xref: /openbmc/qemu/hw/block/m25p80.c (revision 01c22f2c)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "hw/hw.h"
25 #include "sysemu/blockdev.h"
26 #include "hw/ssi.h"
27 
28 #ifndef M25P80_ERR_DEBUG
29 #define M25P80_ERR_DEBUG 0
30 #endif
31 
32 #define DB_PRINT_L(level, ...) do { \
33     if (M25P80_ERR_DEBUG > (level)) { \
34         fprintf(stderr,  ": %s: ", __func__); \
35         fprintf(stderr, ## __VA_ARGS__); \
36     } \
37 } while (0);
38 
39 /* Fields for FlashPartInfo->flags */
40 
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45  * modelling EEPROM with SPI flash command set
46  */
47 #define WR_1 0x100
48 
49 typedef struct FlashPartInfo {
50     const char *part_name;
51     /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52     uint32_t jedec;
53     /* extended jedec code */
54     uint16_t ext_jedec;
55     /* there is confusion between manufacturers as to what a sector is. In this
56      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57      * command (opcode 0xd8).
58      */
59     uint32_t sector_size;
60     uint32_t n_sectors;
61     uint32_t page_size;
62     uint8_t flags;
63 } FlashPartInfo;
64 
65 /* adapted from linux */
66 
67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68     .part_name = (_part_name),\
69     .jedec = (_jedec),\
70     .ext_jedec = (_ext_jedec),\
71     .sector_size = (_sector_size),\
72     .n_sectors = (_n_sectors),\
73     .page_size = 256,\
74     .flags = (_flags),\
75 
76 #define JEDEC_NUMONYX 0x20
77 #define JEDEC_WINBOND 0xEF
78 #define JEDEC_SPANSION 0x01
79 
80 static const FlashPartInfo known_devices[] = {
81     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
83     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
84 
85     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
86     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
87     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
88 
89     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
90     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
91     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
92     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
93 
94     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
95 
96     /* EON -- en25xxx */
97     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
98     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
99     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
100     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
101     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
102 
103     /* GigaDevice */
104     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
105     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
106 
107     /* Intel/Numonyx -- xxxs33b */
108     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
109     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
110     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
111     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
112 
113     /* Macronix */
114     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
115     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
116     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
117     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
118     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
119     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
120     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
121     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
122     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
123     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
124 
125     /* Micron */
126     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
127     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
128     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
129     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
130     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
131     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
132     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
133     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
134 
135     /* Spansion -- single (large) sector size only, at least
136      * for the chips listed here (without boot sectors).
137      */
138     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
139     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
140     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
141     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
142     { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
143     { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
144     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
145     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
146     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
147     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
148     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
149     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
150     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
151     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
152     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
153     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
154     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
155 
156     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
157     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
158     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
159     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
160     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
161     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
162     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
163     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
164     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
165 
166     /* ST Microelectronics -- newer production may have feature updates */
167     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
168     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
169     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
170     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
171     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
172     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
173     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
174     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
175     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
176     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
177 
178     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
179     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
180     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
181 
182     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
183     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
184     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
185 
186     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
187     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
188     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
189     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
190 
191     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
192     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
193     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
194     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
195     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
196     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
197     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
198     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
199     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
200     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
201     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
202     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
203     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
204     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
205 
206     /* Numonyx -- n25q128 */
207     { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
208 };
209 
210 typedef enum {
211     NOP = 0,
212     WRSR = 0x1,
213     WRDI = 0x4,
214     RDSR = 0x5,
215     WREN = 0x6,
216     JEDEC_READ = 0x9f,
217     BULK_ERASE = 0xc7,
218 
219     READ = 0x3,
220     FAST_READ = 0xb,
221     DOR = 0x3b,
222     QOR = 0x6b,
223     DIOR = 0xbb,
224     QIOR = 0xeb,
225 
226     PP = 0x2,
227     DPP = 0xa2,
228     QPP = 0x32,
229 
230     ERASE_4K = 0x20,
231     ERASE_32K = 0x52,
232     ERASE_SECTOR = 0xd8,
233 } FlashCMD;
234 
235 typedef enum {
236     STATE_IDLE,
237     STATE_PAGE_PROGRAM,
238     STATE_READ,
239     STATE_COLLECTING_DATA,
240     STATE_READING_DATA,
241 } CMDState;
242 
243 typedef struct Flash {
244     SSISlave parent_obj;
245 
246     uint32_t r;
247 
248     BlockDriverState *bdrv;
249 
250     uint8_t *storage;
251     uint32_t size;
252     int page_size;
253 
254     uint8_t state;
255     uint8_t data[16];
256     uint32_t len;
257     uint32_t pos;
258     uint8_t needed_bytes;
259     uint8_t cmd_in_progress;
260     uint64_t cur_addr;
261     bool write_enable;
262 
263     int64_t dirty_page;
264 
265     const FlashPartInfo *pi;
266 
267 } Flash;
268 
269 typedef struct M25P80Class {
270     SSISlaveClass parent_class;
271     FlashPartInfo *pi;
272 } M25P80Class;
273 
274 #define TYPE_M25P80 "m25p80-generic"
275 #define M25P80(obj) \
276      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
277 #define M25P80_CLASS(klass) \
278      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
279 #define M25P80_GET_CLASS(obj) \
280      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
281 
282 static void bdrv_sync_complete(void *opaque, int ret)
283 {
284     /* do nothing. Masters do not directly interact with the backing store,
285      * only the working copy so no mutexing required.
286      */
287 }
288 
289 static void flash_sync_page(Flash *s, int page)
290 {
291     if (s->bdrv) {
292         int bdrv_sector, nb_sectors;
293         QEMUIOVector iov;
294 
295         bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
296         nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
297         qemu_iovec_init(&iov, 1);
298         qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
299                                                 nb_sectors * BDRV_SECTOR_SIZE);
300         bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
301                                                 bdrv_sync_complete, NULL);
302     }
303 }
304 
305 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
306 {
307     int64_t start, end, nb_sectors;
308     QEMUIOVector iov;
309 
310     if (!s->bdrv) {
311         return;
312     }
313 
314     assert(!(len % BDRV_SECTOR_SIZE));
315     start = off / BDRV_SECTOR_SIZE;
316     end = (off + len) / BDRV_SECTOR_SIZE;
317     nb_sectors = end - start;
318     qemu_iovec_init(&iov, 1);
319     qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
320                                         nb_sectors * BDRV_SECTOR_SIZE);
321     bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
322 }
323 
324 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
325 {
326     uint32_t len;
327     uint8_t capa_to_assert = 0;
328 
329     switch (cmd) {
330     case ERASE_4K:
331         len = 4 << 10;
332         capa_to_assert = ER_4K;
333         break;
334     case ERASE_32K:
335         len = 32 << 10;
336         capa_to_assert = ER_32K;
337         break;
338     case ERASE_SECTOR:
339         len = s->pi->sector_size;
340         break;
341     case BULK_ERASE:
342         len = s->size;
343         break;
344     default:
345         abort();
346     }
347 
348     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
349     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
350         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
351                       " device\n", len);
352     }
353 
354     if (!s->write_enable) {
355         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
356         return;
357     }
358     memset(s->storage + offset, 0xff, len);
359     flash_sync_area(s, offset, len);
360 }
361 
362 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
363 {
364     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
365         flash_sync_page(s, s->dirty_page);
366         s->dirty_page = newpage;
367     }
368 }
369 
370 static inline
371 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
372 {
373     int64_t page = addr / s->pi->page_size;
374     uint8_t prev = s->storage[s->cur_addr];
375 
376     if (!s->write_enable) {
377         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
378     }
379 
380     if ((prev ^ data) & data) {
381         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
382                    " -> %" PRIx8 "\n", addr, prev, data);
383     }
384 
385     if (s->pi->flags & WR_1) {
386         s->storage[s->cur_addr] = data;
387     } else {
388         s->storage[s->cur_addr] &= data;
389     }
390 
391     flash_sync_dirty(s, page);
392     s->dirty_page = page;
393 }
394 
395 static void complete_collecting_data(Flash *s)
396 {
397     s->cur_addr = s->data[0] << 16;
398     s->cur_addr |= s->data[1] << 8;
399     s->cur_addr |= s->data[2];
400 
401     s->state = STATE_IDLE;
402 
403     switch (s->cmd_in_progress) {
404     case DPP:
405     case QPP:
406     case PP:
407         s->state = STATE_PAGE_PROGRAM;
408         break;
409     case READ:
410     case FAST_READ:
411     case DOR:
412     case QOR:
413     case DIOR:
414     case QIOR:
415         s->state = STATE_READ;
416         break;
417     case ERASE_4K:
418     case ERASE_32K:
419     case ERASE_SECTOR:
420         flash_erase(s, s->cur_addr, s->cmd_in_progress);
421         break;
422     case WRSR:
423         if (s->write_enable) {
424             s->write_enable = false;
425         }
426         break;
427     default:
428         break;
429     }
430 }
431 
432 static void decode_new_cmd(Flash *s, uint32_t value)
433 {
434     s->cmd_in_progress = value;
435     DB_PRINT_L(0, "decoded new command:%x\n", value);
436 
437     switch (value) {
438 
439     case ERASE_4K:
440     case ERASE_32K:
441     case ERASE_SECTOR:
442     case READ:
443     case DPP:
444     case QPP:
445     case PP:
446         s->needed_bytes = 3;
447         s->pos = 0;
448         s->len = 0;
449         s->state = STATE_COLLECTING_DATA;
450         break;
451 
452     case FAST_READ:
453     case DOR:
454     case QOR:
455         s->needed_bytes = 4;
456         s->pos = 0;
457         s->len = 0;
458         s->state = STATE_COLLECTING_DATA;
459         break;
460 
461     case DIOR:
462         switch ((s->pi->jedec >> 16) & 0xFF) {
463         case JEDEC_WINBOND:
464         case JEDEC_SPANSION:
465             s->needed_bytes = 4;
466             break;
467         case JEDEC_NUMONYX:
468         default:
469             s->needed_bytes = 5;
470         }
471         s->pos = 0;
472         s->len = 0;
473         s->state = STATE_COLLECTING_DATA;
474         break;
475 
476     case QIOR:
477         switch ((s->pi->jedec >> 16) & 0xFF) {
478         case JEDEC_WINBOND:
479         case JEDEC_SPANSION:
480             s->needed_bytes = 6;
481             break;
482         case JEDEC_NUMONYX:
483         default:
484             s->needed_bytes = 8;
485         }
486         s->pos = 0;
487         s->len = 0;
488         s->state = STATE_COLLECTING_DATA;
489         break;
490 
491     case WRSR:
492         if (s->write_enable) {
493             s->needed_bytes = 1;
494             s->pos = 0;
495             s->len = 0;
496             s->state = STATE_COLLECTING_DATA;
497         }
498         break;
499 
500     case WRDI:
501         s->write_enable = false;
502         break;
503     case WREN:
504         s->write_enable = true;
505         break;
506 
507     case RDSR:
508         s->data[0] = (!!s->write_enable) << 1;
509         s->pos = 0;
510         s->len = 1;
511         s->state = STATE_READING_DATA;
512         break;
513 
514     case JEDEC_READ:
515         DB_PRINT_L(0, "populated jedec code\n");
516         s->data[0] = (s->pi->jedec >> 16) & 0xff;
517         s->data[1] = (s->pi->jedec >> 8) & 0xff;
518         s->data[2] = s->pi->jedec & 0xff;
519         if (s->pi->ext_jedec) {
520             s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
521             s->data[4] = s->pi->ext_jedec & 0xff;
522             s->len = 5;
523         } else {
524             s->len = 3;
525         }
526         s->pos = 0;
527         s->state = STATE_READING_DATA;
528         break;
529 
530     case BULK_ERASE:
531         if (s->write_enable) {
532             DB_PRINT_L(0, "chip erase\n");
533             flash_erase(s, 0, BULK_ERASE);
534         } else {
535             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
536                           "protect!\n");
537         }
538         break;
539     case NOP:
540         break;
541     default:
542         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
543         break;
544     }
545 }
546 
547 static int m25p80_cs(SSISlave *ss, bool select)
548 {
549     Flash *s = M25P80(ss);
550 
551     if (select) {
552         s->len = 0;
553         s->pos = 0;
554         s->state = STATE_IDLE;
555         flash_sync_dirty(s, -1);
556     }
557 
558     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
559 
560     return 0;
561 }
562 
563 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
564 {
565     Flash *s = M25P80(ss);
566     uint32_t r = 0;
567 
568     switch (s->state) {
569 
570     case STATE_PAGE_PROGRAM:
571         DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
572                    s->cur_addr, (uint8_t)tx);
573         flash_write8(s, s->cur_addr, (uint8_t)tx);
574         s->cur_addr++;
575         break;
576 
577     case STATE_READ:
578         r = s->storage[s->cur_addr];
579         DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
580                    (uint8_t)r);
581         s->cur_addr = (s->cur_addr + 1) % s->size;
582         break;
583 
584     case STATE_COLLECTING_DATA:
585         s->data[s->len] = (uint8_t)tx;
586         s->len++;
587 
588         if (s->len == s->needed_bytes) {
589             complete_collecting_data(s);
590         }
591         break;
592 
593     case STATE_READING_DATA:
594         r = s->data[s->pos];
595         s->pos++;
596         if (s->pos == s->len) {
597             s->pos = 0;
598             s->state = STATE_IDLE;
599         }
600         break;
601 
602     default:
603     case STATE_IDLE:
604         decode_new_cmd(s, (uint8_t)tx);
605         break;
606     }
607 
608     return r;
609 }
610 
611 static int m25p80_init(SSISlave *ss)
612 {
613     DriveInfo *dinfo;
614     Flash *s = M25P80(ss);
615     M25P80Class *mc = M25P80_GET_CLASS(s);
616 
617     s->pi = mc->pi;
618 
619     s->size = s->pi->sector_size * s->pi->n_sectors;
620     s->dirty_page = -1;
621     s->storage = qemu_blockalign(s->bdrv, s->size);
622 
623     dinfo = drive_get_next(IF_MTD);
624 
625     if (dinfo && dinfo->bdrv) {
626         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
627         s->bdrv = dinfo->bdrv;
628         if (bdrv_is_read_only(s->bdrv)) {
629             fprintf(stderr, "Can't use a read-only drive");
630             return 1;
631         }
632 
633         /* FIXME: Move to late init */
634         if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
635                                                     BDRV_SECTOR_SIZE))) {
636             fprintf(stderr, "Failed to initialize SPI flash!\n");
637             return 1;
638         }
639     } else {
640         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
641         memset(s->storage, 0xFF, s->size);
642     }
643 
644     return 0;
645 }
646 
647 static void m25p80_pre_save(void *opaque)
648 {
649     flash_sync_dirty((Flash *)opaque, -1);
650 }
651 
652 static const VMStateDescription vmstate_m25p80 = {
653     .name = "xilinx_spi",
654     .version_id = 1,
655     .minimum_version_id = 1,
656     .minimum_version_id_old = 1,
657     .pre_save = m25p80_pre_save,
658     .fields = (VMStateField[]) {
659         VMSTATE_UINT8(state, Flash),
660         VMSTATE_UINT8_ARRAY(data, Flash, 16),
661         VMSTATE_UINT32(len, Flash),
662         VMSTATE_UINT32(pos, Flash),
663         VMSTATE_UINT8(needed_bytes, Flash),
664         VMSTATE_UINT8(cmd_in_progress, Flash),
665         VMSTATE_UINT64(cur_addr, Flash),
666         VMSTATE_BOOL(write_enable, Flash),
667         VMSTATE_END_OF_LIST()
668     }
669 };
670 
671 static void m25p80_class_init(ObjectClass *klass, void *data)
672 {
673     DeviceClass *dc = DEVICE_CLASS(klass);
674     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
675     M25P80Class *mc = M25P80_CLASS(klass);
676 
677     k->init = m25p80_init;
678     k->transfer = m25p80_transfer8;
679     k->set_cs = m25p80_cs;
680     k->cs_polarity = SSI_CS_LOW;
681     dc->vmsd = &vmstate_m25p80;
682     mc->pi = data;
683 }
684 
685 static const TypeInfo m25p80_info = {
686     .name           = TYPE_M25P80,
687     .parent         = TYPE_SSI_SLAVE,
688     .instance_size  = sizeof(Flash),
689     .class_size     = sizeof(M25P80Class),
690     .abstract       = true,
691 };
692 
693 static void m25p80_register_types(void)
694 {
695     int i;
696 
697     type_register_static(&m25p80_info);
698     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
699         TypeInfo ti = {
700             .name       = known_devices[i].part_name,
701             .parent     = TYPE_M25P80,
702             .class_init = m25p80_class_init,
703             .class_data = (void *)&known_devices[i],
704         };
705         type_register(&ti);
706     }
707 }
708 
709 type_init(m25p80_register_types)
710