = true;
832                 s->state = STATE_READING_DATA;
833             } else {
834                 qemu_log_mask(LOG_GUEST_ERROR,
835                               "M25P80: Invalid read id address\n");
836             }
837         } else {
838             qemu_log_mask(LOG_GUEST_ERROR,
839                           "M25P80: Read id (command 0x90/0xAB) is not supported"
840                           " by device\n");
841         }
842         break;
843 
844     case RDSFDP:
845         s->state = STATE_READING_SFDP;
846         break;
847 
848     default:
849         break;
850     }
851 }
852 
853 static void reset_memory(Flash *s)
854 {
855     s->cmd_in_progress = NOP;
856     s->cur_addr = 0;
857     s->ear = 0;
858     s->four_bytes_address_mode = false;
859     s->len = 0;
860     s->needed_bytes = 0;
861     s->pos = 0;
862     s->state = STATE_IDLE;
863     s->write_enable = false;
864     s->reset_enable = false;
865     s->quad_enable = false;
866     s->aai_enable = false;
867 
868     switch (get_man(s)) {
869     case MAN_NUMONYX:
870         s->volatile_cfg = 0;
871         s->volatile_cfg |= VCFG_DUMMY;
872         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
873         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
874                                 == NVCFG_XIP_MODE_DISABLED) {
875             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
876         }
877         s->volatile_cfg |= deposit32(s->volatile_cfg,
878                             VCFG_DUMMY_CLK_POS,
879                             CFG_DUMMY_CLK_LEN,
880                             extract32(s->nonvolatile_cfg,
881                                         NVCFG_DUMMY_CLK_POS,
882                                         CFG_DUMMY_CLK_LEN)
883                             );
884 
885         s->enh_volatile_cfg = 0;
886         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
887         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
888         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
889         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
890             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
891         }
892         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
893             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
894         }
895         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
896             s->four_bytes_address_mode = true;
897         }
898         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
899             s->ear = s->size / MAX_3BYTES_SIZE - 1;
900         }
901         break;
902     case MAN_MACRONIX:
903         s->volatile_cfg = 0x7;
904         break;
905     case MAN_SPANSION:
906         s->spansion_cr1v = s->spansion_cr1nv;
907         s->spansion_cr2v = s->spansion_cr2nv;
908         s->spansion_cr3v = s->spansion_cr3nv;
909         s->spansion_cr4v = s->spansion_cr4nv;
910         s->quad_enable = extract32(s->spansion_cr1v,
911                                    SPANSION_QUAD_CFG_POS,
912                                    SPANSION_QUAD_CFG_LEN
913                                    );
914         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
915                 SPANSION_ADDR_LEN_POS,
916                 SPANSION_ADDR_LEN_LEN
917                 );
918         break;
919     default:
920         break;
921     }
922 
923     trace_m25p80_reset_done(s);
924 }
925 
926 static uint8_t numonyx_mode(Flash *s)
927 {
928     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
929         return MODE_QIO;
930     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
931         return MODE_DIO;
932     } else {
933         return MODE_STD;
934     }
935 }
936 
937 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
938 {
939     uint8_t num_dummies;
940     uint8_t mode;
941     assert(get_man(s) == MAN_NUMONYX);
942 
943     mode = numonyx_mode(s);
944     num_dummies = extract32(s->volatile_cfg, 4, 4);
945 
946     if (num_dummies == 0x0 || num_dummies == 0xf) {
947         switch (s->cmd_in_progress) {
948         case QIOR:
949         case QIOR4:
950             num_dummies = 10;
951             break;
952         default:
953             num_dummies = (mode == MODE_QIO) ? 10 : 8;
954             break;
955         }
956     }
957 
958     return num_dummies;
959 }
960 
961 static void decode_fast_read_cmd(Flash *s)
962 {
963     s->needed_bytes = get_addr_length(s);
964     switch (get_man(s)) {
965     /* Dummy cycles - modeled with bytes writes instead of bits */
966     case MAN_SST:
967         s->needed_bytes += 1;
968         break;
969     case MAN_WINBOND:
970         s->needed_bytes += 8;
971         break;
972     case MAN_NUMONYX:
973         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
974         break;
975     case MAN_MACRONIX:
976         if (extract32(s->volatile_cfg, 6, 2) == 1) {
977             s->needed_bytes += 6;
978         } else {
979             s->needed_bytes += 8;
980         }
981         break;
982     case MAN_SPANSION:
983         s->needed_bytes += extract32(s->spansion_cr2v,
984                                     SPANSION_DUMMY_CLK_POS,
985                                     SPANSION_DUMMY_CLK_LEN
986                                     );
987         break;
988     case MAN_ISSI:
989         /*
990          * The Fast Read instruction code is followed by address bytes and
991          * dummy cycles, transmitted via the SI line.
992          *
993          * The number of dummy cycles is configurable but this is currently
994          * unmodeled, hence the default value 8 is used.
995          *
996          * QPI (Quad Peripheral Interface) mode has different default value
997          * of dummy cycles, but this is unsupported at the time being.
998          */
999         s->needed_bytes += 1;
1000         break;
1001     default:
1002         break;
1003     }
1004     s->pos = 0;
1005     s->len = 0;
1006     s->state = STATE_COLLECTING_DATA;
1007 }
1008 
1009 static void decode_dio_read_cmd(Flash *s)
1010 {
1011     s->needed_bytes = get_addr_length(s);
1012     /* Dummy cycles modeled with bytes writes instead of bits */
1013     switch (get_man(s)) {
1014     case MAN_WINBOND:
1015         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1016         break;
1017     case MAN_SPANSION:
1018         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1019         s->needed_bytes += extract32(s->spansion_cr2v,
1020                                     SPANSION_DUMMY_CLK_POS,
1021                                     SPANSION_DUMMY_CLK_LEN
1022                                     );
1023         break;
1024     case MAN_NUMONYX:
1025         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1026         break;
1027     case MAN_MACRONIX:
1028         switch (extract32(s->volatile_cfg, 6, 2)) {
1029         case 1:
1030             s->needed_bytes += 6;
1031             break;
1032         case 2:
1033             s->needed_bytes += 8;
1034             break;
1035         default:
1036             s->needed_bytes += 4;
1037             break;
1038         }
1039         break;
1040     case MAN_ISSI:
1041         /*
1042          * The Fast Read Dual I/O instruction code is followed by address bytes
1043          * and dummy cycles, transmitted via the IO1 and IO0 line.
1044          *
1045          * The number of dummy cycles is configurable but this is currently
1046          * unmodeled, hence the default value 4 is used.
1047          */
1048         s->needed_bytes += 1;
1049         break;
1050     default:
1051         break;
1052     }
1053     s->pos = 0;
1054     s->len = 0;
1055     s->state = STATE_COLLECTING_DATA;
1056 }
1057 
1058 static void decode_qio_read_cmd(Flash *s)
1059 {
1060     s->needed_bytes = get_addr_length(s);
1061     /* Dummy cycles modeled with bytes writes instead of bits */
1062     switch (get_man(s)) {
1063     case MAN_WINBOND:
1064         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1065         s->needed_bytes += 4;
1066         break;
1067     case MAN_SPANSION:
1068         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1069         s->needed_bytes += extract32(s->spansion_cr2v,
1070                                     SPANSION_DUMMY_CLK_POS,
1071                                     SPANSION_DUMMY_CLK_LEN
1072                                     );
1073         break;
1074     case MAN_NUMONYX:
1075         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1076         break;
1077     case MAN_MACRONIX:
1078         switch (extract32(s->volatile_cfg, 6, 2)) {
1079         case 1:
1080             s->needed_bytes += 4;
1081             break;
1082         case 2:
1083             s->needed_bytes += 8;
1084             break;
1085         default:
1086             s->needed_bytes += 6;
1087             break;
1088         }
1089         break;
1090     case MAN_ISSI:
1091         /*
1092          * The Fast Read Quad I/O instruction code is followed by address bytes
1093          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1094          *
1095          * The number of dummy cycles is configurable but this is currently
1096          * unmodeled, hence the default value 6 is used.
1097          *
1098          * QPI (Quad Peripheral Interface) mode has different default value
1099          * of dummy cycles, but this is unsupported at the time being.
1100          */
1101         s->needed_bytes += 3;
1102         break;
1103     default:
1104         break;
1105     }
1106     s->pos = 0;
1107     s->len = 0;
1108     s->state = STATE_COLLECTING_DATA;
1109 }
1110 
1111 static bool is_valid_aai_cmd(uint32_t cmd)
1112 {
1113     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1114 }
1115 
1116 static void decode_new_cmd(Flash *s, uint32_t value)
1117 {
1118     int i;
1119 
1120     s->cmd_in_progress = value;
1121     trace_m25p80_command_decoded(s, value);
1122 
1123     if (value != RESET_MEMORY) {
1124         s->reset_enable = false;
1125     }
1126 
1127     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1128         qemu_log_mask(LOG_GUEST_ERROR,
1129                       "M25P80: Invalid cmd within AAI programming sequence");
1130     }
1131 
1132     switch (value) {
1133 
1134     case ERASE_4K:
1135     case ERASE4_4K:
1136     case ERASE_32K:
1137     case ERASE4_32K:
1138     case ERASE_SECTOR:
1139     case ERASE4_SECTOR:
1140     case PP:
1141     case PP4:
1142     case DIE_ERASE:
1143     case RDID_90:
1144     case RDID_AB:
1145         s->needed_bytes = get_addr_length(s);
1146         s->pos = 0;
1147         s->len = 0;
1148         s->state = STATE_COLLECTING_DATA;
1149         break;
1150     case READ:
1151     case READ4:
1152         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1153             s->needed_bytes = get_addr_length(s);
1154             s->pos = 0;
1155             s->len = 0;
1156             s->state = STATE_COLLECTING_DATA;
1157         } else {
1158             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1159                           "DIO or QIO mode\n", s->cmd_in_progress);
1160         }
1161         break;
1162     case DPP:
1163         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1164             s->needed_bytes = get_addr_length(s);
1165             s->pos = 0;
1166             s->len = 0;
1167             s->state = STATE_COLLECTING_DATA;
1168         } else {
1169             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1170                           "QIO mode\n", s->cmd_in_progress);
1171         }
1172         break;
1173     case QPP:
1174     case QPP_4:
1175     case PP4_4:
1176         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1177             s->needed_bytes = get_addr_length(s);
1178             s->pos = 0;
1179             s->len = 0;
1180             s->state = STATE_COLLECTING_DATA;
1181         } else {
1182             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1183                           "DIO mode\n", s->cmd_in_progress);
1184         }
1185         break;
1186 
1187     case FAST_READ:
1188     case FAST_READ4:
1189         decode_fast_read_cmd(s);
1190         break;
1191     case DOR:
1192     case DOR4:
1193         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1194             decode_fast_read_cmd(s);
1195         } else {
1196             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1197                           "QIO mode\n", s->cmd_in_progress);
1198         }
1199         break;
1200     case QOR:
1201     case QOR4:
1202         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1203             decode_fast_read_cmd(s);
1204         } else {
1205             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1206                           "DIO mode\n", s->cmd_in_progress);
1207         }
1208         break;
1209 
1210     case DIOR:
1211     case DIOR4:
1212         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1213             decode_dio_read_cmd(s);
1214         } else {
1215             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1216                           "QIO mode\n", s->cmd_in_progress);
1217         }
1218         break;
1219 
1220     case QIOR:
1221     case QIOR4:
1222         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1223             decode_qio_read_cmd(s);
1224         } else {
1225             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1226                           "DIO mode\n", s->cmd_in_progress);
1227         }
1228         break;
1229 
1230     case WRSR:
1231         /*
1232          * If WP# is low and status_register_write_disabled is high,
1233          * status register writes are disabled.
1234          * This is also called "hardware protected mode" (HPM). All other
1235          * combinations of the two states are called "software protected mode"
1236          * (SPM), and status register writes are permitted.
1237          */
1238         if ((s->wp_level == 0 && s->status_register_write_disabled)
1239             || !s->write_enable) {
1240             qemu_log_mask(LOG_GUEST_ERROR,
1241                           "M25P80: Status register write is disabled!\n");
1242             break;
1243         }
1244 
1245         switch (get_man(s)) {
1246         case MAN_SPANSION:
1247             s->needed_bytes = 2;
1248             s->state = STATE_COLLECTING_DATA;
1249             break;
1250         case MAN_MACRONIX:
1251             s->needed_bytes = 2;
1252             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1253             break;
1254         default:
1255             s->needed_bytes = 1;
1256             s->state = STATE_COLLECTING_DATA;
1257         }
1258         s->pos = 0;
1259         break;
1260 
1261     case WRDI:
1262         s->write_enable = false;
1263         if (get_man(s) == MAN_SST) {
1264             s->aai_enable = false;
1265         }
1266         break;
1267     case WREN:
1268         s->write_enable = true;
1269         break;
1270 
1271     case RDSR:
1272         s->data[0] = (!!s->write_enable) << 1;
1273         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1274         s->data[0] |= (!!s->block_protect0) << 2;
1275         s->data[0] |= (!!s->block_protect1) << 3;
1276         s->data[0] |= (!!s->block_protect2) << 4;
1277         if (s->pi->flags & HAS_SR_TB) {
1278             s->data[0] |= (!!s->top_bottom_bit) << 5;
1279         }
1280         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1281             s->data[0] |= (!!s->block_protect3) << 6;
1282         }
1283 
1284         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1285             s->data[0] |= (!!s->quad_enable) << 6;
1286         }
1287         if (get_man(s) == MAN_SST) {
1288             s->data[0] |= (!!s->aai_enable) << 6;
1289         }
1290 
1291         s->pos = 0;
1292         s->len = 1;
1293         s->data_read_loop = true;
1294         s->state = STATE_READING_DATA;
1295         break;
1296 
1297     case READ_FSR:
1298         s->data[0] = FSR_FLASH_READY;
1299         if (s->four_bytes_address_mode) {
1300             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1301         }
1302         s->pos = 0;
1303         s->len = 1;
1304         s->data_read_loop = true;
1305         s->state = STATE_READING_DATA;
1306         break;
1307 
1308     case JEDEC_READ:
1309         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1310             trace_m25p80_populated_jedec(s);
1311             for (i = 0; i < s->pi->id_len; i++) {
1312                 s->data[i] = s->pi->id[i];
1313             }
1314             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1315                 s->data[i] = 0;
1316             }
1317 
1318             s->len = SPI_NOR_MAX_ID_LEN;
1319             s->pos = 0;
1320             s->state = STATE_READING_DATA;
1321         } else {
1322             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1323                           "in DIO or QIO mode\n");
1324         }
1325         break;
1326 
1327     case RDCR:
1328         s->data[0] = s->volatile_cfg & 0xFF;
1329         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1330         s->pos = 0;
1331         s->len = 1;
1332         s->state = STATE_READING_DATA;
1333         break;
1334 
1335     case BULK_ERASE_60:
1336     case BULK_ERASE:
1337         if (s->write_enable) {
1338             trace_m25p80_chip_erase(s);
1339             flash_erase(s, 0, BULK_ERASE);
1340         } else {
1341             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1342                           "protect!\n");
1343         }
1344         break;
1345     case NOP:
1346         break;
1347     case EN_4BYTE_ADDR:
1348         s->four_bytes_address_mode = true;
1349         break;
1350     case EX_4BYTE_ADDR:
1351         s->four_bytes_address_mode = false;
1352         break;
1353     case BRRD:
1354     case EXTEND_ADDR_READ:
1355         s->data[0] = s->ear;
1356         s->pos = 0;
1357         s->len = 1;
1358         s->state = STATE_READING_DATA;
1359         break;
1360     case BRWR:
1361     case EXTEND_ADDR_WRITE:
1362         if (s->write_enable) {
1363             s->needed_bytes = 1;
1364             s->pos = 0;
1365             s->len = 0;
1366             s->state = STATE_COLLECTING_DATA;
1367         }
1368         break;
1369     case RNVCR:
1370         s->data[0] = s->nonvolatile_cfg & 0xFF;
1371         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1372         s->pos = 0;
1373         s->len = 2;
1374         s->state = STATE_READING_DATA;
1375         break;
1376     case WNVCR:
1377         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1378             s->needed_bytes = 2;
1379             s->pos = 0;
1380             s->len = 0;
1381             s->state = STATE_COLLECTING_DATA;
1382         }
1383         break;
1384     case RVCR:
1385         s->data[0] = s->volatile_cfg & 0xFF;
1386         s->pos = 0;
1387         s->len = 1;
1388         s->state = STATE_READING_DATA;
1389         break;
1390     case WVCR:
1391         if (s->write_enable) {
1392             s->needed_bytes = 1;
1393             s->pos = 0;
1394             s->len = 0;
1395             s->state = STATE_COLLECTING_DATA;
1396         }
1397         break;
1398     case REVCR:
1399         s->data[0] = s->enh_volatile_cfg & 0xFF;
1400         s->pos = 0;
1401         s->len = 1;
1402         s->state = STATE_READING_DATA;
1403         break;
1404     case WEVCR:
1405         if (s->write_enable) {
1406             s->needed_bytes = 1;
1407             s->pos = 0;
1408             s->len = 0;
1409             s->state = STATE_COLLECTING_DATA;
1410         }
1411         break;
1412     case RESET_ENABLE:
1413         s->reset_enable = true;
1414         break;
1415     case RESET_MEMORY:
1416         if (s->reset_enable) {
1417             reset_memory(s);
1418         }
1419         break;
1420     case RDCR_EQIO:
1421         switch (get_man(s)) {
1422         case MAN_SPANSION:
1423             s->data[0] = (!!s->quad_enable) << 1;
1424             s->pos = 0;
1425             s->len = 1;
1426             s->state = STATE_READING_DATA;
1427             break;
1428         case MAN_MACRONIX:
1429             s->quad_enable = true;
1430             break;
1431         default:
1432             break;
1433         }
1434         break;
1435     case RSTQIO:
1436         s->quad_enable = false;
1437         break;
1438     case AAI_WP:
1439         if (get_man(s) == MAN_SST) {
1440             if (s->write_enable) {
1441                 if (s->aai_enable) {
1442                     s->state = STATE_PAGE_PROGRAM;
1443                 } else {
1444                     s->aai_enable = true;
1445                     s->needed_bytes = get_addr_length(s);
1446                     s->state = STATE_COLLECTING_DATA;
1447                 }
1448             } else {
1449                 qemu_log_mask(LOG_GUEST_ERROR,
1450                               "M25P80: AAI_WP with write protect\n");
1451             }
1452         } else {
1453             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1454         }
1455         break;
1456     case RDSFDP:
1457         if (s->pi->sfdp_read) {
1458             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1459             s->pos = 0;
1460             s->len = 0;
1461             s->state = STATE_COLLECTING_DATA;
1462             break;
1463         }
1464         /* Fallthrough */
1465 
1466     default:
1467         s->pos = 0;
1468         s->len = 1;
1469         s->state = STATE_READING_DATA;
1470         s->data_read_loop = true;
1471         s->data[0] = 0;
1472         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1473         break;
1474     }
1475 }
1476 
1477 static int m25p80_cs(SSIPeripheral *ss, bool select)
1478 {
1479     Flash *s = M25P80(ss);
1480 
1481     if (select) {
1482         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1483             complete_collecting_data(s);
1484         }
1485         s->len = 0;
1486         s->pos = 0;
1487         s->state = STATE_IDLE;
1488         flash_sync_dirty(s, -1);
1489         s->data_read_loop = false;
1490     }
1491 
1492     trace_m25p80_select(s, select ? "de" : "");
1493 
1494     return 0;
1495 }
1496 
1497 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1498 {
1499     Flash *s = M25P80(ss);
1500     uint32_t r = 0;
1501 
1502     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1503                           s->cur_addr, (uint8_t)tx);
1504 
1505     switch (s->state) {
1506 
1507     case STATE_PAGE_PROGRAM:
1508         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1509         flash_write8(s, s->cur_addr, (uint8_t)tx);
1510         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1511 
1512         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1513             /*
1514              * There is no wrap mode during AAI programming once the highest
1515              * unprotected memory address is reached. The Write-Enable-Latch
1516              * bit is automatically reset, and AAI programming mode aborts.
1517              */
1518             s->write_enable = false;
1519             s->aai_enable = false;
1520         }
1521 
1522         break;
1523 
1524     case STATE_READ:
1525         r = s->storage[s->cur_addr];
1526         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1527         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1528         break;
1529 
1530     case STATE_COLLECTING_DATA:
1531     case STATE_COLLECTING_VAR_LEN_DATA:
1532 
1533         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1534             qemu_log_mask(LOG_GUEST_ERROR,
1535                           "M25P80: Write overrun internal data buffer. "
1536                           "SPI controller (QEMU emulator or guest driver) "
1537                           "is misbehaving\n");
1538             s->len = s->pos = 0;
1539             s->state = STATE_IDLE;
1540             break;
1541         }
1542 
1543         s->data[s->len] = (uint8_t)tx;
1544         s->len++;
1545 
1546         if (s->len == s->needed_bytes) {
1547             complete_collecting_data(s);
1548         }
1549         break;
1550 
1551     case STATE_READING_DATA:
1552 
1553         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1554             qemu_log_mask(LOG_GUEST_ERROR,
1555                           "M25P80: Read overrun internal data buffer. "
1556                           "SPI controller (QEMU emulator or guest driver) "
1557                           "is misbehaving\n");
1558             s->len = s->pos = 0;
1559             s->state = STATE_IDLE;
1560             break;
1561         }
1562 
1563         r = s->data[s->pos];
1564         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1565         s->pos++;
1566         if (s->pos == s->len) {
1567             s->pos = 0;
1568             if (!s->data_read_loop) {
1569                 s->state = STATE_IDLE;
1570             }
1571         }
1572         break;
1573     case STATE_READING_SFDP:
1574         assert(s->pi->sfdp_read);
1575         r = s->pi->sfdp_read(s->cur_addr);
1576         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1577         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1578         break;
1579 
1580     default:
1581     case STATE_IDLE:
1582         decode_new_cmd(s, (uint8_t)tx);
1583         break;
1584     }
1585 
1586     return r;
1587 }
1588 
1589 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1590 {
1591     Flash *s = M25P80(opaque);
1592     /* WP# is just a single pin. */
1593     assert(n == 0);
1594     s->wp_level = !!level;
1595 }
1596 
1597 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1598 {
1599     Flash *s = M25P80(ss);
1600     M25P80Class *mc = M25P80_GET_CLASS(s);
1601     int ret;
1602 
1603     s->pi = mc->pi;
1604 
1605     s->size = s->pi->sector_size * s->pi->n_sectors;
1606     s->dirty_page = -1;
1607 
1608     if (s->blk) {
1609         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1610                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1611         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1612         if (ret < 0) {
1613             return;
1614         }
1615 
1616         trace_m25p80_binding(s);
1617         s->storage = blk_blockalign(s->blk, s->size);
1618 
1619         if (!blk_check_size_and_read_all(s->blk, s->storage, s->size, errp)) {
1620             return;
1621         }
1622     } else {
1623         trace_m25p80_binding_no_bdrv(s);
1624         s->storage = blk_blockalign(NULL, s->size);
1625         memset(s->storage, 0xFF, s->size);
1626     }
1627 
1628     qdev_init_gpio_in_named(DEVICE(s),
1629                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1630 }
1631 
1632 static void m25p80_reset(DeviceState *d)
1633 {
1634     Flash *s = M25P80(d);
1635 
1636     s->wp_level = true;
1637     s->status_register_write_disabled = false;
1638     s->block_protect0 = false;
1639     s->block_protect1 = false;
1640     s->block_protect2 = false;
1641     s->block_protect3 = false;
1642     s->top_bottom_bit = false;
1643 
1644     reset_memory(s);
1645 }
1646 
1647 static int m25p80_pre_save(void *opaque)
1648 {
1649     flash_sync_dirty((Flash *)opaque, -1);
1650 
1651     return 0;
1652 }
1653 
1654 static Property m25p80_properties[] = {
1655     /* This is default value for Micron flash */
1656     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1657     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1658     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1659     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1660     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1661     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1662     DEFINE_PROP_DRIVE("drive", Flash, blk),
1663     DEFINE_PROP_END_OF_LIST(),
1664 };
1665 
1666 static int m25p80_pre_load(void *opaque)
1667 {
1668     Flash *s = (Flash *)opaque;
1669 
1670     s->data_read_loop = false;
1671     return 0;
1672 }
1673 
1674 static bool m25p80_data_read_loop_needed(void *opaque)
1675 {
1676     Flash *s = (Flash *)opaque;
1677 
1678     return s->data_read_loop;
1679 }
1680 
1681 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1682     .name = "m25p80/data_read_loop",
1683     .version_id = 1,
1684     .minimum_version_id = 1,
1685     .needed = m25p80_data_read_loop_needed,
1686     .fields = (VMStateField[]) {
1687         VMSTATE_BOOL(data_read_loop, Flash),
1688         VMSTATE_END_OF_LIST()
1689     }
1690 };
1691 
1692 static bool m25p80_aai_enable_needed(void *opaque)
1693 {
1694     Flash *s = (Flash *)opaque;
1695 
1696     return s->aai_enable;
1697 }
1698 
1699 static const VMStateDescription vmstate_m25p80_aai_enable = {
1700     .name = "m25p80/aai_enable",
1701     .version_id = 1,
1702     .minimum_version_id = 1,
1703     .needed = m25p80_aai_enable_needed,
1704     .fields = (VMStateField[]) {
1705         VMSTATE_BOOL(aai_enable, Flash),
1706         VMSTATE_END_OF_LIST()
1707     }
1708 };
1709 
1710 static bool m25p80_wp_level_srwd_needed(void *opaque)
1711 {
1712     Flash *s = (Flash *)opaque;
1713 
1714     return !s->wp_level || s->status_register_write_disabled;
1715 }
1716 
1717 static const VMStateDescription vmstate_m25p80_write_protect = {
1718     .name = "m25p80/write_protect",
1719     .version_id = 1,
1720     .minimum_version_id = 1,
1721     .needed = m25p80_wp_level_srwd_needed,
1722     .fields = (VMStateField[]) {
1723         VMSTATE_BOOL(wp_level, Flash),
1724         VMSTATE_BOOL(status_register_write_disabled, Flash),
1725         VMSTATE_END_OF_LIST()
1726     }
1727 };
1728 
1729 static bool m25p80_block_protect_needed(void *opaque)
1730 {
1731     Flash *s = (Flash *)opaque;
1732 
1733     return s->block_protect0 ||
1734            s->block_protect1 ||
1735            s->block_protect2 ||
1736            s->block_protect3 ||
1737            s->top_bottom_bit;
1738 }
1739 
1740 static const VMStateDescription vmstate_m25p80_block_protect = {
1741     .name = "m25p80/block_protect",
1742     .version_id = 1,
1743     .minimum_version_id = 1,
1744     .needed = m25p80_block_protect_needed,
1745     .fields = (VMStateField[]) {
1746         VMSTATE_BOOL(block_protect0, Flash),
1747         VMSTATE_BOOL(block_protect1, Flash),
1748         VMSTATE_BOOL(block_protect2, Flash),
1749         VMSTATE_BOOL(block_protect3, Flash),
1750         VMSTATE_BOOL(top_bottom_bit, Flash),
1751         VMSTATE_END_OF_LIST()
1752     }
1753 };
1754 
1755 static const VMStateDescription vmstate_m25p80 = {
1756     .name = "m25p80",
1757     .version_id = 0,
1758     .minimum_version_id = 0,
1759     .pre_save = m25p80_pre_save,
1760     .pre_load = m25p80_pre_load,
1761     .fields = (VMStateField[]) {
1762         VMSTATE_UINT8(state, Flash),
1763         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1764         VMSTATE_UINT32(len, Flash),
1765         VMSTATE_UINT32(pos, Flash),
1766         VMSTATE_UINT8(needed_bytes, Flash),
1767         VMSTATE_UINT8(cmd_in_progress, Flash),
1768         VMSTATE_UINT32(cur_addr, Flash),
1769         VMSTATE_BOOL(write_enable, Flash),
1770         VMSTATE_BOOL(reset_enable, Flash),
1771         VMSTATE_UINT8(ear, Flash),
1772         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1773         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1774         VMSTATE_UINT32(volatile_cfg, Flash),
1775         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1776         VMSTATE_BOOL(quad_enable, Flash),
1777         VMSTATE_UINT8(spansion_cr1nv, Flash),
1778         VMSTATE_UINT8(spansion_cr2nv, Flash),
1779         VMSTATE_UINT8(spansion_cr3nv, Flash),
1780         VMSTATE_UINT8(spansion_cr4nv, Flash),
1781         VMSTATE_END_OF_LIST()
1782     },
1783     .subsections = (const VMStateDescription * []) {
1784         &vmstate_m25p80_data_read_loop,
1785         &vmstate_m25p80_aai_enable,
1786         &vmstate_m25p80_write_protect,
1787         &vmstate_m25p80_block_protect,
1788         NULL
1789     }
1790 };
1791 
1792 static void m25p80_class_init(ObjectClass *klass, void *data)
1793 {
1794     DeviceClass *dc = DEVICE_CLASS(klass);
1795     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1796     M25P80Class *mc = M25P80_CLASS(klass);
1797 
1798     k->realize = m25p80_realize;
1799     k->transfer = m25p80_transfer8;
1800     k->set_cs = m25p80_cs;
1801     k->cs_polarity = SSI_CS_LOW;
1802     dc->vmsd = &vmstate_m25p80;
1803     device_class_set_props(dc, m25p80_properties);
1804     dc->reset = m25p80_reset;
1805     mc->pi = data;
1806 }
1807 
1808 static const TypeInfo m25p80_info = {
1809     .name           = TYPE_M25P80,
1810     .parent         = TYPE_SSI_PERIPHERAL,
1811     .instance_size  = sizeof(Flash),
1812     .class_size     = sizeof(M25P80Class),
1813     .abstract       = true,
1814 };
1815 
1816 static void m25p80_register_types(void)
1817 {
1818     int i;
1819 
1820     type_register_static(&m25p80_info);
1821     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1822         TypeInfo ti = {
1823             .name       = known_devices[i].part_name,
1824             .parent     = TYPE_M25P80,
1825             .class_init = m25p80_class_init,
1826             .class_data = (void *)&known_devices[i],
1827         };
1828         type_register(&ti);
1829     }
1830 }
1831 
1832 type_init(m25p80_register_types)
1833